[1]
Chen, Y.; Liu, Y.; Yao, Y.; Zhang, S.; Gu, Z. Reverse micelle-based water-soluble nanoparticles for simultaneous bioimaging and drug delivery. Org. Biomol. Chem., 2017, 15, 3232-3238.
[2]
Yi, S.; Dai, F.; Zhao, C.; Si, Y. A reverse micelle strategy for fabricating magnetic lipase-immobilized nanoparticles with robust enzymatic activity. Sci. Rep., 2017, 7, 9806.
[3]
Monti, G.A.; Fernández, G.A.; Correa, N.M.; Falcone, R.D.; Moyano, F.; Silbestr, G.F. Gold nanoparticles stabilized with sulphonated imidazolium salts in water and reverse micelles. R. Soc. Open Sci., 2018, 4, 170481.
[4]
Yi, S.X.; Tong, X.L.; Sun, S.; Dai, F.Y. Dyeing properties of CI reactive violet 2 on cotton fabric in non-ionic TX-100/Span40 mixed reverse micelles. Fibers Polym., 2015, 16(8), 1663-1670.
[5]
Zhang, N.; Zang, G.L.; Shi, C.; Yu, H.Q.; Sheng, G.P. A novel adsorbent TEMPO-mediated oxidized cellulose nanofbrils modifed with PEI: Preparation, characterization, and application for Cu(II) removal. J. Hazard. Mater., 2016, 316, 11-18.
[6]
Fan, J.W.; Ran, X.; Ren, Y.; Wang, C.; Yang, J.; Teng, W.; Zou, L.; Sun, Y.; Lu, B.; Deng, Y.; Zhao, D. Ordered mesoporous carbonaceous materials with tunable surface property for enrichment of hexachlorobenzene. Langmuir, 2016, 32, 9922-9929.
[7]
Mirzaei, H.; Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int., 2017, 43(1), 907-914.
[8]
Sergievskaya, A.P.; Tatarchuk, V.V.; Makotchenko, E.V.; Mironov, I.V. Formation of gold nanoparticles during the reduction of HAuBr4 in reverse micelles of oxyethylated surfactant: Influence of gold precursor on the growth kinetics and properties of the particles. J. Mater. Res., 2015, 30(12), 1925-1930.
[9]
Tadros, F. Surfactants; Academic Press: London, 1984, p. 342.
[10]
Nagarajan, R. Micellization, mixed micellization and solubilization: The role of interfacial interactions. Adv. Colloid Interface Sci., 1986, 26, 205-264.
[11]
Nagarajan, R.; Ruckenstein, E. Theory of surfactant self-assembly: A predictive molecular thermodynamic approach. Langmuir, 1991, 7(12), 2934-2969.
[12]
Prince, M.L. Microemulsion Theory and Practice; Academic Press: New York, 1977, pp. 1-150.
[13]
Fogden, A.; Hyde, T.S.; Lundberg, G. Bending energy of surfactant films. J. Chem. Soc., Faraday Trans., 1991, 87, 949-955.
[14]
Holmberg, K.; Jönsson, B.; Kronberg, B.; Lindman, B. Surfactants and polymers in aqueous solution, 2nd ed; John Wiley & Sons, Ltd: England, 2003.
[15]
Pileni, P.M. Reverse micelles as microreactors. J. Phys. Chem., 1993, 97, 6961-6973.
[16]
Rosen, M.J. Surfactant and Interfacial Phenomena, 3rd ed; Wiley: New York, 2004.
[17]
Mukerjee, P.; Mysels, J.K. Critical Micelle Concentrations of Aqueous Surfactant Systems; NSRDS-NBS Washington: DC, 1971, p. 36.
[18]
Shah, A.M.; Ahmad, T. Prinicples of Nanoscience and Nanotechnology; Narosa Publishing House, Pvt. Ltd.: New Delhi, 2010.
[19]
Ekwall, P.; Mandell, L.; Solyom, P. The solution phase with reversed micelles in the cetyl trimethylammonium bromide-hexanol-water system. J. Colloid Interface Sci., 1970, 35(2), 266-272.
[20]
Bommarius, S.A.; Holzwarth, F.J.; Wang, C.I.D.; Hatton, A.T. Coalescence and solubilizate exchange in a cationic four component reversed micellar system. J. Phys. Chem., 1990, 94(18), 7232-7239.
[21]
Fletcher, I.D.P.; Howe, M.A.; Robinson, B.H. The kinetics of solubilizate exchange between water droplets of a water-in-oil microemulsion. J. Chem. Soc., Faraday Trans., 1987, 83(4), 985-1006.
[22]
Lopez, A.M.Q.; Tojo, C.M.; Blanco, C.M.; Garcıa, L.R.; Leis, R.J. Microemulsion dynamics and reactions in microemulsions. Curr. Opin. Colloid Interface Sci., 2004, 9(3-4), 264-278.
[23]
Li, C.Y.; Park, W.C. Particle size distribution in the synthesis of nanoparticles using microemulsions. Langmuir, 1999, 15(4), 952-956.
[24]
Bagwe, P.R.; Khilar, C.K. Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT. Langmuir, 2000, 16(3), 905-910.
[25]
Monnoyer, P.; Fonseca, A.; Nagy, B.J. Preparation of colloidal AgBr particles from microemulsions. Colloid Surf. A, 1995, 100(25), 233-243.
[26]
Ahmad, T.; Ganguli, K.A. Synthesis of nanometer-sized particles of barium ortho titanate prepared through a modified reverse micellar route: Structural characterization, phase stability and dielectric properties. J. Mater. Res., 2004, 19(10), 2905-2912.
[27]
Ahmad, T.; Kavita, G.; Narayana, C.; Ganguli, K.A. Nanostructured barium titanate prepared through a modified reverse micellar route: Structural distortion and dielectric properties. J. Mater. Res., 2005, 20(6), 1415-1421.
[28]
Ahmad, T.; Ganguli, K.A. Reverse micellar route to nanocrystalline titanates (SrTiO3, Sr2TiO4, and PbTiO3): Structural aspects and dielectric properties. J. Am. Ceram. Soc., 2006, 89(4), 1326-1332.
[29]
Ahmad, T.; Ganguli, K.A. Structural and dielectric characterization of nanocrystalline (Ba, Pb) ZrO3 developed by reverse micellar synthesis. J. Am. Ceram. Soc., 2006, 89(10), 3140-3146.
[30]
Vaidya, S.; Ahmad, T.; Agarwal, S.; Ganguli, K.A. Nanocrystalline oxalate/carbonate precursors of Ce and Zr and their decompositions to CeO2 and ZrO2 nanoparticles. J. Am. Ceram. Soc., 2007, 90(3), 863-869.
[31]
Ahmad, T.; Ganguli, K.A. Synthesis, characterization and dielectric properties of nanocrystalline strontium zirconate prepared through a modified reverse micellar route. Mater. Lett., 2006, 60(29-30), 3660-3663.
[32]
Ahmad, T.; Ramanujachary, V.K.; Lofland, E.S.; Ganguli, K.A. Nanorods of manganese oxalate: A single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). J. Mater. Chem., 2004, 14(23), 3406-3410.
[33]
Ahmad, T.; Vaidya, S.; Sarkar, N.; Ghosh, S.; Ganguli, K.A. Zinc oxalate nanorods: A convenient precursor to uniform nanoparticles of ZnO. Nanotechnology, 2006, 17(5), 1236.
[34]
Ganguli, K.A.; Ahmad, T. Nanorods of iron oxalate synthesized using reverse micelles: Facile route for α-Fe2O3 and Fe3O4 nanoparticles. J. Nanosci. Nanotechnol., 2007, 7(6), 2029-2035.
[35]
Vaidya, S.; Rastogi, P.; Agarwal, S.; Gupta, K.S.; Ahmad, T.; Antonelli, M.A.; Ramanujachary, V.K.; Lofland, E.S.; Ganguli, K.A. Nanospheres, nanocubes, and nanorods of nickel oxalate: Control of shape and size by surfactant and solvent. J. Phys. Chem. C, 2008, 112(33), 12610-12615.
[36]
Finelli, R.Z.; Querini, A.C.; Figoli, S.N.; Comelli, A.R. Skeletal isomerization of 1-butene on ferrierite: Deactivation and regeneration conditions. Appl. Catal. A, 1999, 187(1), 115-125.
[37]
Li, Y.; Armor, N.J. Metal exchanged ferrierites as catalysts for the selective reduction of NOx with methane. Appl. Catal. B, 1993, 3(1), 1-11.
[38]
Sheddon, D. Selectivity for para-xylene in the isomerization of xylenes catalyzed by zeolites with ten-ring windows. J. Catal., 1986, 98(1), 1-6.