[1]
A. Maleki, and M.A. Rosen, "Design of a cost-effective on-grid hybrid wind-hydrogen based CHP system using a modified heuristic approach", Int. J. Hydrogen Energy, vol. 42, no. 25, pp. 15973-15989, 2017.
[2]
H. Hafeznia, F. Pourfayaz, and A. Maleki, "An assessment of Iran’s natural gas potential for transition toward low-carbon economy", Renew. Sustain. Energy Rev., vol. 79, pp. 71-81, 2017.
[3]
A. Maleki, M.G. Khajeh, and M. Ameri, "Optimal sizing of a grid independent hybrid renewable energy system incorporating resource uncertainty, and load uncertainty", Int. J. Electr. Power Energy Syst., vol. 83, pp. 514-524, 2016.
[4]
A. Beddar, H. Bouzekri, and B. Babess, "Control of grid connected wind energy conversion system using improved fractional order PI controller: Real time implementation", Recent Adv. Electr. Electron. Eng., vol. 9, no. 2, pp. 132-141, 2016.
[5]
H.S.K. El-Goharey, W.A. Omran, A.T.M. Taha, and S.M. El-Samanoudy, "Voltage stability investigation of the egyptian grid with high penetration level of wind energy", Recent Adv. Commun. Netw. Technol., vol. 4, no. 2, pp. 78-89, 2015.
[6]
S.H.E. Abdel Aleem, A.F. Zobaa, and H.M. Abdel Mageed, "Assessment of energy credits for the enhancement of the egyptian green pyramid rating system", Energy Policy, vol. 87, pp. 407-416, 2015.
[7]
S. Sakar, M.E. Balci, S.H.E.A. Aleem, and A.F. Zobaa, "Hosting capacity assessment and improvement for photovoltaic-based distributed generation in distorted distribution networks", In: IEEE
16th International Conference on Environment and Electrical Engineering
(EEEIC), Florence, Italy, 2016, pp. 1-6.
[8]
M.A. El-Sharkawi, Wind energy: an introduction., 1st ed CRC Press, 2015.
[9]
A. Rashad, S. Kamel, F. Jurado, and S.H.E. Abdel Aleem, “Stability
of distribution networks with wind turbines BT- electric distribution
network management and control”, A. Arefi, F. Shahnia, and
G. Ledwich, Eds. Singapore: Springer Singapore, 2018, pp. 281-
308.
[10]
S.H.E. Abdel Aleem, A.Y. Abdelaziz, and A.F. Zobaa, Egyptian grid code of wind farms and power quality In Handbook of Distributed
Generation: Electric Power Technologies, Economics and
Environmental Impacts, Springer Link, 2017, pp. 227-245.
[11]
Y.J. Liu, P.A. Chen, P.H. Lan, and Y.T. Chang, "Dynamic simulation and analysis of connecting a 5 MW wind turbine to the distribution system feeder that serves to a wind turbine testing site", In:
IEEE 3rd International Future Energy Electronics Conference and
ECCE Asia (IFEEC 2017 - ECCE Asia), Kaohsiung, Taiwan, 2017,
pp. 2031-2035.
[12]
A.A. Mas’ud, A. Wirba, J.A. Ardila-Rey, and R. Albarracín, "Wind power potentials in Cameroon and Nigeria: Lessons from South Africa", Energies, vol. 10, no. 4, 2017.
[13]
Y. Zhang, Z. Chen, W. Hu, and M. Cheng, "Flicker mitigation by individual pitch control of variable speed wind turbines with DFIG", IEEE Trans. Energ. Convers., vol. 29, no. 1, pp. 20-28, 2014.
[14]
F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, and R. Villafáfila-Robles, "A review of energy storage technologies for wind power applications", Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 2154-2171, 2012.
[15]
S.T. Tentzerakis, and S.A. Papathanassiou, "An Investigation of the harmonic emissions of wind turbines", IEEE Trans. Energ. Convers., vol. 22, no. 1, pp. 150-158, 2007.
[16]
S. Liang, Q. Hu, and W.J. Lee, "A survey of harmonic emissions of a commercially operated wind farm", IEEE Trans. Ind. Appl., vol. 48, no. 3, pp. 1115-1123, 2012.
[17]
IEC 61400-21, Wind Turbines-Part 21: Measurement and assessment
of power quality characteristics of grid connected wind turbines,
2008.
[18]
T. Ackermann, and L. Söder, "Wind energy technology and current status: A review", Renew. Sustain. Energy Rev., vol. 4, no. 4, pp. 315-374, 2000.
[19]
M.Q. Duong, F. Grimaccia, S. Leva, M. Mussetta, G. Sava, and S. Costinas, "“Performance analysis of grid-connected wind turbines,” UPB Sci. Bull. Ser. C", Electr. Eng., vol. 76, no. 4, pp. 169-180, 2014.
[20]
J. Hossain, and H.R. Pota, “Power system voltage stability and
models of devices BT - robust control for grid voltage stability:
High penetration of renewable energy: Interfacing conventional
and renewable power generation resources,” J. Hossain and H.R.
Pota, Eds. Singapore: Springer Singapore, 2014, pp. 19-59.
[21]
M.H. Haque, "Evaluation of power flow solutions with fixed speed wind turbine generating systems", Energy Convers. Manage., vol. 79, pp. 511-518, 2014.
[22]
A. Ahmed, and A.F. Zobaa, "Comparative power quality study of variable speed wind turbines", Int. J. Energy Convers., vol. 4, no. 4, pp. 97-104, 2016.
[23]
J.M. Ha, H. Oh, J. Park, and B.D. Youn, "Classification of operating conditions of wind turbines for a class-wise condition monitoring strategy", Renew. Energy, vol. 103, pp. 594-605, 2017.
[24]
L. Ziegler, E. Gonzalez, T. Rubert, U. Smolka, and J.J. Melero, "Lifetime extension of onshore wind turbines: A review covering Germany, Spain, Denmark and the UK", Renew. Sustain. Energy Rev., vol. 82, pp. 1261-1271, 2018.
[25]
A.D. Hansen, and L.H. Hansen, "Wind turbine concept market penetration over 10 years (1995-2004)", Wind Energy, vol. 10, no. 1, pp. 81-97, 2007.
[26]
M. Tazil, V. Kumar, R.C. Bansal, S. Kong, Z.Y. Dong, and W. Freitas, "Three-phase doubly fed induction generators: An overview", IET Electr. Power Appl., vol. 4, no. 2, p. 75, 2010.
[27]
S. Müller, M. Deicke, and R.W. De Doncker, "Doubly fed induction generator systems for wind turbines", Ind. Appl. Mag. IEEE, vol. 8, no. 3, pp. 26-33, 2002.
[28]
F. Blaabjerg, "Future on power electronics for wind turbine systems", IEEE J. Emerg. Sel. Top. Power Electron., vol. 1, no. 3, pp. 139-152, 2013.
[29]
H. Polinder, J.A. Ferreira, B.B. Jensen, A.B. Abrahamsen, K. Atallah, and R.A. McMahon, "Trends in wind turbine generator systems", IEEE J. Emerg. Sel. Top. Power Electron., vol. 1, no. 3, pp. 174-185, 2013.
[30]
T. Bakka, and H.R. Karimi, "Bond graph modeling and simulation of wind turbine systems", J. Mech. Sci. Technol., vol. 27, no. 6, pp. 1843-1852, 2013.
[31]
M. De Prada Gil, A. Sumper, and O. Gomis-Bellmunt, Modeling and control of a pitch-controlled variable-speed wind turbine driven by a DFIG with frequency control support in PSS/E In: PEMWA 2012 - 2012 IEEE Power Electronics and Machines in Wind Applications, Denver, CO, USA, 2012.
[32]
T.P. Chang, S.P. Cheng, F.J. Liu, L.C. Sun, and Y.P. Chang, "Site matching study of pitch-controlled wind turbine generator", Energy Convers. Manage., vol. 86, pp. 664-669, 2014.
[33]
G.S. Elbasuony, S.H.E. Abdel Aleem, A.M. Ibrahim, and A.M. Sharaf, "A unified index for power quality evaluation in distributed generation systems", Energy, vol. 149, pp. 607-622, 2018.
[34]
F.H. Gandoman, A.M. Sharaf, S.H.E.A. Aleem, and F. Jurado, "Distributed FACTS stabilization scheme for efficient utilization of distributed wind energy systems", Int. Trans. Electr Energ Syst.. Vol. 27, no. 11, p. e2391, 2017.
[35]
P.O. Ochieng, A.W. Manyonge, and A.O. Oduor, "Mathematical analysis of tip speed ratio of a wind turbine and its effects on power coefficient", Int. J. Math. Soft Comput., vol. 4, no. 1, p. 61, 2014.
[36]
P.M. Anderson, and A. Bose, "Stability simulation of wind turbine systems", IEEE Trans. Power Apparatus Syst, vol. PAS-102, no. 12, pp. 3791-3795, 1983.
[37]
P. Tchakoua, R. Wamkeue, M. Ouhrouche, F. Slaoui-Hasnaoui, A.T. Tameghe, and G. Ekemb, "Wind turbine condition monitoring: State-of-the-art review, new trends, and future challenges", Energies, vol. 7, no. 4, 2014.
[38]
S. Struggl, V. Berbyuk, and H. Johansson, "Review on wind turbines with focus on drive train system dynamics", Wind Energy, vol. 18, no. 4, pp. 567-590, 2015.
[39]
A.F. Zobaa, and S.H.A. Aleem, Power Quality in Future Electrical Power Systems., IET Digital Library: UK, 2017.
[40]
S.H.E. Abdel Aleem, A.F. Zobaa, and M.M. Abdel Aziz, "Optimal C-type passive filter based on minimization of the voltage harmonic distortion for nonlinear loads", IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 281-289, 2012.
[41]
M.A. Saqib, and A.Z. Saleem, "Power-quality issues and the need for reactive-power compensation in the grid integration of wind power", Renew. Sustain. Energy Rev., vol. 43, pp. 51-64, 2015.
[42]
S.W. Mohod, and M.V. Aware, “Power quality and grid code issues
in wind energy conversion system,” M. Aware and D. Lu, Eds. Rijeka:
InTech Open, 2013.
[43]
H. Emanuel, M. Schellschmidt, S. Wachtel, and S. Adloff, "Power quality measurements of wind energy converters with full-scale converter according to IEC 61400-21", In: 10th International Conference on Electrical Power Quality and Utilisation Lodz, Poland,
2009, pp. 1-7.
[44]
V. Kumar, A.S. Pandey, and S.K. Sinha, "Grid integration and power quality issues of wind and solar energy system: A review", In: International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES) Sultanpur,
India, 2016, pp. 71-80.
[45]
Z. Chen, "Issues of connecting wind farms into power systems", In: Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference Dalian, China, 2005, pp. 1-6.
[46]
M. Mroz, K. Chmielowiec, and Z. Hanzelka, "Voltage fluctuations in networks with distributed power sources", In Harmonics and
Quality of Power (ICHQP), 2012 IEEE 15th International Conference
on, 2012, pp. 920-925.
[47]
IEEE recommended practice for the analysis of fluctuating installations
on power systems - Redline," In: IEEE Std 1453-2015 (Revision
of IEEE Std 1453-2011) - Redline, USA, 2015, pp. 1-174.
[48]
IEEE recommended practices for modulating current in highbrightness
LEDs for mitigating health risks to viewers," In: IEEE
Std 1789-201, USA, 2015, pp.1-80,
[49]
X. Yang, and J. Gauthier, How can flicker level be determined before a customer is connected to the electric grid In: IEEE Power
& Energy Society General Meeting, Calgary, AB, Canada, 2009,
pp. 1-6.
[50]
International Electrotechnical Commission, Electromagnetic compatibility (EMC) - Part 4-15: Testing and measurement techniques - Flickermeter - Functional and design specifications. IEC, 61000-
4-15, 2010.
[51]
A. Larsson, "Flicker emission of wind turbines during continuous operation", IEEE Trans. Energ. Convers., vol. 17, no. 1, pp. 114-118, 2002.
[52]
M. Boutoubat, L. Mokrani, and M. Machmoum, "Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement", Renew. Energy, vol. 50, pp. 378-386, 2013.
[53]
E. Ghiani, F. Pilo, G.G. Soma, and G. Celi, "Power quality measurements performed on a large wind park at low and medium voltage level", IPST Int. Conf. Power Systems Transients Lyon, France June 4-7, 2007.
[54]
Y. Zhang, Z. Chen, W. Hu, and M. Cheng, "Flicker mitigation by individual pitch control of variable speed wind turbines with DFIG", IEEE Trans. Energ. Convers., vol. 29, no. 1, pp. 20-28, 2014.
[55]
T. Sun, Z. Chen, and F. Blaabjerg, "Flicker study on variable speed wind turbines with doubly fed induction generators", IEEE Trans. Energ. Convers., vol. 20, no. 4, pp. 896-905, 2005.
[56]
T. Thiringer, T. Petru, and S. Lundberg, "Flicker contribution from wind turbine installations", IEEE Trans. Energ. Convers., vol. 19, no. 1, pp. 157-163, 2004.
[57]
S.H.E.A. Aleem, M.T. Elmathana, and A.F. Zobaa, "Different design approaches of shunt passive harmonic filters based on IEEE Std. 519-1992 and IEEE Std. 18-2002", Recent Pat. Electr. Electron. Eng., vol. 6, no. 1, pp. 68-75, 2013.
[58]
S. Sakar, M.E. Balci, S.H.E. Abdel Aleem, and A.F. Zobaa, "Integration of large- scale PV plants in non-sinusoidal environments: Considerations on hosting capacity and harmonic distortion limits", Renew. Sustain. Energy Rev., vol. 82, pp. 176-186, 2018.
[59]
International Electrotechnical Commission, Electromagnetic compatibility (EMC) - Part 4-7: Testing and measurement techniques-general guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto. IEC 61000-4-7, 2002.
[60]
International Electrotechnical Commission, Electromagnetic compatibility (EMC) - Part 3-6: Limits- Assessment of Emission Limits for the Connection of Distorting Installations to MV, HV and EHV Power System. 61000-3-6, 2008.
[61]
IEEE Std 519-2014. Recommended Practice and Requirements for
Harmonic Control in Electric Power Systems. IEEE Std 519-2014
(Revision IEEE Std 519-1992), USA, pp. 1-29, 2014.
[62]
EN 50160, Voltage Characteristics of Electricity Supplied by Public
Distribution Systems, 2008.
[63]
S.T. Tentzerakis, and S.A. Papathanassiou, "An investigation of the harmonic emissions of wind turbines", IEEE Trans. Energ. Convers., vol. 22, no. 1, pp. 150-158, March 2007.
[64]
C. Yıldız, Ö.F. Keçecioğlu, H. Açıkgöz, A. Gani, and M. Şekkeli, "Power quality measurement and evaluation of a wind farm connected to distribution grid", Procedia Soc. Behav. Sci., vol. 195, pp. 2370-2375, 2015.
[65]
Ramos, A. Martins, and A. Carvalho, “Active filtering of DFIG
stator and rotor current harmonics caused by distorted stator voltages,”
EPE J. Europ. Power Electron. Driv. J., Vol. 21, no. 1, pp.
43-54, 2011.
[66]
S. Djurović, D.S. Vilchis-Rodriguez, and A.C. Smith, "Supply induced interharmonic effects in wound rotor and doubly-fed induction generators", IEEE Trans. Energ. Convers., vol. 30, no. 4, pp. 1397-1408, 2015.
[67]
C. Larose, and R. Gagnon, "P. Prud’Homme, M. Fecteau and M. Asmine, “Type-III wind power plant harmonic emissions: Field measurements and aggregation guidelines for adequate representation of harmonics", IEEE Transact. Sustain. Energy, vol. 4, no. 3, pp. 797-804, 2013.
[68]
S.A. Papathanassiou, and M.P. Papadopoulos, "On the harmonics of the slip energy recovery drive", IEEE Power Eng. Rev., vol. 21, no. 4, pp. 55-57, 2001.
[69]
S. Djurović, and S. Williamson, "Influence of supply harmonic voltages on DFIG stator current and power spectrum", In: The XIX International Conference on Electrical Machines - ICEM 2010 Rome, Italy, 2010, pp. 1-6.
[70]
M. Kesraoui, A. Chaib, A. Meziane, and A. Boulezaz, "Using a DFIG based wind turbine for grid current harmonics filtering", Energy Convers. Manage., vol. 78, pp. 968-975, 2014.
[71]
C. Liu, F. Blaabjerg, W. Chen, and D. Xu, "Stator current harmonic control with resonant controller for doubly fed induction generator", IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3207-3220, 2012.
[72]
D. Schulz, R. Hanitsch, T. Kompa, and A. Samour, Comparative power quality investigations of variable speed wind energy converters with doubly-fed induction and synchronous generator., PCIM Power Quality Conference Nuremberg, 2002, pp. 39-44.
[73]
S. Sakar, M.E. Balci, S.H.E.A. Aleem, and A.F. Zobaa, "Increasing PV hosting capacity in distorted distribution systems using passive harmonic filtering", Electr. Power Syst. Res., vol. 148, pp. 74-86, 2017.
[74]
P. Caramia, G. Carpinelli, and P. Verde, Power Quality Indices in Liberalized Markets., Wiley: United States, 2009.
[75]
M.S. Kurt, M.E. Balci, and S.H.E. Abdel Aleem, "Algorithm for estimating derating of induction motors supplied with under/over unbalanced voltages using response surface methodology", J. Eng., vol. 2017, no. 12, pp. 627-633, 2017.
[76]
IEC 60034-26:2006, Rotating electrical machines - Part 26: Effects
of unbalanced voltages on the performance of three-phase cage induction
motors, 2006.
[77]
J. Ma, W. Zhang, J. Liu, and J.S. Thorp, "Research on Short Circuit Current Characteristics of Doubly-fed Wind Power Generator Considering Converter Regulation", Electr. Power Compon. Syst., vol. 45, no. 19, pp. 2118-2130, Nov. 2017.
[78]
S. Papathanassiou, N. Hatziargyriou, P. Anagnostopoulos, L. Aleixo, and B. Buchholz Carter-Brown, "C. Capacity of distribution feeders for hosting DER", Working Group, vol. C6, p. 24, 2014.
[79]
Y. Shi, F.T. Li, and Y. Jiang, "A comparative analysis of the fault characteristic of D-PMSG and DFIG", Renew. Energy Resourc., vol. 30, pp. 53-58, 2012.
[80]
M.S. Nazir, Q. Wu, and M. Li, "Symmetrical short-circuit parameters comparison of DFIG-WT", Int. J. Electr. Comput. Eng. Syst.,
Vol. 8, no. 2, 2017.
[81]
A. El-Naggar, and I. Erlich, "Fault current contribution analysis of doubly Fed induction generator-based wind turbines", IEEE Trans. Energ. Convers., vol. 30, no. 3, pp. 874-882, 2015.
[82]
E. Muljadi, N. Samaan, V. Gevorgian, J. Li, and S. Pasupulati, "Short circuit current contribution for different wind turbine generator types", 2010 Power Energy Soc. Gen. Meet., no. March, pp. 1- 8, 2010.
[83]
E. Muljadi, N. Samaan, V. Gevorgian, J. Li, and S. Pasupulati, "Different factors affecting short circuit behavior of a wind power plant", IEEE Trans. Ind. Appl., vol. 49, no. 1, pp. 284-292, 2013.
[84]
R. Li, Q. Gao, and W. Liu, "Characteristics of direct-driven permanent magnet synchronous wind power generator under symmetrical three-phase short-circuit fault", Power Syst. Technol., vol. 35, pp. 153-158, 2011.
[85]
L. Lin, N. Zhou, and J. Zhu, "Analysis of voltage stability in a practical power system with wind power", Electr. Power Compon. Syst., vol. 38, no. 7, pp. 753-766, 2010.
[86]
J.J. Gutierrez, Power quality in grid-connected wind turbines J.
Ruiz and I. H. Al-Bahadly, Eds. Rijeka: InTech Open, 2011.
[87]
A. Mullane, G. Lightbody, and R. Yacamini, "Wind-turbine fault ride-through enhancement", IEEE Trans. Power Syst., vol. 20, no. 4, pp. 1929-1937, 2005.
[88]
C. Bing, Y. Xiaodong, X. Yang, W. Xu, L. Qun, S. Rong, S. Jingxian, and Z. Jingbo, "Power quality measurement and comparison between two wind farms equipped with FSIG+PMSG and DFIG", In: International Conference on Power System Technology Hangzhou, China, 2010, pp. 1-7.
[89]
H. Nguyen, and M. Negnevitsky, "A review of fault ride through strategies for different wind turbine systems", In: UPEC 20th Australasian
Universities Power Engineering Conference, Christchurch,
New Zealand, 2010, pp. 1-5.
[90]
M. Rahimi, and M. Parniani, "Efficient control scheme of wind turbines with doubly fed induction generators for low voltage ride-through capability enhancement", IET Renew. Power Gener., vol. 4, pp. 242-252, 2010.
[91]
K.A. Lima, A. Luna, P. Rodriguez, E.H. Watanabe, and F. Blaabjerg, "Rotor voltage dynamics in the doubly Fed induction generator during grid faults", IEEE Trans. Power Electron., vol. 25, no. 1, pp. 118-130, 2010.
[92]
S. Wang, J. Hu, and X. Yuan, "Virtual synchronous control for grid-connected DFIG-based wind turbines", IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 4, pp. 932-944, 2015.
[93]
R.A. Ibrahim, M.S. Hamad, Y.G. Dessouky, and B.W. Williams, "A review on recent low voltage ride-through solutions for PMSG wind turbine", In: International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion Sorrento,
Italy, 2012, pp. 265-270.
[94]
A. Dekhane, S. Lekhchine, T. Bahi, S. Ghoudelbourg, and H. Merabet, "DFIG modelling and control in a wind energy conversion system", In: First International Conference on Renewable Energies and Vehicular Technology Hammamet, Tunisia, 2012, pp. 287-
292.
[95]
X. Luo, J. Wang, J.D. Wojcik, J. Wang, D. Li, M. Draganescu, Y. Li, and S. Miao, "Review of voltage and frequency grid code specifications for electrical energy storage applications", Energies, vol. 11, no. 5, 2018.
[96]
B. Singh, and S.N. Singh, "Wind power interconnection into the power system: A review of grid code requirements", Electr. J., vol. 22, no. 5, pp. 54-63, 2009.
[97]
M. Tsili, and S. Papathanassiou, "A review of grid code technical requirements for wind farms", IET Renew. Power Gener., vol. 3, no. 3, p. 308, 2009.
[98]
C. Wessels, F. Gebhardt, and F.W. Fuchs, "Fault ride-through of a dfig wind turbine using a dynamic voltage restorer during symmetrical and asymmetrical grid faults", IEEE Trans. Power Electron., vol. 26, no. 3, pp. 807-815, 2011.
[99]
S. Metatla, S. Mekhtoub, R. Ibtiouen, and A. Nesba, "Dynamic behavior of doubly fed induction generator during network voltage dips", In: International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM) Tunis, Tunisia, 2014, pp. 1-6.
[104]
S. Mali, S. James, and I. Tank, "Improving low voltage ride-through capabilities for grid connected wind turbine generator", Energy Procedia. 2014, Vol. 54, pp. 530-540.
[105]
K.Z. Heetun, S.H.E. Abdel Aleem, A.F. Zobaa, S.H.E.A. Aleem, and A.F. Zobaa, "Voltage stability analysis of grid-connected wind farms with FACTS: Static and dynamic analysis", Energy Policy Res., vol. 3, no. 1, pp. 1-12, 2016.
[106]
A. Moghadasi, A. Sarwat, and J.M. Guerrero, "A comprehensive review of low-voltage-ride-through methods for fixed-speed wind power generators", Renew. Sustain. Energy Rev., vol. 55, pp. 823-839, 2016.
[107]
M.J. Hossain, H.R. Pota, and R.A. Ramos, "Improved low-voltage-ride-through capability of fixed-speed wind turbines using decentralised control of STATCOM with energy storage system", IET Gener. Transm. Distrib., vol. 6, no. 8, p. 719, 2012.
[108]
M.R. Abedi, and K.Y. Lee, Modeling, operation and control of wind turbine with direct drive PMSG connected to power grid In:
IEEE PES General Meeting | Conference & Exposition, National
Harbor, MD, USA, 2014, pp. 1-5.
[109]
Y. Wang, J. Meng, X. Zhang, and L. Xu, "Control of PMSG-based wind turbines for system inertial response and power oscillation damping", IEEE Transact. Sustain. Energy, vol. 6, no. 2, pp. 565-574, 2015.
[110]
W. Sharad, and V. Mohan, “Power quality and grid code issues in
wind energy conversion system”, In: An Update on Power Quality.
In Tech Open, 2013.
[111]
W. Hu, Y. Zhang, Z. Chen, and Y. Hu, "Flicker mitigation by speed control of permanent magnet synchronous generator variable-speed wind turbines", Energies, vol. 6, no. 8, pp. 3807-3821, 2013.