[1]
Chan-Bacab, M.J.; Pena-Rodriguez, L.M. Plant natural products with antileishmanicidal activity. Nat. Prod. Rep., 2001, 18, 674-688.
[2]
WHO. World malaria report 2017; WHO: Switzerland, 2017.
[3]
Pink, R.; Hudson, A.; Mouries, M-A.; Bendig, M. Opportunities and Challenges in antiparasitic drug discovery. Nat. Rev. Drug Dis., 2005, 4, 727-740.
[4]
Egan, T.J. Haemozoin (malaria pigment): A unique crystalline drug target. TARGETS, 2003, 2, 115-124.
[5]
Sullivan, D.J. Theories on malarial pigment formation and quinoline action. Int. J. Parasitol., 2002, 32, 1645-1653.
[6]
Cowman, A.F.; Foote, S.J. Chemotherapy and drug resistance in malaria. Int. J. Para., 1990, 20, 503-513.
[7]
Kumar, S.; Guha, M.; Choubey, V.; Maity, P.; Bandyopadhyay, U. Antimalarial drugs inhibiting hemozoin (β-hematin) formation: A mechanistic update. Life Sci., 2007, 80, 813-828.
[8]
Rathore, D.; Jani, D.; Nagarkatti, R.; Kumar, S. Heme detoxification and antimalarial drugs - known mechanisms and future prospects. Drug Dis. Today Therap. Strateg., 2006, 3, 153-158.
[9]
Egan, T.J.; Chen, J.Y-J.; de Villiers, K.A.; Mabotha, T.E.; Naidoo, K.J.; Ncokazi, K.K.; Langford, S.J.; McNaughton, D.; Pandiancherri, S.; Wood, B.R. Haemozoin (beta-haematin) biomineralization occurs by self-assembly near the lipid/water interface. FEBS Lett., 2006, 580, 5105-5110.
[10]
Sittie, A.A.; Lemmich, E.; Olsen, C.E.; Hviid, L.; Kharazmi, A.; Nkrumah, F.K.; Christensen, S.B. Structure-activity studies: In vitro antileishmanial and antimalarial activities of anthraquinones from Morinda lucida. Planta Medica., 1999, 65, 259-261.
[11]
Eyong, K.O.; Folefoc, G.N.; Kuete, V.; Beng, V.P.; Krohn, K.; Hussain, H.; Nkengfack, A.E.; Saeftel, M.; Sarite, S.R.; Hoerauf, A. New bouldiaquinone A: A naphthoquinone-anthraquinone ether coupled pigment, as a potential antimicrobial and antimalarial agent from New bouldia laevis. Phytochemistry, 2006, 67, 605-609.
[12]
Abegaz, B.M. Bezabih, M.; Msuta, T.; Brun, R.; Menche, D.; Muhlbacher, J.; Bringmann, G.; Gaboroquinones A and B and 4′-O-Demethylknipholone-4′-O-β-D-glucopyranoside, Phenylanthraquinones from the Roots of Bulbine frutescens. J. Nat. Prod., 2002, 65, 1117-1121.
[13]
Ajaiyeoba, E.O.; Ashidi, J.S.; Okpako, L.C.; Houghton, P.J.; Wright, C.W. Antiplasmodial compounds from Cassia siamea stem bark extract. Phytother. Res., 2008, 22, 254-255.
[14]
Abdissa, N.; Induli, M.; Akala, H.M.; Heydenreich, M.; Midiwo, J.O.; Ndakala, A.; Yenesew, A. Knipholone cyclooxanthrone and an anthraquinone dimer with antiplasmodial activities from the roots of Kniphofia foliosa. Phytochem. Lett., 2013, 6, 241-245.
[15]
Onegi, B.; Kraft, C.; Köhler, I.; Freund, M.; Jenett-Siems, K.; Siems, K.; Beyer, G.; Melzig, M.F.; Bienzle, U.; Eich, E. Antiplasmodial activity of naphthoquinones and one anthraquinone from Stereospermum kunthianum. Phytochemistry, 2002, 60, 39-44.
[16]
Kopa, T.K.; Tchinda, A.T.; Tala, M.F.; Zofou, D.; Jumbam, R.; Wabo, H.K.; Titanji, V.P.K.; Frédérich, M.; Tan, N-H.; Tane, P. Antiplasmodial anthraquinones and hemisynthetic derivatives from the leaves of Tectona grandis (Verbenaceae). Phytochem. Lett., 2014, 8, 41-45.
[17]
Endale, M.; Ekberg, A.; Alao, J.; Akala, H.; Ndakala, A.; Sunnerhagen, P.; Erdélyi, M.; Yenesew, A. Anthraquinones of the Roots of Pentas micrantha. Molecules, 2012, 18, 311.
[18]
Endale, M.; Alao, J.P.; Akala, H.M.; Rono, N.K.; Eyase, F.L.; Derese, S.; Ndakala, A.; Mbugua, M.; Walsh, D.S.; Sunnerhagen, P.; Erdelyi, M.; Yenesew, A. Antiplasmodial quinones from pentas longiflora and pentas lanceolata. Planta Med., 2012, 78, 31-35.
[19]
Lai, J-M.; Chang, J.T.; Wen, C-L.; Hsu, S-L. Emodin induces a reactive oxygen species-dependent and ATM-p53-Bax mediated cytotoxicity in lung cancer cells. European . J. Pharmacol., 2009, 623, 1-9.
[20]
Winter, R.W.; Cornell, K.A.; Johnson, L.L.; Ignatushchenko, M.V.; Hinrichs, D.J.; Roscoe, M.K. Potentiation of the antimalarial agents rufigallol. Antimicrobial . Agents Chemother., 1996, 40, 1408-1411.
[21]
Gutierrez, P.L. The metabolism of quinone-containing alkylating agents: Free radical production and measurement. Front. Biosci., 2001, 5, d629-d638.
[22]
Winter, R.W.; Cornell, K.A.; Johnson, L.L.; Isabelle, L.M.; Hinrichs, D.J.; Riscoe, M.K. Hydroxy-anthraquinones as antimalarial agents. Bioorgan. Med. Chem. Lett., 1995, 5, 1927-1932.
[23]
Ignatushchenko, M.V.; Winter, R.W.; Bachinger, H.P.; Hinrichs, D.J.; Riscoe, M.K. Xanthones as antimalarial agents; studies of a possible mode of action. FEBS Lett., 1997, 409, 67-73.
[24]
Osman, C.P.; Ismail, N.H.; Ahmad, R.; Ahmat, N.; Awang, K.; Jaafar, F.M. Anthraquinones with antiplasmodial activity from the roots of Rennellia elliptica Korth. (Rubiaceae). Molecules, 2010, 15, 7218-7226.
[25]
Singh, R. Geetanjali, isolation and synthesis of anthraquinones and related compounds of Rubia cordifolia. J. Serbian . Chem. Soc., 2005, 70, 937-942.
[26]
Brieger, G.; Pelletier, W.M. Oxygen alkylation in the ethyl acetoacetate synthesis. Tetrahedron Lett., 1965, 6, 3555-3558.
[27]
Inoue, K.; Ueda, S.; Nayeshiro, H.; Inouyet, H. Quinones of Streptocarpus dunnii. Phytochemistry, 1983, 22, 737-741.
[28]
Widyawaruyanti, A.S.; Kalauni, S.K.; Awale, S.; Nindatu, M.; Zaini, N.C.; Syafruddin, D.; Asih, P.B.S.; Tezuka, Y.; Kadota, S. New prenylated flavones from Artocarpus champeden and their antimalarial activity in vitro. J. Nat. Med., 2007, 61, 410-413.
[29]
Xuan, T.D.T.; Huy, N.T.; Uyen, D.T.; Sasai, M.; Shiono, T.; Harada, S.; Kamei, K. Inhibition assay of β-hematin formation initiated by lecithin for screening new antimalarial drugs. Analyt. Biochem., 2006, 349, 292-296.
[30]
Huy, N.T.; Uyen, D.T.; Sasai, M.; Trang, D.T.X.; Shiono, T.; Harada, S.; Kamei, K. A simple and rapid colorimetric method to measure hemozoin crystal growth in vitro. Analyt. Biochem., 2006, 354, 305-307.
[31]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunolog. Methods, 1983, 65, 55-63.
[32]
Ismail, N.H.; Ali, A.M.; Aimi, N.; Kitajima, M.; Takayama, H.; Lajis, N.H. Anthraquinones from Morinda elliptica. Phytochemistry, 1997, 45, 1723-1725.
[33]
Ismail, N.H. Chemistry and biological activity of anthraquinones from Morinda elliptica (Rubiaceae). Thesis, Universiti Putra Malaysia, Serdang. 1998.
[34]
Saha, K. The synthesis and bioactivity study of anthraquinones and the isolation of bioactive compounds from leea indica (Burm, F.) Merr. Thesis, Universiti Putra Malaysia, Serdang. 2005.