Review Article

离子液体样药物成分及其在药物化学中的应用:发展,现状与展望

卷 26, 期 32, 2019

页: [5947 - 5967] 页: 21

弟呕挨: 10.2174/0929867325666180605123436

价格: $65

摘要

背景:离子液体(ILs)作为一种新型的绿色介质和具有特殊结构的生物活性化合物,引起了人们的广泛关注并广泛应用于许多领域。但是,它们的作用和潜力尚未被许多药物化学研究人员充分认识。由于与其他传统药物和试剂明显不同,因此需要详细探讨和审查其用途和性能以及优缺点。 方法:为系统,明确地描述IL与药物化学之间的关系,对所有内容进行了阐明和归纳为一系列独立的部分。在每个部分中,它都是从研究背景或概念框架开始的,然后引入了具体示例来说明主题。最后,在对每项提到的研究中出现的相关关键问题进行讨论之后,得出了重要的结论并展望了其未来。同时,在不同的部分采用了经验分析,比较和归纳法等方法来阐述我们的主题。 结果:全文共分五个部分,共148篇。在代表性参考文献的基础上提供了离子液体的相关基本信息,包括其概念和重要特征。然后,有82篇论文概述了离子液体样活性药物成分,这些成分具有主要的生物学活性(抗菌活性,抗生物膜活性,抗肿瘤活性,抗胆碱酯酶活性等)。在92篇论文中阐述了离子液体在药物和药物中间体合成中的应用,以说明ILs在该领域的重要作用及其非凡的特性。此外,还引入了新技术(例如IL固定化,微波反应,无溶剂合成,微反应器等)进行进一步的创新。最后,包括26篇论文阐述了各种天然铅化合物的IL辅助衍生化状态。 结论:这篇综述着重于IL的化学结构及其结构活性关系的具体描述,从而为一些相关领域带来了有意义和有价值的相关信息,从而促进了各种IL在药物化学中的进一步开发和应用。对关键科学问题的深入探索是推动其理论突破和工业生产的动力。

关键词: 离子液体,药物化学,药物成分,活性,合成,绿色介质,工业生产。

[1]
Wilkes, J.S. A short history of ionic liquids–From molten salts to neoteric. Green Chem., 2002, 4, 73-80.
[http://dx.doi.org/10.1039/b110838g]
[2]
Weingärtner, H. Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew. Chem. Int. Ed. Engl., 2008, 47(4), 654-670.
[http://dx.doi.org/10.1002/anie.200604951] [PMID: 17994652]
[3]
Seddon, K.R. Ionic liquids: a taste of the future. Nat. Mater., 2003, 2(6), 363-365.
[http://dx.doi.org/10.1038/nmat907] [PMID: 12776100]
[4]
Dupont, J.; de Souza, R.F.; Suarez, P.A. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev., 2002, 102(10), 3667-3692.
[http://dx.doi.org/10.1021/cr010338r] [PMID: 12371898]
[5]
Rogers, R.D.; Seddon, K.R. Chemistry. Ionic liquids--solvents of the future? Science, 2003, 302(5646), 792-793.
[http://dx.doi.org/10.1126/science.1090313] [PMID: 14593156]
[6]
Welton, T. Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[7]
Hiroyuki, O. Functional design of ionic liquids. Chem. Soc. Jpn., 2006, 79, 1665-1680.
[http://dx.doi.org/10.1246/bcsj.79.1665]
[8]
Angell, C.A.; Ansari, Y.; Zhao, Z. Ionic liquids: past, present and future. Faraday Discuss., 2012, 154, 9-27.
[http://dx.doi.org/10.1039/C1FD00112D] [PMID: 22455011]
[9]
Sekhon, B.S. Ionic liquids: pharmaceutical and biotechnological applications. Asian J. Pharm. Biol. Res., 2011, 1, 395-411.
[10]
Smiglak, M.; Pringle, J.M.; Lu, X.; Han, L.; Zhang, S.; Gao, H.; MacFarlane, D.R.; Rogers, R.D. Ionic liquids for energy, materials, and medicine. Chem. Commun. (Camb.), 2014, 50(66), 9228-9250.
[http://dx.doi.org/10.1039/C4CC02021A] [PMID: 24830849]
[11]
Syguda, A.; Marcinkowska, K.; Materna, K. Pyrrolidinium herbicidal ionic liquids. Rsc Adv., 2016, 6, 63136-63142.
[http://dx.doi.org/10.1039/C6RA12157H]
[12]
Simmons, K.J.; Chopra, I.; Fishwick, C.W. Structure-based discovery of antibacterial drugs. Nat. Rev. Microbiol., 2010, 8(7), 501-510.
[http://dx.doi.org/10.1038/nrmicro2349] [PMID: 20551974]
[13]
Mital, A. Synthetic nitroimidazoles: Biological activities and mutagenicity relationships. Sci. Pharm., 2009, 77, 497-520.
[http://dx.doi.org/10.3797/scipharm.0907-14]
[14]
Liu, L.X.; Weller, P.F. Antiparasitic drugs. N. Engl. J. Med., 1996, 334(18), 1178-1184.
[http://dx.doi.org/10.1056/NEJM199605023341808] [PMID: 8602186]
[15]
Kulik, A.; Białecka, W.; Podolska, M.; Kwiatkowska-Puchniarz, B.; Mazurek, A. HPLC method for identification and quantification of benzimidazole derivatives in antiparasitic drugs. Acta Pol. Pharm., 2011, 68(6), 823-829.
[PMID: 22125945]
[16]
Davis, J.H.; Kerri, J.F.; Travis, M. Novel organic ionic liquids (OILs) incorporating cations derived from the antifungal drug miconazole. Tetrahedron Lett., 1998, 39, 8955-8958.
[http://dx.doi.org/10.1016/S0040-4039(98)02070-X]
[17]
Hough, W.L.; Rogers, R.D. Ionic liquids then and now: from solvents to materials to active pharmaceutical ingredients. Chem. Soc. Jpn., 2007, 80, 2262-2269.
[http://dx.doi.org/10.1246/bcsj.80.2262]
[18]
Ranke, J.; Stolte, S.; Störmann, R.; Arning, J.; Jastorff, B. Design of sustainable chemical products--the example of ionic liquids. Chem. Rev., 2007, 107(6), 2183-2206.
[http://dx.doi.org/10.1021/cr050942s] [PMID: 17564479]
[19]
Messali, M. Eco-friendly synthesis of a new class of pyridinium-based ionic liquids with attractive antimicrobial activity. Molecules, 2015, 20(8), 14936-14949.
[http://dx.doi.org/10.3390/molecules200814936] [PMID: 26287148]
[20]
Docherty, K.M. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem., 2005, 7, 185-189.
[http://dx.doi.org/10.1039/b419172b]
[21]
Foksowicz-Flaczyk, J.; Walentowska, J. Antifungal activity of ionic liquid applied to linen fabric. Int. Biodeter. Biodegr., 2013, 84, 412-415.
[http://dx.doi.org/10.1016/j.ibiod.2012.05.025]
[22]
Garcia, M.T.; Ribosa, I.; Perez, L.; Manresa, A.; Comelles, F. Aggregation behavior and antimicrobial activity of ester-functionalized imidazolium- and pyridinium-based ionic liquids in aqueous solution. Langmuir, 2013, 29(8), 2536-2545.
[http://dx.doi.org/10.1021/la304752e] [PMID: 23360222]
[23]
Foksowicz-Flaczyk, J.; Walentowska, J. Eco-friendly antimicrobial finishing of natural fibres. Mol. Cryst. Liq. Crys., 2008, 484, 573-578.
[http://dx.doi.org/10.1080/15421400801904526]
[24]
Carson, L.; Chau, P.K.W.; Earle, M.J.; Gilea, M.A.; Gilmore, B.F.; Gorman, S.P.; McCann, M.T.; Seddon, K.R. Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chem., 2009, 11, 492-497.
[http://dx.doi.org/10.1039/b821842k]
[25]
Łuczak, J.; Jungnickel, C.; Łacka, I.; Stolte, S.; Hupka, J. Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem., 2010, 12, 593-601.
[http://dx.doi.org/10.1039/b921805j]
[26]
Pernak, J.; Sobaszkiewicz, K.; Mirska, I. Anti-microbial activities of ionic liquids. Green Chem., 2003, 5, 52-56.
[http://dx.doi.org/10.1039/b207543c]
[27]
Paweł, B.; Małgorzata, M.K.; Dominika, B.; Monika, W.; Jan, P. Synthesis and antimicrobial activity of imidazolium and triazolium chiral ionic liquids. Eur. J. Org. Chem., 2013, 4, 712-720.
[28]
Iwai, N.; Nakayama, K.; Kitazume, T. Antibacterial activities of imidazolium, pyrrolidinium and piperidinium salts. Bioorg. Med. Chem. Lett., 2011, 21(6), 1728-1730.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.081] [PMID: 21324694]
[29]
Cornellas, A.; Perez, L.; Comelles, F.; Ribosa, I.; Manresa, A.; Garcia, M.T. Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J. Colloid Interface Sci., 2011, 355(1), 164-171.
[http://dx.doi.org/10.1016/j.jcis.2010.11.063] [PMID: 21186035]
[30]
Alberto, E.E.; Rossato, L.L.; Alves, S.H.; Alves, D.; Braga, A.L. Imidazolium ionic liquids containing selenium: synthesis and antimicrobial activity. Org. Biomol. Chem., 2011, 9(4), 1001-1003.
[http://dx.doi.org/10.1039/C0OB01010C] [PMID: 21157603]
[31]
Brendan, F.G.; Gavin, P.A.; Gabor, B.; Martyn, J.E.; Manuela, A.G.; Sean, P.G.; Andrew, F.L.; Martin, M.; Kenneth, R.S. Enhanced antimicrobial activities of 1-alkyl-3-methyl imidazolium ionic liquids based on silver or copper containing anions. New J. Chem., 2013, 37, 873-876.
[http://dx.doi.org/10.1039/c3nj40759d]
[32]
Joanna, F.K.; Tomczuk, K. The effect of the cationic structures of chiral ionic liquids on their antimicrobial activities. Tetrahedron, 2013, 69, 4190-4198.
[http://dx.doi.org/10.1016/j.tet.2013.03.107]
[33]
Walkiewicz, F.; Materna, K.; Kropacz, A.; Michalczyk, A.; Gwiazdowski, R.; Praczykd, T.; Pernak, J. Multifunctional long-alkyl-chain quaternary ammonium azolate based ionic liquids. New J. Chem., 2010, 34, 2281-2289.
[http://dx.doi.org/10.1039/c0nj00228c]
[34]
Łukasz, C. Synthesis of benzoazole ionic liquids and evaluation of their antimicrobial activity. Biomed Biopharm Re., 2014, 11, 227-235.
[35]
Cybulski, J.; Wiśniewska, A.; Kulig-Adamiak, A.; Dabrowski, Z.; Praczyk, T.; Michalczyk, A.; Walkiewicz, F.; Materna, K.; Pernak, J. Mandelate and prolinate ionic liquids: synthesis, characterization, catalytic and biological activity. Tetrahedron, 2011, 52, 1325-1328.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.069]
[36]
Busetti, A.; Crawford, D.E.; Earle, M.J.; Gilea, M.A.; Gilmore, B.F. Antimicrobial and antibiofilm activities of 1-alkylquinolinium bromide ionic liquids. Green Chem., 2010, 12, 420-425.
[http://dx.doi.org/10.1039/b919872e]
[37]
Siopa, F.; Figueiredo, T.; Frade, R.F.M.; Neto, I.; Meirinhos, A.; Reis, C.P.; Sobral, R.G.; Afonso, C.A.M.; Rijo, P. Choline-based ionic liquids: improvement of antimicrobial activity. ChemistrySelect, 2016, 1, 5909-5916.
[http://dx.doi.org/10.1002/slct.201600864]
[38]
Yu, J.; Zhang, S.; Dai, Y.; Lu, X.; Lei, Q.; Fang, W. Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids. J. Hazard. Mater., 2016, 307, 73-81.
[http://dx.doi.org/10.1016/j.jhazmat.2015.12.028] [PMID: 26775108]
[39]
Zabielska-Matejuk, J. Stangierska, A. Kot, M. New ammonium- and 1,2,4-triazolium-based ionic liquids for wood preservation. J. Wood Chem. Technol., 2015, 35, 178-192.
[http://dx.doi.org/10.1080/02773813.2014.909852]
[40]
Kubo, A.L.; Kremer, L.; Herrmann, S.; Mitchell, S.G.; Bondarenko, O.M.; Kahru, A.; Streb, C. Antimicrobial activity of polyoxometalate ionic liquids (POM-ILs) against clinically relevant pathogens. ChemPlusChem, 2017, 82, 867-871.
[http://dx.doi.org/10.1002/cplu.201700251]
[41]
Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol., 1999, 37(6), 1771-1776.
[PMID: 10325322]
[42]
Venkata Nancharaiah, Y.; Reddy, G.K.; Lalithamanasa, P.; Venugopalan, V.P. The ionic liquid 1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antibiofilm behavior to a cationic surfactant. Biofouling, 2012, 28(10), 1141-1149.
[http://dx.doi.org/10.1080/08927014.2012.736966] [PMID: 23092364]
[43]
Bergamo, V.Z.; Donato, R.K.; Dalla Lana, D.F.; Donato, K.J.Z.; Ortega, G.G.; Schrekker, H.S.; Fuentefria, A.M. Imidazolium salts as antifungal agents: strong antibiofilm activity against multidrug-resistant Candida tropicalis isolates. Lett. Appl. Microbiol., 2015, 60(1), 66-71.
[http://dx.doi.org/10.1111/lam.12338] [PMID: 25294047]
[44]
Reddy, G.K.K.; Nancharaiah, Y.V.; Venugopalan, V.P. Long alkyl-chain imidazolium ionic liquids: antibiofilm activity against phototrophic biofilms. Colloids Surf. B Biointerfaces, 2017, 155, 487-496.
[http://dx.doi.org/10.1016/j.colsurfb.2017.04.040] [PMID: 28475985]
[45]
Navale, G.R.; Dharne, M.S.; Shinde, S.S. Antibiofilm activity of tert-BuOH functionalized ionic liquids with methylsulfonate counteranions. RSC Advances, 2015, 5, 68136-68142.
[http://dx.doi.org/10.1039/C5RA12854D]
[46]
Jha, G.; Sahu, P.K.; Panda, S.; Singh, D.V.; Patole, S.; Mohapatra, H.; Sarkar, M. Synthesis, photophysical studies on some anthracene-based ionic liquids and their application as biofilm formation inhibitor. ChemistrySelect, 2017, 2, 2426-2432.
[http://dx.doi.org/10.1002/slct.201601964]
[47]
Kumar, V.; Malhotra, S.V. Study on the potential anti-cancer activity of phosphonium and ammonium-based ionic liquids. Bioorg. Med. Chem. Lett., 2009, 19(16), 4643-4646.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.086] [PMID: 19615902]
[48]
Kumar, V.; Malhotra, S.V. Antitumor Activity of Ionic Liquids on Human Tumor Cell Lines In: Ionic Liquid Applications: Pharmaceuticals, Therapeutics, and Biotechnology; Sanjay, V. Malhotra, Ed.; ACS Symposium Series,, 2010; Vol. 1038, pp. 91-102.
[http://dx.doi.org/10.1021/bk-2010-1038.ch008]
[49]
Malhotra, S.V.; Kumar, V.; Velez, C.; Zayas, B. Imidazolium-derived ionic salts induce inhibition of cancerous cell growth through apoptosis. MedChemComm, 2014, 5, 1404-1409.
[http://dx.doi.org/10.1039/C4MD00161C]
[50]
Malhotra, S.V.; Kumar, V. A profile of the in vitro anti-tumor activity of imidazolium-based ionic liquids. Bioorg. Med. Chem. Lett., 2010, 20(2), 581-585.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.085] [PMID: 20006501]
[51]
Kaushik, N.K.; Attri, P.; Kaushik, N.; Choi, E.H. Synthesis and antiproliferative activity of ammonium and imidazolium ionic liquids against T98G brain cancer cells. Molecules, 2012, 17(12), 13727-13739.
[http://dx.doi.org/10.3390/molecules171213727] [PMID: 23174892]
[52]
Zhang, Z.B.; Fu, S.B.; Duan, H.F.; Lin, Y.J.; Yang, Y. Brand-new function of well-designed ionic liquid: inhibitor of tumor cell growth. Chem. Res. Chin. Univ., 2010, 26, 757-760.
[53]
Ferraz, R.; Costa-Rodrigues, J.; Fernandes, M.H.; Santos, M.M.; Marrucho, I.M.; Rebelo, L.P.; Prudêncio, C.; Noronha, J.P.; Petrovski, Ž.; Branco, L.C. PrudÞncio, C.; Noronha, J.P.; Petrovski, Z.; Branco, L.C. Antitumor activity of ionic liquids based on ampicillin. ChemMedChem, 2015, 10(9), 1480-1483.
[http://dx.doi.org/10.1002/cmdc.201500142] [PMID: 26190053]
[54]
Ferraz, R.; Costa-Rodrigues, J.; Fernandes, M H.; Santos, M.M.; Marrucho, I.M.; PrudÞncio, C.; Noronha,, J.P.; Petrovski, Z. Synthesis, char-acterization and antiproliferative activity on cancer cell lines of new ionic liquids from ampicillin. Iberic Meeting on Medicinal Chemistry, 2011.http://hdl.handle.net/10400.22/2004
[55]
Stepnowski, P.; Składanowski, A.C.; Ludwiczak, A.; Laczyńska, E. Evaluating the cytotoxicity of ionic liquids using human cell line HeLa. Hum. Exp. Toxicol., 2004, 23(11), 513-517.
[http://dx.doi.org/10.1191/0960327104ht480oa] [PMID: 15625776]
[56]
Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem. Rev., 2017, 117(10), 7132-7189.
[http://dx.doi.org/10.1021/acs.chemrev.6b00562] [PMID: 28125212]
[57]
Arning, J.; Stolte, S.; Böschen, A.; Stock, F.; Pitner, W.R.; Welz-Biermann, U.; Jastorffa, B.; Ranke, J. Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalised side chains and anions of ionic liquids on acetylcholinesterase. Green Chem., 2008, 10, 47-58.
[http://dx.doi.org/10.1039/B712109A]
[58]
Składanowski, A.C.; Stepnowski, P.; Kleszczyński, K.; Dmochowska, B. AMP deaminase in vitro inhibition by xenobiotics A potential molecular method for risk assessment of synthetic nitro- and polycyclic musks, imidazolium ionic liquids and N-glucopyranosyl ammonium salts. Environ. Toxicol. Pharmacol., 2005, 19(2), 291-296.
[PMID: 21783488]
[59]
Frade, R.F.; Afonso, C.A. Impact of ionic liquids in environment and humans: an overview. Hum. Exp. Toxicol., 2010, 29(12), 1038-1054.
[http://dx.doi.org/10.1177/0960327110371259] [PMID: 20511289]
[60]
Luo, Y.R.; Wang, S.H.; Yun, M.X.; Li, X.Y.; Wang, J.J.; Sun, Z.J. The toxic effects of ionic liquids on the activities of acetylcholinesterase and cellulase in earthworms. Chemosphere, 2009, 77(3), 313-318.
[http://dx.doi.org/10.1016/j.chemosphere.2009.07.026] [PMID: 19682724]
[61]
Charana, K.T.P.; Ranjan, P.; Manojkumar, K.; Pothanagandhi, N.; Jha, P.C.; Khedkar, V.M.; Sivaramakrishnaa, A.; Vijayakrishna, K. Evaluation of imidazolium-based ionic liquids towards vermicidal activity: in vitro & in silico studies. RSC Advances, 2015, 5, 75415-75424.
[http://dx.doi.org/10.1039/C5RA13469B]
[62]
Charan, K.T.; Pothanagandhi, N.; Manojkumar, K.; Ranjan, P.; Vijayakrishna, K. Notable anti-vermicidal activity of polymeric ionic liquids against Pheretima posthuma. J. Indian Chem. Soc., 2015, 92, 573-576.
[63]
Hough-Troutman, W.L.; Smiglak, M.; Griffin, S.; Reichert, W.M.; Mirska, I.; Jodynis-Liebert, J.; Adamska, T.; Nawrot, J.; Stasiewicz, M.; Rogers, R.D.; Pernak, J. Ionic liquids with dual biological function: sweet and anti-microbial, hydrophobic quaternary ammonium-based salts. New J. Chem., 2009, 33, 26-33.
[http://dx.doi.org/10.1039/B813213P]
[64]
Brari, J.; Thakur, D.R. Insecticidal potential properties of citronellol derived ionic liquid against two major stored grain insect pests. J. Entomol. Zool. Stud., 2016, 4, 365-370.
[65]
Verma, S.; Kasana, V. Development of novel herbicidal ionic liquids. Int. Res. J. Pure Appl. Chem., 2017, 15, 1-8.
[http://dx.doi.org/10.9734/IRJPAC/2017/36792]
[66]
Pernak, J.; Syguda, A.; Janiszewska, D.; Materna, K.; Praczyk, T. Ionic liquids with herbicidal anions. Tetrahedron, 2011, 67, 4838-4844.
[http://dx.doi.org/10.1016/j.tet.2011.05.016]
[67]
Pernak, J.; Syguda, A.; Materna, K.; Janus, E.; Kardasz, P.; Praczyk, T. 2,4-D based herbicidal ionic liquids. Tetrahedron, 2012, 68, 4267-4273.
[http://dx.doi.org/10.1016/j.tet.2012.03.065]
[68]
Pernak, J.; Niemczak, M.; Materna, K.; Zelechowski, K.; Marcinkowska, K.; Praczyk, T. Synthesis, properties and evaluation of biological activity of herbicidal ionic liquids with 4-(4-chloro-2-methylphenoxy) butanoate anion. Rsc Adv., 2016, 6, 7330-7338.
[http://dx.doi.org/10.1039/C5RA23997D]
[69]
Pernak, J.; Niemczak, M.; Giszter, R.; Shamshina, J.L.; Gurau, G.; Cojocaru, O.A.; Praczyk, T.; Marcinkowska, K.; Rogers, R.D. Glyphosate-based herbicidal ionic liquids with increased efficacy. ACS Sustain. Chem.& Eng., 2014, 2, 2845-2851.
[http://dx.doi.org/10.1021/sc500612y]
[70]
Cojocaru, O.A.; Shamshina, J.; Gurau, G.; Syguda, A.; Praczyk, T.; Pernak, J.; Rogers, R.D. Ionic liquid forms of the herbicide dicamba with increased efficacy and reduced volatility. Green Chem., 2013, 15, 2110-2120.
[http://dx.doi.org/10.1039/c3gc37143c]
[71]
Pernak, J.; Giszter, R.; Biedziak, A.; Niemczak, M.; Olszewski, R.; Marcinkowska, K.; Praczyk, T. Alkyl(C16, C18, C22)trimethylammonium-based herbicidal ionic liquids. J. Agric. Food Chem., 2017, 65(2), 260-269.
[http://dx.doi.org/10.1021/acs.jafc.6b04528] [PMID: 27997185]
[72]
Hanatani, A.; Washiro, S. Preparation for external use comprising an ionic liquid EP1795188. 2006.
[73]
Julia, L.S.; Steven, P.K.; Gabriela, G.; Robin, D.R. Chemistry: develop ionic liquid drugs. Nature, 2015, 528(7581), 188-189.
[74]
Karpinski, P.H. Polymorphism of active pharmaceutical ingredients. Chem. Eng. Technol., 2006, 29, 233-237.
[http://dx.doi.org/10.1002/ceat.200500397]
[75]
Ferraz, R.; Branco, L.C.; Prudêncio, C.; Noronha, J.P.; Petrovski, Z. Ionic liquids as active pharmaceutical ingredients. ChemMedChem, 2011, 6(6), 975-985.
[http://dx.doi.org/10.1002/cmdc.201100082] [PMID: 21557480]
[76]
Balk, A.; Holzgrabe, U.; Meinel, L. ‘Pro et contra’ ionic liquid drugs - Challenges and opportunities for pharmaceutical translation. Eur. J. Pharm. Biopharm., 2015, 94, 291-304.
[http://dx.doi.org/10.1016/j.ejpb.2015.05.027] [PMID: 26070389]
[77]
Whitney, L.H.; Marcin, S.; Hector, R.; Richard, P.S.; Scott, K.S.; Daniel, T.D.; Juliusz, P.; Judith, E.G. The third evolution of ionic liquids: active pharmaceutical ingredients. New J. Chem., 2007, 31, 1429-1436.
[http://dx.doi.org/10.1039/b706677p]
[78]
Marsha, R.C.; Min, L.; Bilal, E.Z.; Marlene, E.J.; Daniel, H.; Isiah, M.W. Design, synthesis, and biological evaluation of β-lactam antibiotic-based imidazolium-and pyridinium-type ionic liquids. Chem. Biol. Drug Des., 2011, 78(1), 33-41.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01114.x] [PMID: 21443681]
[79]
Ferraz, R.; Teixeira, V.; Rodrigues, D. Antibacterial activity of Ionic Liquids based on ampicillin against resistant bacteria. Rsc Adv., 2013, 4, 4301-4307.
[http://dx.doi.org/10.1039/C3RA44286A]
[80]
Balk, A.; Wiest, J.; Widmer, T.; Galli, B.; Holzgrabe, U.; Meinel, L. Transformation of acidic poorly water soluble drugs into ionic liquids. Eur. J. Pharm. Biopharm., 2015, 94, 73-82.
[http://dx.doi.org/10.1016/j.ejpb.2015.04.034] [PMID: 25976317]
[81]
Shadid, M.; Gurau, G.; Shamshina, J.L.; Chuang, B.C.; Hailu, S.; Guan, E.; Chowdhury, S.; Wu, J.T.; Rizvi, S.A.A.; Griffin, R.J.; Rogers, R.D. Sulfasalazine in ionic liquid form with improved solubility and exposure. MedChemComm, 2013, 6, 1837-1841.
[http://dx.doi.org/10.1039/C5MD00290G]
[82]
Bica, K.; Shamshina, J.; Hough, W.L.; MacFarlane, D.R.; Rogers, R.D. Liquid forms of pharmaceutical co-crystals: exploring the boundaries of salt formation. Chem. Commun. (Camb.), 2011, 47(8), 2267-2269.
[http://dx.doi.org/10.1039/C0CC04485G] [PMID: 21161097]
[83]
Whitney, L.H.; Robin, D.R. Ionic liquids then and now: from solvents to materials to active pharmaceutical ingredients. Bull. Chem. Soc. Jpn., 2007, 80, 2262-2269.
[http://dx.doi.org/10.1246/bcsj.80.2262]
[84]
Stoimenovski, J.; MacFarlane, D.R.; Bica, K.; Rogers, R.D. Crystalline vs. ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm. Res., 2010, 27(4), 521-526.
[http://dx.doi.org/10.1007/s11095-009-0030-0] [PMID: 20143257]
[85]
Jason, P.H.; Tom, W. Room-temperature Ionic Liquids: solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5), 3508-3576.
[http://dx.doi.org/10.1021/cr1003248] [PMID: 21469639]
[86]
Cinzia, C.; Daniela, P. Ionic liquids: solvent properties and organic reactivity. J. Phys. Org. Chem., 2005, 18, 275-297.
[http://dx.doi.org/10.1002/poc.863]
[87]
Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun. (Camb.), 2001, 23(23), 2399-2407.
[http://dx.doi.org/10.1039/b107270f] [PMID: 12239988]
[88]
Colin, D.H.; Peter, I.; Rudi, V.E. Understanding chemical reaction mechanisms in ionic liquids: successes and challenges. Chem. Soc. Rev., 2011, 40(1), 272-290.
[http://dx.doi.org/10.1039/C0CS00043D] [PMID: 21079861]
[89]
Katharina, B.; Peter, G. Applications of chiral ionic liquids. Eur. J. Org. Chem., 2008, 3235-3250.
[90]
Liu, Y.; Meyer, A.S.; Nie, Y.; Zhang, S.; Thomsen, K. Low energy recycling of ionic liquids via freeze crystallization during cellulose spinning. Green Chem., 2017, 20, 493-501.
[http://dx.doi.org/10.1039/C7GC02880F]
[91]
Haerens, K.; Deuren, S.V.; Matthijs, E.; Bruggen, B.V. Challenges for recycling ionic liquids by using pressure driven membrane processes. Green Chem., 2010, 12, 2182-2188.
[http://dx.doi.org/10.1039/c0gc00406e]
[92]
Lu, J.; He, A.; Li, S.Y.; Nie, L.R.; Zhang, W.; Yao, S. Synthesis, purification and recycling of ionic liquid: a review. Mini Rev. Org. Chem., 2015, 12, 435-448.
[http://dx.doi.org/10.2174/1570193X13666151125230810]
[93]
Shallu.; Sharma, M.L.; Singh, J. First total synthesis of a guanidine alkaloid nitensidine D using immobilized ionic liquid, microwaves and formamidinesulfinic acid. J. Chem. Sci., 2014, 126, 1869-1874.
[http://dx.doi.org/10.1007/s12039-014-0723-8]
[94]
Martins, P.L.G.; Braga, A.R.; Rosso, V.V.D. Can ionic liquid solvents be applied in the food industry? Trends Food Sci. Technol., 2017, 66, 117-124.
[http://dx.doi.org/10.1016/j.tifs.2017.06.002]
[95]
Chand, M.M.; Shukla, A.K. Novel synthesis of bicalutamide drug substance and their impurities using imidazolium type of ionic liquid. Soc. Sci. Electron. Pub., 2012, 12, 4142-4151.
[96]
Kameshwara, V.; Bhupender, S.C.; Rakesh, T.; Amir, N.S.; Keykavous, P.; Anil, K. One-pot regioselective synthesis of tetrahydroindazolones and evaluation of their antiproliferative and Src kinase inhibitory activities. Bioorg. Med. Chem. Lett., 2012, 22(11), 410-414.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.124] [PMID: 22119472]
[97]
Vineet, K.; Sanjay, V. M. Synthesis of nucleoside-based antiviral drugs in ionic liquids. Bioorg. Med. Chem. Lett., 2008, 18(), 5640-5642.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.090] [PMID: 18796352]
[98]
Alireza, B.; Vikneswaran, M.; Hasnah, O.; Raju, S.K.; Yalda, K.; Khalijah, B.A.; Mohamed, A.A. An expedient, ionic liquid mediated multi-component synthesis of novel piperidone grafted cholinesterase enzymes inhibitors and their molecular modeling study. Eur. J. Med. Chem., 2013, 67, 221-229.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.054] [PMID: 23871902]
[99]
Monika, G. Efficient synthesis of antifungal active 9-substituted-3-aryl-5H, 13aH-quinolino[3,2-f][1,2,4]triazolo[4,3-b][1,2,4]triazepines in ionic liquids. Bioorg. Med. Chem. Lett., 2011, 21(16), 4919-4923.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.007] [PMID: 21763133]
[100]
Trissa, J.; Suman, S. Bronsted acidic ionic liquids: A green, efficient and reusable catalyst system and reaction medium for Fischer esterification. J. Mol. Catal. Chem., 2005, 234, 107-110.
[http://dx.doi.org/10.1016/j.molcata.2005.03.005]
[101]
Pralhad, A.G.; Gigi, G.; Jagannath, D. Brønsted acidic ionic liquids derived from alkylamines as catalysts and mediums for Fischer esterification: Study of structure–activity relationship. J. Mol. Catal. Chem., 2008, 279, 182-186.
[http://dx.doi.org/10.1016/j.molcata.2007.06.025]
[102]
Jasvinder, S.; Neeraj, G.; Goverdhan, L.K. Efficient role of ionic liquid (bmim)HSO4 as novel catalyst for monotetrahydropyranylation of diols and tetrahydropyranylation of alcohols. Synth. Commun., 2006, 36, 2893-2900.
[http://dx.doi.org/10.1080/00397910600770839]
[103]
Yanlong, G.; Feng, S.; Youquan, D. Esterification of aliphatic acids with olefin promoted by Brønsted acidic ionic liquids. J. Mol. Catal. Chem., 2004, 212, 71-75.
[http://dx.doi.org/10.1016/j.molcata.2003.10.039]
[104]
Song, Y.L.; Wu, F.; Zhang, C.C.; Liang, G.C.; Zhou, G.; Yu, J.J. Ionic liquid catalyzed synthesis of 2-(indole-3-yl)-thiochroman-4-ones and their novel antifungal activities. Bioorg. Med. Chem. Lett., 2015, 25(2), 259-261.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.056] [PMID: 25499881]
[105]
Dake, S.A.; Raut, D.S.; Kharat, K.R.; Mhaske, R.S.; Deshmukh, S.U.; Pawar, R.P. Ionic liquid promoted synthesis, antibacterial and in vitro antiproliferative activity of novel α-aminophosphonate derivatives. Bioorg. Med. Chem. Lett., 2011, 21(8), 2527-2532.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.039] [PMID: 21398120]
[106]
Suresh; Jagir, S.S. Ultrasound-assisted synthesis of 2,4-thiazolidinedione and rhodanine derivatives catalyzed by task-specific ionic liquid.[TMG][Lac]. Org. Med. Chem. Lett., 2013, 3, 2.
[http://dx.doi.org/10.1186/2191-2858-3-2] [PMID: 23458122]
[107]
Wang, Z.T.; Wang, S.C.; Xu, L.W. Polymer‐Supported ionic liquid catalyzed synthesis of 1,2,3,4‐tetrahydro‐2‐oxopyrimidine‐5‐carboxylates via biginelli reaction. ChemInform, 2005, 36, 986-989.
[http://dx.doi.org/10.1002/chin.200541157]
[108]
Hagiwara, H.; Nakamura, T.; Okunaka, N.; Hoshi, T.; Suzuki, T. Catalytic performance of ruthenium-supported ionic-liquid catalysts in sustainable synthesis of macrocyclic lactones. ChemInform, 2010, 93, 175-182.
[109]
Singer, R.D.; Scammells, P.J. Alternative methods for the MnO2 oxidation of codeine methyl ether to thebaine utilizing ionic liquids. Tetrahedron Lett., 2001, 42, 6831-6833.
[http://dx.doi.org/10.1016/S0040-4039(01)01383-1]
[110]
Kort, M.D.; Tuin, A.W.; Kuiper, S.; Overkleeft, H.S.; Marel, G.A.; Buijsman, R.C. Development of a novel ionic support and its application in the ionic liquid phase assisted synthesis of a potent antithrombotic. Tetrahedron Lett., 2004, 45, 2171-2175.
[http://dx.doi.org/10.1016/j.tetlet.2004.01.032]
[111]
MA.Wang, J.J.; Zang, C.; Zhou, X.H.; Wang, X.; Gao, Z.; Cui, Y.J.; Wu, P.L.; Song, Q.H.; J, S. Synthesis of 5-arylidenebarbituric acid derivatives promoted by room temperature ionic liquid. Youji Huaxue, 2006, 26, 723-726.
[112]
Liu, H.X.; Qun, X.U. Ionic liquids used as microwave absorbent to promote the konoevenagel condensation reaction of benzaldehyde and barbituric acid. Chemical Res Appl., 2007, 19, 608-610.
[113]
Webb, P.B.; Sellin, M.F.; Kunene, T.E.; Williamson, S.; Slawin, A.M.; Cole-Hamilton, D.J. Continuous flow hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic systems. J. Am. Chem. Soc., 2003, 125(50), 15577-15588.
[http://dx.doi.org/10.1021/ja035967s] [PMID: 14664605]
[114]
Zhao, Y.; Yao, C.; Chen, G.; Yuan, Q. Highly efficient synthesis of cyclic carbonate with CO2 catalyzed by ionic liquid in a microreactor. Green Chem., 2013, 15, 446-452.
[http://dx.doi.org/10.1039/C2GC36612F]
[115]
Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem., 2013, 138(4), 2099-2107.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.139] [PMID: 23497863]
[116]
Plochmann, K.; Korte, G.; Koutsilieri, E.; Richling, E.; Riederer, P.; Rethwilm, A.; Schreier, P.; Scheller, C. Structure-activity relationships of flavonoid-induced cytotoxicity on human leukemia cells. Arch. Biochem. Biophys., 2007, 460(1), 1-9.
[http://dx.doi.org/10.1016/j.abb.2007.02.003] [PMID: 17353006]
[117]
Cai, Y.Z.; Mei, Sun; Jie, Xing.; Luo, Q.; Corke, H. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci., 2006, 78(25), 2872-2888.
[http://dx.doi.org/10.1016/j.lfs.2005.11.004] [PMID: 16325868]
[118]
Amaral, S.; Mira, L.; Nogueira, J.M.; da Silva, A.P.; Helena Florêncio, M. Plant extracts with anti-inflammatory properties--a new approach for characterization of their bioactive compounds and establishment of structure-antioxidant activity relationships. Bioorg. Med. Chem., 2009, 17(5), 1876-1883.
[http://dx.doi.org/10.1016/j.bmc.2009.01.045] [PMID: 19201196]
[119]
Brunskole, M.; Zorko, K.; Kerbler, V.; Martens, S.; Stojan, J.; Gobec, S.; Lanisnik Rizner, T. Trihydroxynaphthalene reductase of Curvularia lunata--a target for flavonoid action? Chem. Biol. Interact., 2009, 178(1-3), 259-267.
[http://dx.doi.org/10.1016/j.cbi.2008.10.023] [PMID: 19010313]
[120]
Wang, J.; Gong, A.; Yang, C.F.; Bao, Q.; Shi, X.Y.; Han, B.B.; Wu, X.Y.; Wu, F.A. An effective biphase system accelerates hesperidinase-catalyzed conversion of rutin to isoquercitrin. Sci. Rep., 2015, 5, 8682.
[http://dx.doi.org/10.1038/srep08682] [PMID: 25731802]
[121]
Katsoura, M.H.; Polydera, A.C.; Tsironis, L.; Tselepis, A.D.; Stamatis, H. Use of ionic liquids as media for the biocatalytic preparation of flavonoid derivatives with antioxidant potency. J. Biotechnol., 2006, 123(4), 491-503.
[http://dx.doi.org/10.1016/j.jbiotec.2005.12.022] [PMID: 16457903]
[122]
Lue, B.M.; Guo, Z.; Xu, X. Effect of room temperature ionic liquid structure on the enzymatic acylation of flavonoids. Process Biochem., 2010, 45, 1375-1382.
[http://dx.doi.org/10.1016/j.procbio.2010.05.024]
[123]
Bukhari, S.N.; Jasamai, M.; Jantan, I. Synthesis and biological evaluation of chalcone derivatives (mini review). Mini Rev. Med. Chem., 2012, 12(13), 1394-1403.
[PMID: 22876958]
[124]
Ahmad, W.; Jantan, I.; Jasamai, M.; Bukhari, S.N. Review of methods and various catalysts used for chalcone synthesis. Org. Chem., 2013, 10, 73-83.
[125]
Shen, J.; Wang, H.; Liu, H.; Sun, Y.; Liu, Z. Brønsted acidic ionic liquids as dual catalyst and solvent for environmentally friendly synthesis of chalcone. J. Mol. Catal. Chem., 2008, 280, 24-28.
[http://dx.doi.org/10.1016/j.molcata.2007.10.021]
[126]
Megan, T.T.; Luke, C.H.; Nolene, B.; Frederick, M.P. Accessing highly-halogenated flavanones using protic ionic liquids and microwave irradiation. Curr. Org. Chem., 2012, 16, 121-126.
[http://dx.doi.org/10.2174/138527212798993167]
[127]
Theodosiou, E.; Katsoura, M.H.; Loutrari, H. Purchartovã¡, H. Enzymatic preparation of acylated derivatives of silybin in organic and ionic liquid media and evaluation of their antitumor proliferative activity. Biocatal. Biotransform., 2009, 27, 161-169.
[http://dx.doi.org/10.1080/10242420902937777]
[128]
Katsoura, M.H.; Polydera, A.C.; Katapodis, P.; Kolisis, F.N.; Stamatis, H. Effect of different reaction parameters on the lipase-catalyzed selective acylation of polyhydroxylated natural compounds in ionic liquids. Process Biochem., 2007, 42, 1326-1334.
[http://dx.doi.org/10.1016/j.procbio.2007.07.004]
[129]
Raab, T.; Chaillot, D.; Hansen, C.E.; Williamson, G.; Bel-Rhlid, R.; Chaillot, D. Enzymatic galloylation of catechins in room temperature ionic liquids. J. Mol. Catal., B Enzym., 2007, 44, 60-65.
[http://dx.doi.org/10.1016/j.molcatb.2006.09.003]
[130]
de Araújo, M.E.; Contesini, F.J.; Franco, Y.E.; Sawaya, A.C.; Alberto, T.G.; Dalfré, N. Carvalho, Pde.O. Optimized enzymatic synthesis of hesperidin fatty acid esters in a two-phase system containing ionic liquid. Molecules, 2011, 16(8), 7171-7182.
[http://dx.doi.org/10.3390/molecules16087171] [PMID: 21862958]
[131]
Gu, S.S.; Wang, J.; Wang, X.B.; Chen, H.S.; Wang, X.Y.; Wang, F.A. Enhancement of lipase-catalyzed synthesis of caffeic acid phenethyl ester in ionic liquid with DMSO co-solvent. Chin. J. Chem. Eng., 2014, 22, 1314-1321.
[http://dx.doi.org/10.1016/j.cjche.2014.09.024]
[132]
Na, P.; Gu, S.S.; Wang, J.; Chen, H.S.; Xi, L.; Zhang, X.Y.; Wang, F.A. A novel chemoenzymatic synthesis of propyl caffeate using lipase -catalyzed transesterification in ionic liquid. Bioresour. Technol., 2013, 139, 337-342.
[http://dx.doi.org/10.1016/j.biortech.2013.04.057] [PMID: 23665696]
[133]
Kurata, A.; Takemoto, S.; Fujita, T. Synthesis of 3 -cyclohexylpropyl caffeate from 5 -caffeoy -lquinic acid with consecutive enzymatic conversions in ionic liquid. J. Mol. Catal., B Enzym., 2011, 69, 161-167.
[http://dx.doi.org/10.1016/j.molcatb.2011.01.012]
[134]
Wang, J.; Li, J.; Zhao, L.X.; Wang, F.A. Lipase -catalyzed synthesis of caffeic acid phenethyl ester in ionic liquids: effect of specific ions and reaction parameters. Chin. J. Chem. Eng., 2013, 21, 1376-1385.
[http://dx.doi.org/10.1016/S1004-9541(13)60563-7]
[135]
Kurata, A.; Kitamura, Y.; Irie, S.; Takemoto, S.; Akai, Y.; Hirota, Y.; Fujita, T.; Iwai, K.; Furusawa, M.; Kishimoto, N. Enzymatic synthesis of caffeic acid phenethyl ester analogues in ionic liquid. J. Biotechnol., 2010, 148(2-3), 133-138.
[http://dx.doi.org/10.1016/j.jbiotec.2010.05.007] [PMID: 20553773]
[136]
Ha, S.H.; Anh, T.V.; Lee, S.H.; Koo, Y.M. Effect of ionic liquids on enzymatic synthesis of caffeic acid phenethyl ester. Bioprocess Biosyst. Eng., 2012, 35(1-2), 235-240.
[http://dx.doi.org/10.1007/s00449-011-0601-4] [PMID: 21909673]
[137]
Sun, S.; Yang, G.; Bi, Y.; Xiao, F. Chemoenzymatic synthesis of feruloylated monoacyl- and diacyl-glycerols in ionic liquids. Biotechnol. Lett., 2009, 31(12), 1885-1889.
[http://dx.doi.org/10.1007/s10529-009-0086-2] [PMID: 19633814]
[138]
Sun, S.; Qin, F.; Bi, Y.; Chen, J.; Yang, G.; Liu, W. Enhanced transesterification of ethyl ferulate with glycerol for preparing glyceryl diferulate using a lipase in ionic liquids as reaction medium. Biotechnol. Lett., 2013, 35(9), 1449-1454.
[http://dx.doi.org/10.1007/s10529-013-1222-6] [PMID: 23690034]
[139]
Chen, B.L.; Liu, H.Z.; Guo, Z.; Huang, J.; Wang, M.Z.; Xue, X.B.; Zheng, L.F. Lipase-catalyzed esterification of ferulic acid with oleyl alcohol in ionic liquid/isooctane binary systems. J. Agric. Food Chem., 2011, 59(4), 1256-1263.
[140]
Shi, Y.G.; Wu, Y.; Lu, X.Y.; Ren, Y.P.; Wang, Q.; Zhu, C.M.; Yu, D.; Wang, H. Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria. Food Chem., 2017, 220, 249-256.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.187] [PMID: 27855896]
[141]
Wang, J.; Gu, S.S.; Cui, H.S.; Yang, L.Q.; Wu, X.Y. Rapid synthesis of propyl caffeate in ionic liquid using a packed bed enzyme microreactor under continuous-flow conditions. Bioresour. Technol., 2013, 149, 367-374.
[http://dx.doi.org/10.1016/j.biortech.2013.09.098] [PMID: 24128399]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy