[1]
D’souza, J.I.; More, H.N. Topical anti-inflammatory gels of fluocinolone acetonide entrapped in eudragit based microsponge delivery system. RJPT, 2008, 1(4), 502-506.
[2]
Alanis, A.J. Resistance to antibiotics: are we in the post-antibiotic era? Arch. Med. Res., 2005, 36(6), 697-705.
[3]
Heymann, D.L. Resistance to anti-infective drugs and the threat to public health. Cell, 2006, 124(4), 671-675.
[4]
Ge, Y.; Ge, M. Sustained broad-spectrum antimicrobial and haemostatic chitosan-based film with immerged tea tree oil droplets. Fibers Polym., 2015, 16(2), 308-318.
[5]
Reichling, J.; Landvatter, U.; Wagner, H.; Kostka, K.H.; Schaefer, U.F. In vitro studies on release and human skin permeation of Australian tea tree oil (TTO) from topical formulations. Eur. J. Pharm. Biopharm., 2006, 64(2), 222-228.
[6]
Jammy, R.; Sahari, J. Physicochemical and mechanical properties of different morphological parts of the tea tree (Melaleuca alternifolia) fibres. Fibres Text. East. Eur., 2015, 6(114), 31-36.
[7]
Pazyar, N.; Yaghoobi, R.; Bagherani, N.; Kazerouni, A. A review of applications of tea tree oil in dermatology. Int. J. Dermatol., 2013, 52(7), 784-790.
[8]
Catanzano, O.; Straccia, M.C.; Miro, A.; Ungaro, F.; Romano, I.; Mazzarella, G.; Santagata, G.; Quaglia, F.; Laurienzo, P.; Malinconico, M. Spray-by-spray in situ cross-linking alginate hydrogels delivering a tea tree oil microemulsion. Eur. J. Pharm. Sci., 2015, 66, 20-28.
[9]
Harkenthal, M.; Reichling, J.; Geiss, H.K.; Saller, R. Comparative study on the in vitro antibacterial activity of Australian tea tree oil, cajuput oil, niaouli oil, manuka oil, kanuka oil, and eucalyptus oil. Die Pharmazie, 1999, 54(6), 460-463.
[10]
Mondello, F.; De Bernardis, F.; Girolamo, A.; Cassone, A.; and Salvatore, G. In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and -resistant human pathogenic Candida species. BMC Infect. Dis., 2006, 6(1), 158-165.
[11]
Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev., 2006, 19(1), 50-62.
[12]
Yang, Z.; Xiao, Z.; Ji, H. Solid inclusion complex of terpinen‐4‐ol/β‐cyclodextrin: Kinetic release, mechanism and its antibacterial activity. Flavour Fragrance J., 2015, 30(2), 179-187.
[13]
Flores, F.C.; de Lima, J.A.; Ribeiro, R.F.; Alves, S.H.; Rolim, C.M.B.; Beck, R.C.R.; da Silva, C.B. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of Trichophyton rubrum. Mycopathologia, 2013, 175(3-4), 281-286.
[14]
Sun, L.M.; Zhang, C.L.; Li, P. Characterization, antibiofilm, and mechanism of action of novel PEG-stabilized lipid nanoparticles loaded with terpinen-4-ol. J. Agric. Food Chem., 2012, 60(24), 6150-6156.
[15]
Osmani, R.A.; Aloorkar, N.H.; Thaware, B.U.; Kulkarni, P.K.; Moin, A.; Hani, U.; Srivastava, A.; Bhosale, R.R. Microsponge based drug delivery system for augmented gastroparesis therapy: Formulation development and evaluation. Asian J. Pharm. Sci., 2015, 10(5), 442-451.
[16]
Bothiraja, C.; Gholap, A.D.; Shaikh, K.S.; Pawar, A.P. Investigation of ethyl cellulose microsponge gel for topical delivery of eberconazole nitrate for fungal therapy. Ther. Deliv., 2014, 5(7), 781-794.
[17]
Pawar, A.P.; Gholap, A.P.; Kuchekar, A.B.; Bothiraja, C.; Mali, A.J. Formulation and evaluation of optimized oxybenzone microsponge gel for topical delivery. J. Drug Deliv., 2015, 2015, 442-451.
[18]
Amrutiya, N.; Bajaj, A.; Madan, M. Development of microsponges for topical delivery of mupirocin. AAPS PharmSciTech, 2009, 10(2), 402-409.
[19]
Murtaza, G. Ethylcellulose microparticles: a review. Acta Pol. Pharm., 2012, 69(1), 11-22.
[20]
Sharma, R.; Pathak, K. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm. Dev. Technol., 2011, 16(4), 367-376.
[21]
Jelvehgari, M.; Siahi-Shadbad, M.R.; Azarmi, S.; Martin, G.P.; Nokhodchi, A. The microsponge delivery system of benzoyl peroxide: preparation, characterization and release studies. Int. J. Pharm., 2006, 308(1), 124-132.
[22]
Maiti, S.; Kaity, S.; Ray, S.; Sa, B. Development and evaluation of xanthan gum-facilitated ethyl cellulose microsponges for controlled percutaneous delivery of diclofenac sodium. Acta Pharm., 2011, 61(3), 257-270.
[23]
Guo, J.H. Carbopol polymers for pharmaceutical drug delivery applications. Drug Deliv. Technol., 2003, 3, 1-3.
[24]
Mitkari, B.V.; Korde, S.A.; Mahadik, K.R.; Kokare, C.R. Formulation and evaluation of topical liposomal gel for fluconazole. Indian J. Pharm. Educ. Res., 2010, 44(4), 324-333.
[25]
Sinha, P.; Srivastava, S.; Mishra, N.; Singh, D.K.; Luqman, S.; Chanda, D.; Yadav, N.P. Development, optimization, and characterization of a novel tea tree oil nanogel using response surface methodology. Drug Dev. Ind. Pharm., 2016. 12,1-12
[26]
Osmani, R.A.; Aloorkar, N.H.; Kulkarni, A.S.; Harkare, B.R.; Bhosale, R.R. A new cornucopia in topical drug delivery: Microsponge technology. Asian J. Pharm. Sci. Technol., 2014, 4, 48-60.
[27]
Orlu, M.; Cevher, E.; Araman, A. Design and evaluation of colon specific drug delivery system containing flurbiprofen microsponges. Int. J. Pharm., 2006, 318(1), 103-117.
[28]
Aldawsari, H.M.; Badr-Eldin, S.M.; Labib, G.S.; El-Kamel, A.H. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: in vitro/in vivo evaluation. Int. J. Nanomedicine, 2015, 10, 893-902.
[29]
Nokhodchi, A.; Jelvehgari, M.; Siahi, M.R.; Mozafari, M.R. Factors affecting the morphology of benzoyl peroxide microsponges. Micron, 2007, 38(8), 834-840.
[30]
Shaikh, K.S.; Chellampillai, B.; Pawar, A.P. Studies on nonionic surfactant bilayer vesicles of ciclopirox olamine. Drug Dev. Ind. Pharm., 2010, 36(8), 946-953.
[31]
Rekha, U.; Manjula, B.P. Formulation and evaluation of microsponges for topical drug delivery of mometasone furoate. Int. J. Pharm. Pharm. Sci., 2011, 3(4), 133-137.
[32]
El-Houssieny, B.M.; Hamouda, H.M. Formulation and evaluation of clotrimazole from pluronic F127 gels. Drug Discov. Ther., 2010, 4(1), 33-43.
[33]
Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech, 2011, 12(1), 279-286.
[35]
Jain, V.; Jain, D.; Singh, R. Factors effecting the morphology of Eudragit S-100 based microsponges bearing dicyclomine for colonic delivery. J. Pharm. Sci., 2011, 100(4), 1545-1552.
[36]
Borate, A.; Khambhapati, A.; Udgire, M.; Paul, D.; Mathur, S. Preliminary phytochemical studies and evaluation of antibacterial activity of Psoralea corylifolia seed extract. AJPCT, 2014, 2(1), 95-101.
[37]
Harish, N.M.; Prabhu, P.; Charyulu, R.N.; Gulzar, M.A.; Subrahmanyam, E.V.S. Formulation and evaluation of in situ gels containing clotrimazole for oral candidiasis. Indian J. Pharm. Sci., 2009, 71(4), 421-427.
[38]
Lee, J.H.; Park, T.G.; Choi, H.K. Development of oral drug delivery system using floating microspheres. J. Microencapsul., 1999, 16(6), 715-729.
[39]
Raghuvanshi, S.; Pathak, K. Bioadhesive floating microsponges of cinnarizine as novel gastroretentive delivery: Capmul GMO bioadhesive coating versus acconon MC 8-2 EP/NF with intrinsic bioadhesive property. Int. J. Pharm. Investig., 2016, 6(4), 181.
[40]
Hong, Y.; Gao, C.; Shi, Y.; Shen, J. Preparation of porous polylactide microspheres by emulsion‐solvent evaporation based on solution induced phase separation. Polym. Adv. Technol., 2005, 16(8), 622-627.
[41]
Srivastava, R.; Kumar, D.; Pathak, K. Colonic luminal surface retention of meloxicam microsponges delivered by erosion based colon-targeted matrix tablet. Int. J. Pharm., 2012, 427(2), 153-162.
[42]
Arya, P.; Pathak, K. Assessing the viability of microsponges as gastro retentive drug delivery system of curcumin: optimization and pharmacokinetics. Int. J. Pharm., 2014, 460(1-2), 1-12.
[43]
Gupta, A.; Tiwari, G.; Tiwari, R.; Srivastava, R. Factorial designed 5-fluorouracil-loaded microsponges and calcium pectinate beads plugged in hydroxypropyl methylcellulose capsules for colorectal cancer. Int. J. Pharm. Investig., 2015, 5(4), 234.
[44]
Chinna, G.; Shyam, S.; Vimal, K.; Sleeva, R.M.; Sai, K. Formulation and evaluation of indomethacin microspheres using natural and synthetic polymers as controlled release dosage forms. Int. J. Drug Discov., 2010, 2(1), 8-16.
[45]
Nief, R.; Hussein, A. Preparation and evaluation of meloxicam microsponges: As transdermal delivery system; LAP LAMBERT Academic Publishing: Mauritius, 2015.
[46]
Pagar, K.P.; Vavia, P.R. Poly[LA-(Glc-Leu)] copolymer as a carrier for ocular delivery of ciprofloxacin: formulation, characterization and in vivo biocompatibility study. Ther. Deliv., 2013, 4(5), 553-565.
[47]
Raju, A.; Muthu, M.S.; Feng, S.S. Trastuzumab-conjugated vitamin E TPGS liposomes for sustained and targeted delivery of docetaxel. Expert Opin. Drug Deliv., 2013, 10(6), 747-760.
[48]
Lee, C.J.; Chen, L.W.; Chen, L.G.; Chang, T.L.; Huang, C.W.; Huang, M.C.; Wang, C.C. Correlations of the components of tea tree oil with its antibacterial effects and skin irritation. J. Food Drug Anal., 2013, 21(2), 169-176.
[49]
Yadav, E.; Kumar, S.; Mahant, S.; Khatkar, S.; Rao, R. Tea tree oil: A promising essential oil. J. Essent. Oil Res., 2017, 29(3), 201-213.