Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Zinc Dependent Histone Deacetylase Inhibitors in Cancer Therapeutics: Recent Update

Author(s): Faria Sultana, Kesari Lakshmi Manasa, Siddiq Pasha Shaik, Srinivasa Reddy Bonam and Ahmed Kamal*

Volume 26, Issue 40, 2019

Page: [7212 - 7280] Pages: 69

DOI: 10.2174/0929867325666180530094120

Price: $65

Abstract

Background: Histone deacetylases (HDAC) are an important class of enzymes that play a pivotal role in epigenetic regulation of gene expression that modifies the terminal of core histones leading to remodelling of chromatin topology and thereby controlling gene expression. HDAC inhibitors (HDACi) counter this action and can result in hyperacetylation of histones, thereby inducing an array of cellular consequences such as activation of apoptotic pathways, generation of reactive oxygen species (ROS), cell cycle arrest and autophagy. Hence, there is a growing interest in the potential clinical use of HDAC inhibitors as a new class of targeted cancer therapeutics.

Methodology and Result: Several research articles spanning between 2016 and 2017 were reviewed in this article and presently offer critical insights into the important strategies such as structure-based rational drug design, multi-parameter lead optimization methodologies, relevant SAR studies and biology of various class of HDAC inhibitors, such as hydroxamic acids, benzamides, cyclic peptides, aliphatic acids, summarising the clinical trials and results of various combination drug therapy till date.

Conclusion: This review will provide a platform to the synthetic chemists and biologists to cater the needs of both molecular targeted therapy and combination drug therapy to design and synthesize safe and selective HDAC inhibitors in cancer therapeutics.

Keywords: Aliphatic acids, benzanilides, cancer therapeutics, cyclic peptides, histone deacetylases, histone deacetylase inhibitors and hydroxamic acids.

« Previous
[1]
Holliday, R. The inheritance of epigenetic defects. Science, 1987, 238(4824), 163-170.
[http://dx.doi.org/10.1126/science.3310230] [PMID: 3310230]
[2]
a)Schuebel, K.E.; Chen, W.; Cope, L.; Glöckner, S.C.; Suzuki, H.; Yi, J-M.; Chan, T.A.; Van Neste, L.; Van Criekinge, W.; van den Bosch, S.; van Engeland, M.; Ting, A.H.; Jair, K.; Yu, W.; Toyota, M.; Imai, K.; Ahuja, N.; Herman, J.G.; Baylin, S.B. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet., 2007, 3(9), 1709-1723.
[http://dx.doi.org/10.1371/journal.pgen.0030157] [PMID: 17892325]
b)Baylin, S.B.; Jones, P.A. A decade of exploring the cancer epigenome - biological and translational implications. Nat. Rev. Cancer, 2011, 11(10), 726-734.
[http://dx.doi.org/10.1038/nrc3130] [PMID: 21941284]
c)Dawson, M.A.; Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell, 2012, 150(1), 12-27.
[http://dx.doi.org/10.1016/j.cell.2012.06.013] [PMID: 22770212]
[3]
Rando, O.J.; Ahmad, K. Rules and regulation in the primary structure of chromatin. Curr. Opin. Cell Biol., 2007, 19(3), 250-256.
[http://dx.doi.org/10.1016/j.ceb.2007.04.006] [PMID: 17466507]
[4]
a)Berger, S.L. The complex language of chromatin regulation during transcription. Nature, 2007, 447(7143), 407-412.
[http://dx.doi.org/10.1038/nature05915] [PMID: 17522673]
b)Kouzarides, T. Chromatin modifications and their function. Cell, 2007, 128(4), 693-705.
[http://dx.doi.org/10.1016/j.cell.2007.02.005] [PMID: 17320507]
[5]
Miozzo, M.; Vaira, V.; Sirchia, S.M. Epigenetic alterations in cancer and personalized cancer treatment. Future Oncol., 2015, 11(2), 333-348.
[http://dx.doi.org/10.2217/fon.14.237] [PMID: 25591842]
[6]
Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325(5942), 834-840.
[http://dx.doi.org/10.1126/science.1175371] [PMID: 19608861]
[7]
Muntean, A.G.; Hess, J.L. Epigenetic dysregulation in cancer. Am. J. Pathol., 2009, 175(4), 1353-1361.
[http://dx.doi.org/10.2353/ajpath.2009.081142] [PMID: 19717641]
[8]
Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784.
[http://dx.doi.org/10.1038/nrd2133] [PMID: 16955068]
[9]
Xu, W.S.; Parmigiani, R.B.; Marks, P.A. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene, 2007, 26(37), 5541-5552.
[http://dx.doi.org/10.1038/sj.onc.1210620] [PMID: 17694093]
[10]
Damaskos, C.; Garmpis, N.; Valsami, S.; Kontos, M.; Spartalis, E.; Kalampokas, T.; Kalampokas, E.; Athanasiou, A.; Moris, D.; Daskalopoulou, A.; Davakis, S.; Tsourouflis, G.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Dimitroulis, D. Histone deacetylase inhibitors: an attractive therapeutic strategy against breast cancer. Anticancer Res., 2017, 37(1), 35-46.
[http://dx.doi.org/10.21873/anticanres.11286] [PMID: 28011471]
[11]
a)Yang, X-J.; Grégoire, S. Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol. Cell. Biol., 2005, 25(8), 2873-2884.
[http://dx.doi.org/10.1128/MCB.25.8.2873-2884.2005] [PMID: 15798178]
b)Fischle, W.; Kiermer, V.; Dequiedt, F.; Verdin, E. The emerging role of class II histone deacetylases. Biochem. Cell Biol., 2001, 79(3), 337-348.
[http://dx.doi.org/10.1139/o01-116] [PMID: 11467747]
[12]
Guardiola, A.R.; Yao, T-P. Molecular cloning and characterization of a novel histone deacetylase HDAC10. J. Biol. Chem., 2002, 277(5), 3350-3356.
[http://dx.doi.org/10.1074/jbc.M109861200] [PMID: 11726666]
[13]
Zhang, H.; Shang, Y.P.; Chen, H.Y.; Li, J. Histone deacetylases function as novel potential therapeutic targets for cancer. Hepatol. Res., 2017, 47(2), 149-159.
[http://dx.doi.org/10.1111/hepr.12757] [PMID: 27457249]
[14]
Singh, B.N.; Zhang, G.; Hwa, Y.L.; Li, J.; Dowdy, S.C.; Jiang, S-W. Nonhistone protein acetylation as cancer therapy targets. Expert Rev. Anticancer Ther., 2010, 10(6), 935-954.
[http://dx.doi.org/10.1586/era.10.62] [PMID: 20553216]
[15]
Kim, H-J.; Bae, S-C. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res., 2011, 3(2), 166-179.
[PMID: 21416059]
[16]
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest., 2014, 124(1), 30-39.
[http://dx.doi.org/10.1172/JCI69738] [PMID: 24382387]
[17]
Nakagawa, M.; Oda, Y.; Eguchi, T.; Aishima, S.; Yao, T.; Hosoi, F.; Basaki, Y.; Ono, M.; Kuwano, M.; Tanaka, M.; Tsuneyoshi, M. Expression profile of class I histone deacetylases in human cancer tissues. Oncol. Rep., 2007, 18(4), 769-774.
[http://dx.doi.org/10.3892/or.18.4.769] [PMID: 17786334]
[18]
Toh, Y.; Yamamoto, M.; Endo, K.; Ikeda, Y.; Baba, H.; Kohnoe, S.; Yonemasu, H.; Hachitanda, Y.; Okamura, T.; Sugimachi, K. Histone H4 acetylation and histone deacetylase 1 expression in esophageal squamous cell carcinoma. Oncol. Rep., 2003, 10(2), 333-338.
[http://dx.doi.org/10.3892/or.10.2.333] [PMID: 12579268]
[19]
Weichert, W.; Röske, A.; Gekeler, V.; Beckers, T.; Stephan, C.; Jung, K.; Fritzsche, F.R.; Niesporek, S.; Denkert, C.; Dietel, M.; Kristiansen, G. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br. J. Cancer, 2008, 98(3), 604-610.
[http://dx.doi.org/10.1038/sj.bjc.6604199] [PMID: 18212746]
[20]
Krusche, C.A.; Wülfing, P.; Kersting, C.; Vloet, A.; Böcker, W.; Kiesel, L.; Beier, H.M.; Alfer, J. Histone deacetylase-1 and -3 protein expression in human breast cancer: a tissue microarray analysis. Breast Cancer Res. Treat., 2005, 90(1), 15-23.
[http://dx.doi.org/10.1007/s10549-004-1668-2] [PMID: 15770522]
[21]
Mottamal, M.; Zheng, S.; Huang, T.L.; Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 2015, 20(3), 3898-3941.
[http://dx.doi.org/10.3390/molecules20033898] [PMID: 25738536]
[22]
Ye, P.; Xing, H.; Lou, F.; Wang, K.; Pan, Q.; Zhou, X.; Gong, L.; Li, D. Histone deacetylase 2 regulates doxorubicin (Dox) sensitivity of colorectal cancer cells by targeting ABCB1 transcription. Cancer Chemother. Pharmacol., 2016, 77(3), 613-621.
[http://dx.doi.org/10.1007/s00280-016-2979-9] [PMID: 26846508]
[23]
Zhu, P.; Martin, E.; Mengwasser, J.; Schlag, P.; Janssen, K-P.; Göttlicher, M. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell, 2004, 5(5), 455-463.
[http://dx.doi.org/10.1016/S1535-6108(04)00114-X] [PMID: 15144953]
[24]
Oehme, I.; Deubzer, H.E.; Wegener, D.; Pickert, D.; Linke, J-P.; Hero, B.; Kopp-Schneider, A.; Westermann, F.; Ulrich, S.M.; von Deimling, A.; Fischer, M.; Witt, O. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin. Cancer Res., 2009, 15(1), 91-99.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0684] [PMID: 19118036]
[25]
Chen, B.; Cepko, C.L. HDAC4 regulates neuronal survival in normal and diseased retinas. Science, 2009, 323(5911), 256-259.
[http://dx.doi.org/10.1126/science.1166226] [PMID: 19131628]
[26]
Liu, J.; Gu, J.; Feng, Z.; Yang, Y.; Zhu, N.; Lu, W.; Qi, F. Both HDAC5 and HDAC6 are required for the proliferation and metastasis of melanoma cells. J. Transl. Med., 2016, 14(1), 7.
[http://dx.doi.org/10.1186/s12967-015-0753-0] [PMID: 26747087]
[27]
Chang, S.; McKinsey, T.A.; Zhang, C.L.; Richardson, J.A.; Hill, J.A.; Olson, E.N. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol. Cell. Biol., 2004, 24(19), 8467-8476.
[http://dx.doi.org/10.1128/MCB.24.19.8467-8476.2004] [PMID: 15367668]
[28]
Ozdağ, H.; Teschendorff, A.E.; Ahmed, A.A.; Hyland, S.J.; Blenkiron, C.; Bobrow, L.; Veerakumarasivam, A.; Burtt, G.; Subkhankulova, T.; Arends, M.J.; Collins, V.P.; Bowtell, D.; Kouzarides, T.; Brenton, J.D.; Caldas, C. Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics, 2006, 7(1), 90.
[http://dx.doi.org/10.1186/1471-2164-7-90] [PMID: 16638127]
[29]
Marks, P.A.; Xu, W.S. Histone deacetylase inhibitors: Potential in cancer therapy. J. Cell. Biochem., 2009, 107(4), 600-608.
[http://dx.doi.org/10.1002/jcb.22185] [PMID: 19459166]
[30]
Sakuma, T.; Uzawa, K.; Onda, T.; Shiiba, M.; Yokoe, H.; Shibahara, T.; Tanzawa, H. Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma. Int. J. Oncol., 2006, 29(1), 117-124.
[http://dx.doi.org/10.3892/ijo.29.1.117] [PMID: 16773191]
[31]
Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.; Nixon, A.; Yoshida, M.; Wang, X-F.; Yao, T-P. HDAC6 is a microtubule-associated deacetylase. Nature, 2002, 417(6887), 455-458.
[http://dx.doi.org/10.1038/417455a] [PMID: 12024216]
[32]
Zhang, Y.; Li, N.; Caron, C.; Matthias, G.; Hess, D.; Khochbin, S.; Matthias, P. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J., 2003, 22(5), 1168-1179.
[http://dx.doi.org/10.1093/emboj/cdg115] [PMID: 12606581]
[33]
Bali, P.; Pranpat, M.; Bradner, J.; Balasis, M.; Fiskus, W.; Guo, F.; Rocha, K.; Kumaraswamy, S.; Boyapalle, S.; Atadja, P.; Seto, E.; Bhalla, K. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem., 2005, 280(29), 26729-26734.
[http://dx.doi.org/10.1074/jbc.C500186200] [PMID: 15937340]
[34]
Kovacs, J.J.; Murphy, P.J.; Gaillard, S.; Zhao, X.; Wu, J-T.; Nicchitta, C.V.; Yoshida, M.; Toft, D.O.; Pratt, W.B.; Yao, T-P. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell, 2005, 18(5), 601-607.
[http://dx.doi.org/10.1016/j.molcel.2005.04.021] [PMID: 15916966]
[35]
Aoyagi, S.; Archer, T.K. Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol., 2005, 15(11), 565-567.
[http://dx.doi.org/10.1016/j.tcb.2005.09.003] [PMID: 16199163]
[36]
Iwata, A.; Riley, B.E.; Johnston, J.A.; Kopito, R.R. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem., 2005, 280(48), 40282-40292.
[http://dx.doi.org/10.1074/jbc.M508786200] [PMID: 16192271]
[37]
Pandey, U.B.; Batlevi, Y.; Baehrecke, E.H.; Taylor, J.P. HDAC6 at the intersection of autophagy, the ubiquitin-proteasome system and neurodegeneration. Autophagy, 2007, 3(6), 643-645.
[http://dx.doi.org/10.4161/auto.5050] [PMID: 17912024]
[38]
Boyault, C.; Sadoul, K.; Pabion, M.; Khochbin, S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene, 2007, 26(37), 5468-5476.
[http://dx.doi.org/10.1038/sj.onc.1210614] [PMID: 17694087]
[39]
Lian, Z.R.; Xu, Y.F.; Wang, X.B.; Gong, J.P.; Liu, Z.J. Suppression of histone deacetylase 11 promotes expression of IL-10 in Kupffer cells and induces tolerance following orthotopic liver transplantation in rats. J. Surg. Res., 2012, 174(2), 359-368.
[http://dx.doi.org/10.1016/j.jss.2010.12.035] [PMID: 21392795]
[40]
Villagra, A.; Cheng, F.; Wang, H-W.; Suarez, I.; Glozak, M.; Maurin, M.; Nguyen, D.; Wright, K.L.; Atadja, P.W.; Bhalla, K.; Pinilla-Ibarz, J.; Seto, E.; Sotomayor, E.M. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat. Immunol., 2009, 10(1), 92-100.
[http://dx.doi.org/10.1038/ni.1673] [PMID: 19011628]
[41]
Buglio, D.; Khaskhely, N.M.; Voo, K.S.; Martinez-Valdez, H.; Liu, Y-J.; Younes, A. HDAC11 plays an essential role in regulating OX40 ligand expression in Hodgkin lymphoma. Blood, 2011, 117(10), 2910-2917.
[http://dx.doi.org/10.1182/blood-2010-08-303701] [PMID: 21239696]
[42]
Glozak, M.A.; Seto, E. Acetylation/deacetylation modulates the stability of DNA replication licensing factor CDT1. J. Biol. Chem., 2009, 284(17), 11446-11453.
[http://dx.doi.org/10.1074/jbc.M809394200] [PMID: 19276081]
[43]
Huffman, D.M.; Grizzle, W.E.; Bamman, M.M.; Kim, J.S.; Eltoum, I.A.; Elgavish, A.; Nagy, T.R. SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res., 2007, 67(14), 6612-6618.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0085] [PMID: 17638871]
[44]
Bradbury, C.A.; Khanim, F.L.; Hayden, R.; Bunce, C.M.; White, D.A.; Drayson, M.T.; Craddock, C.; Turner, B.M. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia, 2005, 19(10), 1751-1759.
[http://dx.doi.org/10.1038/sj.leu.2403910] [PMID: 16121216]
[45]
Stünkel, W.; Peh, B.K.; Tan, Y.C.; Nayagam, V.M.; Wang, X.; Salto-Tellez, M.; Ni, B.; Entzeroth, M.; Wood, J. Function of the SIRT1 protein deacetylase in cancer. Biotechnol. J., 2007, 2(11), 1360-1368.
[http://dx.doi.org/10.1002/biot.200700087] [PMID: 17806102]
[46]
McGuinness, D.; McGuinness, D.; McCaul, J.; Shiels, P. Sirtuins, bioageing and cancer. Journal of aging research, 2011, 2011(4)235754
[http://dx.doi.org/10.4061/2011/235754]
[47]
Hiratsuka, M.; Inoue, T.; Toda, T.; Kimura, N.; Shirayoshi, Y.; Kamitani, H.; Watanabe, T.; Ohama, E.; Tahimic, C.G.; Kurimasa, A.; Oshimura, M. Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem. Biophys. Res. Commun., 2003, 309(3), 558-566.
[http://dx.doi.org/10.1016/j.bbrc.2003.08.029] [PMID: 12963026]
[48]
Huang, J-Y.; Hirschey, M.D.; Shimazu, T.; Ho, L.; Verdin, E. Mitochondrial sirtuins. Biochimica et Biophysica Acta (BBA)-. Proteins and Proteomics, 2010, 1804(8), 1645-1651.
[http://dx.doi.org/10.1016/j.bbapap.2009.12.021]
[49]
Ashraf, N.; Zino, S.; Macintyre, A.; Kingsmore, D.; Payne, A.P.; George, W.D.; Shiels, P.G. Altered sirtuin expression is associated with node-positive breast cancer. Br. J. Cancer, 2006, 95(8), 1056-1061.
[http://dx.doi.org/10.1038/sj.bjc.6603384] [PMID: 17003781]
[50]
Nakagawa, T.; Lomb, D.J.; Haigis, M.C.; Guarente, L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell, 2009, 137(3), 560-570.
[http://dx.doi.org/10.1016/j.cell.2009.02.026] [PMID: 19410549]
[51]
Schlicker, C.; Gertz, M.; Papatheodorou, P.; Kachholz, B.; Becker, C.F.; Steegborn, C. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol., 2008, 382(3), 790-801.
[http://dx.doi.org/10.1016/j.jmb.2008.07.048] [PMID: 18680753]
[52]
Ouaïssi, M.; Sielezneff, I.; Silvestre, R.; Sastre, B.; Bernard, J-P.; Lafontaine, J.S.; Payan, M.J.; Dahan, L.; Pirrò, N.; Seitz, J.F.; Mas, E.; Lombardo, D.; Ouaissi, A. High histone deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas. Ann. Surg. Oncol., 2008, 15(8), 2318-2328.
[http://dx.doi.org/10.1245/s10434-008-9940-z] [PMID: 18506539]
[53]
McCord, R.A.; Michishita, E.; Hong, T.; Berber, E.; Boxer, L.D.; Kusumoto, R.; Guan, S.; Shi, X.; Gozani, O.; Burlingame, A.L.; Bohr, V.A.; Chua, K.F. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY), 2009, 1(1), 109-121.
[http://dx.doi.org/10.18632/aging.100011] [PMID: 20157594]
[54]
North, B.J.; Verdin, E. Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation. J. Biol. Chem., 2007, 282(27), 19546-19555.
[http://dx.doi.org/10.1074/jbc.M702990200] [PMID: 17488717]
[55]
Grummt, I.; Pikaard, C.S. Epigenetic silencing of RNA polymerase I transcription. Nat. Rev. Mol. Cell Biol., 2003, 4(8), 641-649.
[http://dx.doi.org/10.1038/nrm1171] [PMID: 12923526]
[56]
Nalawansha, D.A.; Gomes, I.D.; Wambua, M.K.; Pflum, M.K.H. HDAC inhibitor-induced mitotic arrest is mediated by Eg5/KIF11 acetylation. Cell Chem. Biol, 2017, 24(4), 481-492, e5.
[http://dx.doi.org/10.1016/j.chembiol.2017.03.008] [PMID: 28392145]
[57]
Dvorakova, M.; Vanek, T. Histone deacetylase inhibitors for the treatment of cancer stem cells. MedChemComm, 2016, 7(12), 2217-2231.
[http://dx.doi.org/10.1039/C6MD00297H]
[58]
Jain, S.; Zain, J.; O’Connor, O. Novel therapeutic agents for cutaneous T-Cell lymphoma. J. Hematol. Oncol., 2012, 5(1), 24.
[http://dx.doi.org/10.1186/1756-8722-5-24] [PMID: 22594538]
[59]
Inoue, S.; Riley, J.; Gant, T.W.; Dyer, M.J.; Cohen, G.M. Apoptosis induced by histone deacetylase inhibitors in leukemic cells is mediated by Bim and Noxa. Leukemia, 2007, 21(8), 1773-1782.
[http://dx.doi.org/10.1038/sj.leu.2404760] [PMID: 17525724]
[60]
Xu, W.; Ngo, L.; Perez, G.; Dokmanovic, M.; Marks, P.A. Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. Proc. Natl. Acad. Sci. USA, 2006, 103(42), 15540-15545.
[http://dx.doi.org/10.1073/pnas.0607518103] [PMID: 17030815]
[61]
Ruefli, A.A.; Ausserlechner, M.J.; Bernhard, D.; Sutton, V.R.; Tainton, K.M.; Kofler, R.; Smyth, M.J.; Johnstone, R.W. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc. Natl. Acad. Sci. USA, 2001, 98(19), 10833-10838.
[http://dx.doi.org/10.1073/pnas.191208598] [PMID: 11535817]
[62]
Zhao, Y.; Tan, J.; Zhuang, L.; Jiang, X.; Liu, E.T.; Yu, Q. Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc. Natl. Acad. Sci. USA, 2005, 102(44), 16090-16095.
[http://dx.doi.org/10.1073/pnas.0505585102] [PMID: 16243973]
[63]
Peart, M.J.; Smyth, G.K.; van Laar, R.K.; Bowtell, D.D.; Richon, V.M.; Marks, P.A.; Holloway, A.J.; Johnstone, R.W. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc. Natl. Acad. Sci. USA, 2005, 102(10), 3697-3702.
[http://dx.doi.org/10.1073/pnas.0500369102] [PMID: 15738394]
[64]
de Ruijter, A.J.; Meinsma, R.J.; Bosma, P.; Kemp, S.; Caron, H.N.; van Kuilenburg, A.B. Gene expression profiling in response to the histone deacetylase inhibitor BL1521 in neuroblastoma. Exp. Cell Res., 2005, 309(2), 451-467.
[http://dx.doi.org/10.1016/j.yexcr.2005.06.024] [PMID: 16084510]
[65]
Zhang, X.D.; Gillespie, S.K.; Borrow, J.M.; Hersey, P. The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Mol. Cancer Ther., 2004, 3(4), 425-435.
[PMID: 15078986]
[66]
Insinga, A.; Monestiroli, S.; Ronzoni, S.; Gelmetti, V.; Marchesi, F.; Viale, A.; Altucci, L.; Nervi, C.; Minucci, S.; Pelicci, P.G. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat. Med., 2005, 11(1), 71-76.
[http://dx.doi.org/10.1038/nm1160] [PMID: 15619634]
[67]
Frew, A.J.; Lindemann, R.K.; Martin, B.P.; Clarke, C.J.; Sharkey, J.; Anthony, D.A.; Banks, K-M.; Haynes, N.M.; Gangatirkar, P.; Stanley, K.; Bolden, J.E.; Takeda, K.; Yagita, H.; Secrist, J.P.; Smyth, M.J.; Johnstone, R.W. Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist. Proc. Natl. Acad. Sci. USA, 2008, 105(32), 11317-11322.
[http://dx.doi.org/10.1073/pnas.0801868105] [PMID: 18685088]
[68]
Nebbioso, A.; Clarke, N.; Voltz, E.; Germain, E.; Ambrosino, C.; Bontempo, P.; Alvarez, R.; Schiavone, E.M.; Ferrara, F.; Bresciani, F.; Weisz, A.; de Lera, A.R.; Gronemeyer, H.; Altucci, L. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat. Med., 2005, 11(1), 77-84.
[http://dx.doi.org/10.1038/nm1161] [PMID: 15619633]
[69]
Nakata, S.; Yoshida, T.; Horinaka, M.; Shiraishi, T.; Wakada, M.; Sakai, T. Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene, 2004, 23(37), 6261-6271.
[http://dx.doi.org/10.1038/sj.onc.1207830] [PMID: 15208660]
[70]
Sutheesophon, K.; Nishimura, N.; Kobayashi, Y.; Furukawa, Y.; Kawano, M.; Itoh, K.; Kano, Y.; Ishii, H.; Furukawa, Y. Involvement of the tumor necrosis factor (TNF)/TNF receptor system in leukemic cell apoptosis induced by histone deacetylase inhibitor depsipeptide (FK228). J. Cell. Physiol., 2005, 203(2), 387-397.
[http://dx.doi.org/10.1002/jcp.20235] [PMID: 15515013]
[71]
Zhang, Z.; Hao, C.; Wang, L.; Liu, P.; Zhao, L.; Zhu, C.; Tian, X. Inhibition of leukemic cells by valproic acid, an HDAC inhibitor, in xenograft tumors. OncoTargets Ther., 2013, 6, 733-740.
[http://dx.doi.org/10.2147/OTT.S46135] [PMID: 23836985]
[72]
Wilson, A.J.; Byun, D-S.; Popova, N.; Murray, L.B.; L’Italien, K.; Sowa, Y.; Arango, D.; Velcich, A.; Augenlicht, L.H.; Mariadason, J.M. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J. Biol. Chem., 2006, 281(19), 13548-13558.
[http://dx.doi.org/10.1074/jbc.M510023200] [PMID: 16533812]
[73]
Richon, V.M.; Sandhoff, T.W.; Rifkind, R.A.; Marks, P.A. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA, 2000, 97(18), 10014-10019.
[http://dx.doi.org/10.1073/pnas.180316197] [PMID: 10954755]
[74]
Sandor, V.; Senderowicz, A.; Mertins, S.; Sackett, D.; Sausville, E.; Blagosklonny, M.V.; Bates, S.E. P21-dependent g(1)arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. Br. J. Cancer, 2000, 83(6), 817-825.
[http://dx.doi.org/10.1054/bjoc.2000.1327] [PMID: 10952788]
[75]
Qiu, L.; Burgess, A.; Fairlie, D.P.; Leonard, H.; Parsons, P.G.; Gabrielli, B.G. Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol. Biol. Cell, 2000, 11(6), 2069-2083.
[http://dx.doi.org/10.1091/mbc.11.6.2069] [PMID: 10848630]
[76]
Kim, Y.B.; Lee, K-H.; Sugita, K.; Yoshida, M.; Horinouchi, S. Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase. Oncogene, 1999, 18(15), 2461-2470.
[http://dx.doi.org/10.1038/sj.onc.1202564] [PMID: 10229197]
[77]
Fandy, T.E.; Shankar, S.; Ross, D.D.; Sausville, E.; Srivastava, R.K. Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma. Neoplasia, 2005, 7(7), 646-657.
[http://dx.doi.org/10.1593/neo.04655] [PMID: 16026644]
[78]
Hitomi, T.; Matsuzaki, Y.; Yokota, T.; Takaoka, Y.; Sakai, T. p15(INK4b) in HDAC inhibitor-induced growth arrest. FEBS Lett., 2003, 554(3), 347-350.
[http://dx.doi.org/10.1016/S0014-5793(03)01186-4] [PMID: 14623092]
[79]
Lin, E.Y.; Pollard, J.W. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res., 2007, 67(11), 5064-5066.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0912] [PMID: 17545580]
[80]
Mahon, P.C.; Hirota, K.; Semenza, G.L. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev., 2001, 15(20), 2675-2686.
[http://dx.doi.org/10.1101/gad.924501] [PMID: 11641274]
[81]
Wang, G.; Shi, Y.; Jiang, X.; Leak, R.K.; Hu, X.; Wu, Y.; Pu, H.; Li, W-W.; Tang, B.; Wang, Y.; Gao, Y.; Zheng, P.; Bennett, M.V.; Chen, J. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc. Natl. Acad. Sci. USA, 2015, 112(9), 2853-2858.
[http://dx.doi.org/10.1073/pnas.1501441112] [PMID: 25691750]
[82]
Osaki, M.; Oshimura, M.; Ito, H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis, 2004, 9(6), 667-676.
[http://dx.doi.org/10.1023/B:APPT.0000045801.15585.dd] [PMID: 15505410]
[83]
Cao, Q.; Yu, C.; Xue, R.; Hsueh, W.; Pan, P.; Chen, Z.; Wang, S.; McNutt, M.; Gu, J. Autophagy induced by suberoylanilide hydroxamic acid in Hela S3 cells involves inhibition of protein kinase B and up-regulation of Beclin 1. Int. J. Biochem. Cell Biol., 2008, 40(2), 272-283.
[http://dx.doi.org/10.1016/j.biocel.2007.07.020] [PMID: 17881280]
[84]
Qian, D.Z.; Kachhap, S.K.; Collis, S.J.; Verheul, H.M.; Carducci, M.A.; Atadja, P.; Pili, R. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 α. Cancer Res., 2006, 66(17), 8814-8821.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4598] [PMID: 16951198]
[85]
Lee, J-H.; Choy, M.L.; Ngo, L.; Foster, S.S.; Marks, P.A. Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc. Natl. Acad. Sci. USA, 2010, 107(33), 14639-14644.
[http://dx.doi.org/10.1073/pnas.1008522107] [PMID: 20679231]
[86]
Rosato, R.R.; Almenara, J.A.; Grant, S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res., 2003, 63(13), 3637-3645.
[PMID: 12839953]
[87]
Munshi, A.; Kurland, J.F.; Nishikawa, T.; Tanaka, T.; Hobbs, M.L.; Tucker, S.L.; Ismail, S.; Stevens, C.; Meyn, R.E. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin. Cancer Res., 2005, 11(13), 4912-4922.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2088] [PMID: 16000590]
[88]
Chen, C-S.; Wang, Y-C.; Yang, H-C.; Huang, P-H.; Kulp, S.K.; Yang, C-C.; Lu, Y-S.; Matsuyama, S.; Chen, C-Y.; Chen, C-S. Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation. Cancer Res., 2007, 67(11), 5318-5327.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3996] [PMID: 17545612]
[89]
Johnstone, R.W. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discov., 2002, 1(4), 287-299.
[http://dx.doi.org/10.1038/nrd772] [PMID: 12120280]
[90]
Tan, J.; Zhuang, L.; Jiang, X.; Yang, K.K.; Karuturi, K.M.; Yu, Q. Apoptosis signal-regulating kinase 1 is a direct target of E2F1 and contributes to histone deacetylase inhibitor-induced apoptosis through positive feedback regulation of E2F1 apoptotic activity. J. Biol. Chem., 2006, 281(15), 10508-10515.
[http://dx.doi.org/10.1074/jbc.M512719200] [PMID: 16476732]
[91]
Zhang, X.; Yuan, Z.; Zhang, Y.; Yong, S.; Salas-Burgos, A.; Koomen, J.; Olashaw, N.; Parsons, J.T.; Yang, X-J.; Dent, S.R.; Yao, T.P.; Lane, W.S.; Seto, E. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell, 2007, 27(2), 197-213.
[http://dx.doi.org/10.1016/j.molcel.2007.05.033] [PMID: 17643370]
[92]
Robbins, A.R.; Jablonski, S.A.; Yen, T.J.; Yoda, K.; Robey, R.; Bates, S.E.; Sackett, D.L. Inhibitors of histone deacetylases alter kinetochore assembly by disrupting pericentromeric heterochromatin. Cell Cycle, 2005, 4(5), 717-726.
[http://dx.doi.org/10.4161/cc.4.5.1690] [PMID: 15846093]
[93]
Zhang, X-H.; Rao, M.; Loprieato, J.A.; Hong, J.A.; Zhao, M.; Chen, G-Z.; Humphries, A.E.; Nguyen, D.M.; Trepel, J.B.; Yu, X.; Schrump, D.S. Aurora A, Aurora B and survivin are novel targets of transcriptional regulation by histone deacetylase inhibitors in non-small cell lung cancer. Cancer Biol. Ther., 2008, 7(9), 1388-1397.
[http://dx.doi.org/10.4161/cbt.7.9.6415] [PMID: 18708766]
[94]
Nimmanapalli, R.; Fuino, L.; Bali, P.; Gasparetto, M.; Glozak, M.; Tao, J.; Moscinski, L.; Smith, C.; Wu, J.; Jove, R.; Atadja, P.; Bhalla, K. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res., 2003, 63(16), 5126-5135.
[PMID: 12941844]
[95]
Bali, P.; George, P.; Cohen, P.; Tao, J.; Guo, F.; Sigua, C.; Vishvanath, A.; Scuto, A.; Annavarapu, S.; Fiskus, W.; Moscinski, L.; Atadja, P.; Bhalla, K. Superior activity of the combination of histone deacetylase inhibitor LAQ824 and the FLT-3 kinase inhibitor PKC412 against human acute myelogenous leukemia cells with mutant FLT-3. Clin. Cancer Res., 2004, 10(15), 4991-4997.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0210] [PMID: 15297399]
[96]
Yu, X.; Guo, Z.S.; Marcu, M.G.; Neckers, L.; Nguyen, D.M.; Chen, G.A.; Schrump, D.S. Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J. Natl. Cancer Inst., 2002, 94(7), 504-513.
[http://dx.doi.org/10.1093/jnci/94.7.504] [PMID: 11929951]
[97]
Shankar, S. Srivastava, R.K. Programmed Cell Death in Cancer Progression and Therapy; Springer, 2008, pp. 261-298.
[http://dx.doi.org/10.1007/978-1-4020-6554-5_13]
[98]
Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; West, A.N.; Carmona, M.; Kivork, C.; Seja, E.; Cherry, G.; Gutierrez, A.J.; Grogan, T.R.; Mateus, C.; Tomasic, G.; Glaspy, J.A.; Emerson, R.O.; Robins, H.; Pierce, R.H.; Elashoff, D.A.; Robert, C.; Ribas, A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 2014, 515(7528), 568-571.
[http://dx.doi.org/10.1038/nature13954] [PMID: 25428505]
[99]
Reddy, P.; Maeda, Y.; Hotary, K.; Liu, C.; Reznikov, L.L.; Dinarello, C.A.; Ferrara, J.L. Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc. Natl. Acad. Sci. USA, 2004, 101(11), 3921-3926.
[http://dx.doi.org/10.1073/pnas.0400380101] [PMID: 15001702]
[100]
Collis, S.J.; Swartz, M.J.; Nelson, W.G.; DeWeese, T.L. Enhanced radiation and chemotherapy-mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors. Cancer Res., 2003, 63(7), 1550-1554.
[PMID: 12670903]
[101]
Zhang, F.; Zhang, T.; Teng, Z.H.; Zhang, R.; Wang, J-B.; Mei, Q-B. Sensitization to γ-irradiation-induced cell cycle arrest and apoptosis by the histone deacetylase inhibitor trichostatin A in non-small cell lung cancer (NSCLC) cells. Cancer Biol. Ther., 2009, 8(9), 823-831.
[http://dx.doi.org/10.4161/cbt.8.9.8143] [PMID: 19270532]
[102]
Kachhap, S.K.; Rosmus, N.; Collis, S.J.; Kortenhorst, M.S.; Wissing, M.D.; Hedayati, M.; Shabbeer, S.; Mendonca, J.; Deangelis, J.; Marchionni, L.; Lin, J.; Höti, N.; Nortier, J.W.; DeWeese, T.L.; Hammers, H.; Carducci, M.A. Downregulation of homologous recombination DNA repair genes by HDAC inhibition in prostate cancer is mediated through the E2F1 transcription factor. PLoS One, 2010, 5(6)e11208
[http://dx.doi.org/10.1371/journal.pone.0011208] [PMID: 20585447]
[103]
Krumm, A.; Barckhausen, C.; Kücük, P.; Tomaszowski, K-H.; Loquai, C.; Fahrer, J.; Krämer, O.H.; Kaina, B.; Roos, W.P. Enhanced histone deacetylase activity in malignant melanoma provokes RAD51 and FANCD2-triggered drug resistance. Cancer Res., 2016, 76(10), 3067-3077.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2680] [PMID: 26980768]
[104]
Miller, T.A.; Witter, D.J.; Belvedere, S. Histone deacetylase inhibitors. J. Med. Chem., 2003, 46(24), 5097-5116.
[http://dx.doi.org/10.1021/jm0303094] [PMID: 14613312]
[105]
Chen, Y.D.; Jiang, Y-J.; Zhou, J-W.; Yu, Q-S.; You, Q-D. Identification of ligand features essential for HDACs inhibitors by pharmacophore modeling. J. Mol. Graph. Model., 2008, 26(7), 1160-1168.
[http://dx.doi.org/10.1016/j.jmgm.2007.10.007] [PMID: 18061500]
[106]
Gupta, S.P. QSAR studies on hydroxamic acids: a fascinating family of chemicals with a wide spectrum of activities. Chem. Rev., 2015, 115(13), 6427-6490.
[http://dx.doi.org/10.1021/cr500483r] [PMID: 26024019]
[107]
Mann, B.S.; Johnson, J.R.; Cohen, M.H.; Justice, R.; Pazdur, R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist, 2007, 12(10), 1247-1252.
[http://dx.doi.org/10.1634/theoncologist.12-10-1247] [PMID: 17962618]
[108]
Frye, R.; Myers, M.; Axelrod, K.C.; Ness, E.A.; Piekarz, R.L.; Bates, S.E.; Booher, S. Romidepsin: a new drug for the treatment of cutaneous T-cell lymphoma. Clin. J. Oncol. Nurs., 2012, 16(2), 195-204.
[http://dx.doi.org/10.1188/12.CJON.195-204] [PMID: 22459529]
[109]
Lee, H-Z.; Kwitkowski, V.E.; Del Valle, P.L.; Ricci, M.S.; Saber, H.; Habtemariam, B.A.; Bullock, J.; Bloomquist, E.; Li, Shen Y.; Chen, X-H.; Brown, J.; Mehrotra, N.; Dorff, S.; Charlab, R.; Kane, R.C.; Kaminskas, E.; Justice, R.; Farrell, A.T.; Pazdur, R. FDA approval: belinostat for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma. Clin. Cancer Res., 2015, 21(12), 2666-2670.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3119] [PMID: 25802282]
[110]
Laubach, J.P.; Moreau, P.; San-Miguel, J.F.; Richardson, P.G. Panobinostat for the treatment of multiple myeloma. Clin. Cancer Res., 2015, 21(21), 4767-4773.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0530] [PMID: 26362997]
[111]
Suresh, P.S.; Devaraj, V.C.; Srinivas, N.R.; Mullangi, R. Review of bioanalytical assays for the quantitation of various HDAC inhibitors such as vorinostat, belinostat, panobinostat, romidepsin and chidamine. Biomed. Chromatogr., 2017, 31(1)e3807
[http://dx.doi.org/10.1002/bmc.3807] [PMID: 27511598]
[112]
Dinarello, C.A. Anti-inflammatory agents: present and future. Cell, 2010, 140(6), 935-950.
[http://dx.doi.org/10.1016/j.cell.2010.02.043] [PMID: 20303881]
[113]
Gray, S.G. Epigenetic treatment of neurological disease. Epigenomics, 2011, 3(4), 431-450.
[http://dx.doi.org/10.2217/epi.11.67] [PMID: 22126204]
[114]
Goracci, L.; Deschamps, N.; Randazzo, G.M.; Petit, C.; Dos Santos Passos, C.; Carrupt, P-A.; Simões-Pires, C.; Nurisso, A. A rational approach for the identification of non-hydroxamate HDAC6-selective inhibitors. Sci. Rep., 2016, 6, 29086.
[http://dx.doi.org/10.1038/srep29086] [PMID: 27404291]
[115]
Liu, J.; Wang, T.; Wang, X.; Luo, L.; Guo, J.; Peng, Y.; Xu, Q.; Miao, J.; Zhang, Y.; Ling, Y. Development of novel β-carboline-based hydroxamate derivatives as HDAC inhibitors with DNA damage and apoptosis inducing abilities. MedChemComm, 2017, 8(6), 1213-1219.
[http://dx.doi.org/10.1039/C6MD00681G] [PMID: 30108831]
[116]
Ling, Y.; Feng, J.; Luo, L.; Guo, J.; Peng, Y.; Wang, T.; Ge, X.; Xu, Q.; Wang, X.; Dai, H.; Zhang, Y. Design and Synthesis of C3-Substituted β-Carboline-Based Histone Deacetylase Inhibitors with Potent Antitumor Activities. ChemMedChem, 2017, 12(9), 646-651.
[http://dx.doi.org/10.1002/cmdc.201700133] [PMID: 28425177]
[117]
Kamal, A.; Manda, S.; Narayana, N.; Nagula, S.; Sabanis, C.D.; Namballa, H.K. PCT, WO2017125952A1, July 27. 2017.
[118]
Raji, I.; Yadudu, F.; Janeira, E.; Fathi, S.; Szymczak, L.; Kornacki, J.R.; Komatsu, K.; Li, J-D.; Mrksich, M.; Oyelere, A.K. Bifunctional conjugates with potent inhibitory activity towards cyclooxygenase and histone deacetylase. Bioorg. Med. Chem., 2017, 25(3), 1202-1218.
[http://dx.doi.org/10.1016/j.bmc.2016.12.032] [PMID: 28057407]
[119]
Amemiya, S.; Yamaguchi, T.; Hashimoto, Y.; Noguchi-Yachide, T. Synthesis and evaluation of novel dual BRD4/HDAC inhibitors. Bioorg. Med. Chem., 2017, 25(14), 3677-3684.
[http://dx.doi.org/10.1016/j.bmc.2017.04.043] [PMID: 28549889]
[120]
Chen, Y.; Wang, X.; Xiang, W.; He, L.; Tang, M.; Wang, F.; Wang, T.; Yang, Z.; Yi, Y.; Wang, H.; Niu, T.; Zheng, L.; Lei, L.; Li, X.; Song, H.; Chen, L. Development of purine-based hydroxamic acid derivatives: potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities. J. Med. Chem., 2016, 59(11), 5488-5504.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00579] [PMID: 27186676]
[121]
Wang, J.; Su, M.; Li, T.; Gao, A.; Yang, W.; Sheng, L.; Zang, Y.; Li, J.; Liu, H. Design, synthesis and biological evaluation of thienopyrimidine hydroxamic acid based derivatives as structurally novel histone deacetylase (HDAC) inhibitors. Eur. J. Med. Chem., 2017, 128, 293-299.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.035] [PMID: 28213282]
[122]
Ding, C.; Li, D.; Wang, Y-W.; Han, S-S.; Gao, C-M.; Tan, C-Y.; Jiang, Y-Y. Discovery of ErbB/HDAC inhibitors by combining the core pharmacophores of HDAC inhibitor vorinostat and kinase inhibitors vandetanib, BMS-690514, neratinib, and TAK-285. Chin. Chem. Lett., 2017, 28(6), 1220-1227.
[http://dx.doi.org/10.1016/j.cclet.2017.01.003]
[123]
Ding, C.; Chen, S.; Zhang, C.; Hu, G.; Zhang, W.; Li, L.; Chen, Y.Z.; Tan, C.; Jiang, Y. Synthesis and investigation of novel 6-(1,2,3-triazol-4-yl)-4-aminoquinazolin derivatives possessing hydroxamic acid moiety for cancer therapy. Bioorg. Med. Chem., 2017, 25(1), 27-37.
[http://dx.doi.org/10.1016/j.bmc.2016.10.006] [PMID: 27769671]
[124]
Peng, F-W.; Xuan, J.; Wu, T-T.; Xue, J-Y.; Ren, Z-W.; Liu, D-K.; Wang, X-Q.; Chen, X-H.; Zhang, J-W.; Xu, Y-G.; Shi, L. Design, synthesis and biological evaluation of N-phenylquinazolin-4-amine hybrids as dual inhibitors of VEGFR-2 and HDAC. Eur. J. Med. Chem., 2016, 109, 1-12.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.033] [PMID: 26741358]
[125]
Gaisina, I.N.; Tueckmantel, W.; Ugolkov, A.; Shen, S.; Hoffen, J.; Dubrovskyi, O.; Mazar, A.; Schoon, R.A.; Billadeau, D.; Kozikowski, A.P. Identification of HDAC6-Selective Inhibitors of Low Cancer Cell Cytotoxicity. ChemMedChem, 2016, 11(1), 81-92.
[http://dx.doi.org/10.1002/cmdc.201500456] [PMID: 26592932]
[126]
Wang, Z.; Tang, F.; Hu, P.; Wang, Y.; Gong, J.; Sun, S.; Xie, C. HDAC6 promotes cell proliferation and confers resistance to gefitinib in lung adenocarcinoma. Oncol. Rep., 2016, 36(1), 589-597.
[http://dx.doi.org/10.3892/or.2016.4811] [PMID: 27221381]
[127]
Zhang, Z.; Hou, S.; Chen, H.; Ran, T.; Jiang, F.; Bian, Y.; Zhang, D.; Zhi, Y.; Wang, L.; Zhang, L.; Li, H.; Zhang, Y.; Tang, W.; Lu, T.; Chen, Y. Targeting epigenetic reader and eraser: Rational design, synthesis and in vitro evaluation of dimethylisoxazoles derivatives as BRD4/HDAC dual inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(12), 2931-2935.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.034] [PMID: 27142751]
[128]
Lee, H.S.; Park, S.B.; Kim, S.A.; Kwon, S.K.; Cha, H.; Lee, D.Y.; Ro, S.; Cho, J.M.; Song, S.Y. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance. Sci. Rep., 2017, 7, 41615.
[http://dx.doi.org/10.1038/srep41615] [PMID: 28134290]
[129]
Jadhavar, P.S.; Ramachandran, S.A.; Riquelme, E.; Gupta, A.; Quinn, K.P.; Shivakumar, D.; Ray, S.; Zende, D.; Nayak, A.K.; Miglani, S.K.; Sathe, B.D.; Raja, M.; Farias, O.; Alfaro, I.; Belmar, S.; Guerrero, J.; Bernales, S.; Chakravarty, S.; Hung, D.T.; Lindquist, J.N.; Rai, R. Targeting prostate cancer with compounds possessing dual activity as androgen receptor antagonists and HDAC6 inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(21), 5222-5228.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.058] [PMID: 27717544]
[130]
Negmeldin, A.T.; Padige, G.; Bieliauskas, A.V.; Pflum, M.K.H. Structural Requirements of HDAC Inhibitors: SAHA Analogues Modified at the C2 Position Display HDAC6/8 Selectivity. ACS Med. Chem. Lett., 2017, 8(3), 281-286.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00124] [PMID: 28337317]
[131]
Meyners, C.; Wolff, B.; Kleinschek, A.; Krämer, A.; Meyer-Almes, F-J. Perfluorinated hydroxamic acids are potent and selective inhibitors of HDAC-like enzymes from Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett., 2017, 27(7), 1508-1512.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.050] [PMID: 28259626]
[132]
Ahmad, M.; Aga, M.A.; Bhat, J.A.; Kumar, B.; Rouf, A.; Capalash, N.; Mintoo, M.J.; Kumar, A.; Mahajan, P.; Mondhe, D.M.; Nargotra, A.; Sharma, P.R.; Zargar, M.A.; Vishwakarma, R.A.; Shah, B.A.; Taneja, S.C.; Hamid, A. Exploring derivatives of quinazoline alkaloid l-vasicine as cap groups in the design and biological mechanistic evaluation of novel antitumor histone deacetylase inhibitors. J. Med. Chem., 2017, 60(8), 3484-3497.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00322] [PMID: 28368585]
[133]
Idippily, N.D.; Gan, C.; Orefice, P.; Peterson, J.; Su, B. Synthesis of Vorinostat and cholesterol conjugate to enhance the cancer cell uptake selectivity. Bioorg. Med. Chem. Lett., 2017, 27(4), 816-820.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.025] [PMID: 28108250]
[134]
Shieh, J.M.; Tang, Y.A.; Hu, F.H.; Huang, W.J.; Wang, Y.J.; Jen, J.; Liao, S.Y.; Lu, Y.H.; Yeh, Y.L.; Wang, T.W.; Lin, P.; Wang, Y.C. A histone deacetylase inhibitor enhances expression of genes inhibiting Wnt pathway and augments activity of DNA demethylation reagent against nonsmall-cell lung cancer. Int. J. Cancer, 2017, 140(10), 2375-2386.
[http://dx.doi.org/10.1002/ijc.30664] [PMID: 28233309]
[135]
Wu, Y-H.; Hong, C-W.; Wang, Y-C.; Huang, W-J.; Yeh, Y-L.; Wang, B-J.; Wang, Y-J.; Chiu, H-W. A novel histone deacetylase inhibitor TMU-35435 enhances etoposide cytotoxicity through the proteasomal degradation of DNA-PKcs in triple-negative breast cancer. Cancer Lett., 2017, 400, 79-88.
[http://dx.doi.org/10.1016/j.canlet.2017.04.023] [PMID: 28450160]
[136]
Ieda, N.; Yamada, S.; Kawaguchi, M.; Miyata, N.; Nakagawa, H. (7-Diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid as a caged inhibitor for photocontrol of histone deacetylase activity. Bioorg. Med. Chem., 2016, 24(12), 2789-2793.
[http://dx.doi.org/10.1016/j.bmc.2016.04.042] [PMID: 27143132]
[137]
Mehndiratta, S.; Wang, R-S.; Huang, H-L.; Su, C-J.; Hsu, C-M.; Wu, Y-W.; Pan, S-L.; Liou, J-P. 4-Indolyl-N-hydroxyphenylacrylamides as potent HDAC class I and IIB inhibitors in vitro and in vivo. Eur. J. Med. Chem., 2017, 134, 13-23.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.079] [PMID: 28395150]
[138]
Lee, H-Y.; Lee, J-F.; Kumar, S.; Wu, Y-W. HuangFu, W.C.; Lai, M.J.; Li, Y.H.; Huang, H.L.; Kuo, F.C.; Hsiao, C.J.; Cheng, C.C.; Yang, C.R.; Liou, J.P. 3-Aroylindoles display antitumor activity in vitro and in vivo: Effects of N1-substituents on biological activity. Eur. J. Med. Chem., 2017, 125, 1268-1278.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.033] [PMID: 27886544]
[139]
Nepali, K.; Lee, H-Y.; Lai, M-J.; Ojha, R.; Wu, T-Y.; Wu, G-X.; Chen, M-C.; Liou, J-P. Ring-opened tetrahydro-γ-carbolines display cytotoxicity and selectivity with histone deacetylase isoforms. Eur. J. Med. Chem., 2017, 127, 115-127.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.039] [PMID: 28038324]
[140]
Huong, T.T.; Dung, D.T.; Huan, N.V.; Cuong, L.V.; Hai, P.T.; Huong, L.T.; Kim, J.; Kim, Y.G.; Han, S.B.; Nam, N.H. Novel N-hydroxybenzamides incorporating 2-oxoindoline with unexpected potent histone deacetylase inhibitory effects and antitumor cytotoxicity. Bioorg. Chem., 2017, 71, 160-169.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.002] [PMID: 28196602]
[141]
Musso, L.; Cincinelli, R.; Zuco, V.; De Cesare, M.; Zunino, F.; Fallacara, A.L.; Botta, M.; Dallavalle, S. 3-Arylidene-N-hydroxyoxindoles: A new class of compounds endowed with antitumor activity. ChemMedChem, 2016, 11(16), 1700-1704.
[http://dx.doi.org/10.1002/cmdc.201600225] [PMID: 27311681]
[142]
Zang, J.; Shi, B.; Liang, X.; Gao, Q.; Xu, W.; Zhang, Y. Development of N-hydroxycinnamamide-based HDAC inhibitors with improved HDAC inhibitory activity and in vitro antitumor activity. Bioorg. Med. Chem., 2017, 25(9), 2666-2675.
[http://dx.doi.org/10.1016/j.bmc.2016.12.001] [PMID: 28336407]
[143]
Yuan, Z.; Sun, Q.; Li, D.; Miao, S.; Chen, S.; Song, L.; Gao, C.; Chen, Y.; Tan, C.; Jiang, Y. Design, synthesis and anticancer potential of NSC-319745 hydroxamic acid derivatives as DNMT and HDAC inhibitors. Eur. J. Med. Chem., 2017, 134, 281-292.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.017] [PMID: 28419930]
[144]
Chen, C.; Hou, X.; Wang, G.; Pan, W.; Yang, X.; Zhang, Y.; Fang, H. Design, synthesis and biological evaluation of quinoline derivatives as HDAC class I inhibitors. Eur. J. Med. Chem., 2017, 133, 11-23.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.064] [PMID: 28371677]
[145]
Lee, H-Y.; Chang, C-Y.; Su, C-J.; Huang, H-L.; Mehndiratta, S.; Chao, Y-H.; Hsu, C-M.; Kumar, S.; Sung, T-Y.; Huang, Y-Z.; Li, Y.H.; Yang, C.R.; Liou, J.P. 2-(Phenylsulfonyl)quinoline N-hydroxyacrylamides as potent anticancer agents inhibiting histone deacetylase. Eur. J. Med. Chem., 2016, 122, 92-101.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.023] [PMID: 27344487]
[146]
Kachhadia, V.; Rajagopal, S.; Ponpandian, T.; Vignesh, R.; Anandhan, K.; Prabhu, D.; Rajendran, P.; Nidhyanandan, S.; Roy, A.M.; Ahamed, F.A.; Surendran, N.; Rajagopal, S.; Narayanan, S.; Gopalan, B. Orally available stilbene derivatives as potent HDAC inhibitors with antiproliferative activities and antitumor effects in human tumor xenografts. Eur. J. Med. Chem., 2016, 108, 274-286.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.014] [PMID: 26689485]
[147]
Yuan, Z.; Chen, S.; Sun, Q.; Wang, N.; Li, D.; Miao, S.; Gao, C.; Chen, Y.; Tan, C.; Jiang, Y. Olaparib hydroxamic acid derivatives as dual PARP and HDAC inhibitors for cancer therapy. Bioorg. Med. Chem., 2017, 25(15), 4100-4109.
[http://dx.doi.org/10.1016/j.bmc.2017.05.058] [PMID: 28601509]
[148]
de Andrade, P.V.; Andrade, A.F.; de Paula Queiroz, R.G.; Scrideli, C.A.; Tone, L.G.; Valera, E.T. The histone deacetylase inhibitor PCI-24781 as a putative radiosensitizer in pediatric glioblastoma cell lines. Cancer Cell Int., 2016, 16(1), 31.
[http://dx.doi.org/10.1186/s12935-016-0306-5] [PMID: 27095947]
[149]
Gong, C-J.; Gao, A-H.; Zhang, Y-M.; Su, M-B.; Chen, F.; Sheng, L.; Zhou, Y-B.; Li, J-Y.; Li, J.; Nan, F-J. Design, synthesis and biological evaluation of bisthiazole-based trifluoromethyl ketone derivatives as potent HDAC inhibitors with improved cellular efficacy. Eur. J. Med. Chem., 2016, 112, 81-90.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.003] [PMID: 26890114]
[150]
Yoo, J.; Kim, S-J.; Son, D.; Seo, H.; Baek, S.Y.; Maeng, C-Y.; Lee, C.; Kim, I.S.; Jung, Y.H.; Lee, S-M.; Park, H.J. Computer-aided identification of new histone deacetylase 6 selective inhibitor with anti-sepsis activity. Eur. J. Med. Chem., 2016, 116, 126-135.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.046] [PMID: 27060764]
[151]
Rodrigues, D.A.; Ferreira-Silva, G.A.; Ferreira, A.C.; Fernandes, R.A.; Kwee, J.K.; Sant’Anna, C.M.; Ionta, M.; Fraga, C.A. Design, synthesis, and pharmacological evaluation of novel N-acylhydrazone derivatives as potent histone deacetylase 6/8 dual inhibitors. J. Med. Chem., 2016, 59(2), 655-670.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01525] [PMID: 26705137]
[152]
De Vreese, R.; Depetter, Y.; Verhaeghe, T.; Desmet, T.; Benoy, V.; Haeck, W.; Van Den Bosch, L.; D’hooghe, M. Synthesis and SAR assessment of novel Tubathian analogs in the pursuit of potent and selective HDAC6 inhibitors. Org. Biomol. Chem., 2016, 14(8), 2537-2549.
[http://dx.doi.org/10.1039/C5OB02625C] [PMID: 26822143]
[153]
Thaler, F.; Moretti, L.; Amici, R.; Abate, A.; Colombo, A.; Carenzi, G.; Fulco, M.C.; Boggio, R.; Dondio, G.; Gagliardi, S.; Minucci, S.; Sartori, L.; Varasi, M.; Mercurio, C. Synthesis, biological characterization and molecular modeling insights of spirochromanes as potent HDAC inhibitors. Eur. J. Med. Chem., 2016, 108, 53-67.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.010] [PMID: 26629860]
[154]
Song, D.; Lee, C.; Kook, Y.J.; Oh, S.J.; Kang, J.S.; Kim, H-J.; Han, G. Improving potency and metabolic stability by introducing an alkenyl linker to pyridine-based histone deacetylase inhibitors for orally available RUNX3 modulators. Eur. J. Med. Chem., 2017, 126, 997-1010.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.055] [PMID: 28011426]
[155]
Liao, Y.; Niu, X.; Chen, B.; Edwards, H.; Xu, L.; Xie, C.; Lin, H.; Polin, L.; Taub, J.W.; Ge, Y.; Qin, Z. Synthesis and antileukemic activities of piperlongumine and HDAC inhibitor hybrids against acute myeloid leukemia cells. J. Med. Chem., 2016, 59(17), 7974-7990.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00772] [PMID: 27505848]
[156]
Raji, I.; Ahluwalia, K.; Oyelere, A.K. Design, synthesis and evaluation of antiproliferative activity of melanoma-targeted histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(4), 744-749.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.044] [PMID: 28131715]
[157]
Murahari, S.; Jalkanen, A.L.; Kulp, S.K.; Chen, C-S.; Modiano, J.F.; London, C.A.; Kisseberth, W.C. Sensitivity of osteosarcoma cells to HDAC inhibitor AR-42 mediated apoptosis. BMC Cancer, 2017, 17(1), 67.
[http://dx.doi.org/10.1186/s12885-017-3046-6] [PMID: 28109246]
[158]
Sborov, D.W.; Canella, A.; Hade, E.M.; Mo, X.; Khountham, S.; Wang, J.; Ni, W.; Poi, M.; Coss, C.; Liu, Z.; Phelps, M.A.; Mortazavi, A.; Andritsos, L.; Baiocchi, R.A.; Christian, B.A.; Benson, D.M.; Flynn, J.; Porcu, P.; Byrd, J.C.; Pichiorri, F.; Hofmeister, C.C. A phase 1 trial of the HDAC inhibitor AR-42 in patients with multiple myeloma and T- and B-cell lymphomas. Leuk. Lymphoma, 2017, 58(10), 2310-2318.
[http://dx.doi.org/10.1080/10428194.2017.1298751] [PMID: 28270022]
[159]
Yang, E.G.; Mustafa, N.; Tan, E.C.; Poulsen, A.; Ramanujulu, P.M.; Chng, W.J.; Yen, J.J.; Dymock, B.W. Design and synthesis of janus kinase 2 (JAK2) and histone deacetlyase (HDAC) bispecific inhibitors based on pacritinib and evidence of dual pathway inhibition in hematological cell lines. J. Med. Chem., 2016, 59(18), 8233-8262.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00157] [PMID: 27541357]
[160]
Wutz, D.; Gluhacevic, D.; Chakrabarti, A.; Schmidtkunz, K.; Robaa, D.; Erdmann, F.; Romier, C.; Sippl, W.; Jung, M.; König, B. Photochromic histone deacetylase inhibitors based on dithienylethenes and fulgimides. Org. Biomol. Chem., 2017, 15(22), 4882-4896.
[http://dx.doi.org/10.1039/C7OB00976C] [PMID: 28537315]
[161]
Zwick, V.; Nurisso, A.; Simões-Pires, C.; Bouchet, S.; Martinet, N.; Lehotzky, A.; Ovadi, J.; Cuendet, M.; Blanquart, C.; Bertrand, P. Cross metathesis with hydroxamate and benzamide BOC-protected alkenes to access HDAC inhibitors and their biological evaluation highlighted intrinsic activity of BOC-protected dihydroxamates. Bioorg. Med. Chem. Lett., 2016, 26(1), 154-159.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.011] [PMID: 26611919]
[162]
Gao, S.; Zang, J.; Gao, Q.; Liang, X.; Ding, Q.; Li, X.; Xu, W.; Chou, C.J.; Zhang, Y. Design, synthesis and anti-tumor activity study of novel histone deacetylase inhibitors containing isatin-based caps and o-phenylenediamine-based zinc binding groups. Bioorg. Med. Chem., 2017, 25(12), 2981-2994.
[http://dx.doi.org/10.1016/j.bmc.2017.03.036] [PMID: 28511906]
[163]
Abdizadeh, T.; Kalani, M.R.; Abnous, K.; Tayarani-Najaran, Z.; Khashyarmanesh, B.Z.; Abdizadeh, R.; Ghodsi, R.; Hadizadeh, F. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur. J. Med. Chem., 2017, 132, 42-62.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.024] [PMID: 28340413]
[164]
Mohamed, M.F.A.; Shaykoon, M.S.A.; Abdelrahman, M.H.; Elsadek, B.E.M.; Aboraia, A.S.; Abuo-Rahma, G.E.A.A. Design, synthesis, docking studies and biological evaluation of novel chalcone derivatives as potential histone deacetylase inhibitors. Bioorg. Chem., 2017, 72, 32-41.
[http://dx.doi.org/10.1016/j.bioorg.2017.03.005] [PMID: 28346873]
[165]
a)Xie, R.; Yao, Y.; Tang, P.; Chen, G.; Liu, X.; Yun, F.; Cheng, C.; Wu, X.; Yuan, Q. Design, synthesis and biological evaluation of novel hydroxamates and 2-aminobenzamides as potent histone deacetylase inhibitors and antitumor agents. Eur. J. Med. Chem., 2017, 134, 1-12.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.038] [PMID: 28391133]
b)Nakajima, H.; Kim, Y.B.; Terano, H.; Yoshida, M.; Horinouchi, S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res., 1998, 241(1), 126-133.
[http://dx.doi.org/10.1006/excr.1998.4027] [PMID: 9633520]
c)Reddy, S.A. Romidepsin for the treatment of relapsed/refractory cutaneous T-cell lymphoma (mycosis fungoides/Sézary syndrome): Use in a community setting. Crit. Rev. Oncol. Hematol., 2016, 106, 99-107.
[http://dx.doi.org/10.1016/j.critrevonc.2016.07.001] [PMID: 27637355]
d)Iyer, S.P.; Foss, F.F. Romidepsin for the treatment of peripheral T-cell lymphoma. Oncologist, 2015, 20(9), 1084-1091.
[http://dx.doi.org/10.1634/theoncologist.2015-0043] [PMID: 26099743]
[166]
Li, X.; Zhang, Y.; Jiang, Y.; Wu, J.; Inks, E.S.; Chou, C.J.; Gao, S.; Hou, J.; Ding, Q.; Li, J.; Wang, X.; Huang, Y.; Xu, W. Selective HDAC inhibitors with potent oral activity against leukemia and colorectal cancer: Design, structure-activity relationship and anti-tumor activity study. Eur. J. Med. Chem., 2017, 134, 185-206.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.069] [PMID: 28415009]
[167]
Chen, S-Y.; Zheng, X-W.; Cai, J-X.; Zhang, W-P.; You, H-S.; Xing, J-F.; Dong, Y-L. Histone deacetylase inhibitor reverses multidrug resistance by attenuating the nucleophosmin level through PI3K/Akt pathway in breast cancer. Int. J. Oncol., 2016, 49(1), 294-304.
[http://dx.doi.org/10.3892/ijo.2016.3528] [PMID: 27211281]
[168]
Qin, H-T.; Li, H-Q.; Liu, F. Selective histone deacetylase small molecule inhibitors: recent progress and perspectives. Expert Opin. Ther. Pat., 2017, 27(5), 621-636.
[http://dx.doi.org/10.1080/13543776.2017.1276565] [PMID: 28033734]
[169]
Kim, B.; Ratnayake, R.; Lee, H.; Shi, G.; Zeller, S.L.; Li, C.; Luesch, H.; Hong, J. Synthesis and biological evaluation of largazole zinc-binding group analogs. Bioorg. Med. Chem., 2017, 25(12), 3077-3086.
[http://dx.doi.org/10.1016/j.bmc.2017.03.071] [PMID: 28416100]
[170]
Almaliti, J.; Al-Hamashi, A.A.; Negmeldin, A.T.; Hanigan, C.L.; Perera, L.; Pflum, M.K.H.; Casero, R.A. Jr. Tillekeratne, L.M. Largazole analogues embodying radical changes in the depsipeptide ring: development of a more selective and highly potent analogue. J. Med. Chem., 2016, 59(23), 10642-10660.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01271] [PMID: 27809521]
[171]
Wang, Y.; Liu, M.; Jin, Y.; Jiang, S.; Pan, J. In vitro and in vivo anti-uveal melanoma activity of JSL-1, a novel HDAC inhibitor. Cancer Lett., 2017, 400, 47-60.
[http://dx.doi.org/10.1016/j.canlet.2017.04.028] [PMID: 28455241]
[172]
Saijo, K.; Imai, H.; Chikamatsu, S.; Narita, K.; Katoh, T.; Ishioka, C. Antitumor activity and pharmacologic characterization of the depsipeptide analog as a novel HDAC/PI3K dual inhibitor. Cancer Sci., 2017, 108(7), 1469-1475.
[http://dx.doi.org/10.1111/cas.13255] [PMID: 28406576]
[173]
Sun, J.Y.; Wang, J.D.; Wang, X.; Liu, H.C.; Zhang, M.M.; Liu, Y-C.; Zhang, C.H.; Su, Y.; Shen, Y.Y.; Guo, Y.W.; Shen, A.J.; Geng, M.Y. Marine-derived chromopeptide A, a novel class I HDAC inhibitor, suppresses human prostate cancer cell proliferation and migration. Acta Pharmacol. Sin., 2017, 38(4), 551-560.
[http://dx.doi.org/10.1038/aps.2016.139] [PMID: 28112184]
[174]
Traoré, M.D.M.; Zwick, V.; Simões-Pires, C.A.; Nurisso, A.; Issa, M.; Cuendet, M.; Maynadier, M.; Wein, S.; Vial, H.; Jamet, H.; Wong, Y.S. Hydroxyl ketone-based histone deacetylase inhibitors to gain insight into class I HDAC selectivity versus that of HDAC6. ACS Omega, 2017, 2(4), 1550-1562.
[http://dx.doi.org/10.1021/acsomega.6b00481] [PMID: 30023639]
[175]
Gilbert, K.M.; DeLoose, A.; Valentine, J.L.; Fifer, E.K. Structure-activity relationship between carboxylic acids and T cell cycle blockade. Life Sci., 2006, 78(19), 2159-2165.
[http://dx.doi.org/10.1016/j.lfs.2005.09.047] [PMID: 16318858]
[176]
Ni, L.; Wang, L.; Yao, C.; Ni, Z.; Liu, F.; Gong, C.; Zhu, X.; Yan, X.; Watowich, S.S.; Lee, D.A.; Zhu, S. The histone deacetylase inhibitor valproic acid inhibits NKG2D expression in natural killer cells through suppression of STAT3 and HDAC3. Sci. Rep., 2017, 7, 45266.
[http://dx.doi.org/10.1038/srep45266] [PMID: 28338101]
[177]
Prestegui-Martel, B.; Bermúdez-Lugo, J.A.; Chávez-Blanco, A.; Dueñas-González, A.; García-Sánchez, J.R.; Pérez-González, O.A.; Padilla-Martínez, I.I.; Fragoso-Vázquez, M.J.; Mendieta-Wejebe, J.E.; Correa-Basurto, A.M. N-(2-Hydroxyphenyl)-2-propylpentanamide, a valproic acid aryl derivative designed in silico with improved anti-proliferative activity in HeLa, rhabdomyosarcoma and breast cancer cells. Journal of enzyme inhibition and medicinal chemistry, 2016, 31(sup3), 140-149.
[http://dx.doi.org/10.1080/14756366.2016.1210138] [PMID: 27483122]
[178]
Zhang, W.; Zhang, S-L.; Hu, X.; Tam, K.Y. Phenyl butyrate inhibits pyruvate dehydrogenase kinase 1 and contributes to its anti-cancer effect. Eur. J. Pharm. Sci., 2017, 110, 93-100.
[http://dx.doi.org/10.1016/j.ejps.2017.04.018] [PMID: 28450154]
[179]
Tarasenko, N.; Nudelman, A.; Rozic, G.; Cutts, S.M.; Rephaeli, A. Effects of histone deacetylase inhibitory prodrugs on epigenetic changes and DNA damage response in tumor and heart of glioblastoma xenograft. Invest. New Drugs, 2017, 35(4), 412-426.
[http://dx.doi.org/10.1007/s10637-017-0448-x] [PMID: 28315153]
[180]
Adachi, M.; Zhang, Y.; Zhao, X.; Minami, T.; Kawamura, R.; Hinoda, Y.; Imai, K. Synergistic effect of histone deacetylase inhibitors FK228 and m-carboxycinnamic acid bis-hydroxamide with proteasome inhibitors PSI and PS-341 against gastrointestinal adenocarcinoma cells. Clin. Cancer Res., 2004, 10(11), 3853-3862.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0806] [PMID: 15173094]
[181]
Zacharioudakis, E.; Agarwal, P.; Bartoli, A.; Abell, N.; Kunalingam, L.; Bergoglio, V.; Xhemalce, B.; Miller, K.M.; Rodriguez, R. Chromatin regulates genome targeting with cisplatin. Angew. Chem. Int. Ed. Engl., 2017, 56(23), 6483-6487.
[http://dx.doi.org/10.1002/anie.201701144] [PMID: 28474855]
[182]
Almeida, L.O.; Guimarães, D.M.; Martins, M.D.; Martins, M.A.T.; Warner, K.A.; Nör, J.E.; Castilho, R.M.; Squarize, C.H. Unlocking the chromatin of adenoid cystic carcinomas using HDAC inhibitors sensitize cancer stem cells to cisplatin and induces tumor senescence. Stem Cell Res. (Amst.), 2017, 21, 94-105.
[http://dx.doi.org/10.1016/j.scr.2017.04.003] [PMID: 28426972]
[183]
Pili, R.; Liu, G.; Chintala, S.; Verheul, H.; Rehman, S.; Attwood, K.; Lodge, M.A.; Wahl, R.; Martin, J.I.; Miles, K.M.; Paesante, S.; Adelaiye, R.; Godoy, A.; King, S.; Zwiebel, J.; Carducci, M.A. Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in patients with clear-cell renal cell carcinoma: a multicentre, single-arm phase I/II clinical trial. Br. J. Cancer, 2017, 116(7), 874-883.
[http://dx.doi.org/10.1038/bjc.2017.33] [PMID: 28222071]
[184]
Makena, M.R.; Koneru, B.; Nguyen, T.H.; Kang, M.H.; Reynolds, C.P. Reactive oxygen species-mediated synergism of fenretinide and romidepsin in preclinical models of T-cell lymphoid malignancies. Mol. Cancer Ther., 2017, 16(4), 649-661.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0749] [PMID: 28119491]
[185]
Valiulienė, G.; Stirblytė, I.; Jasnauskaitė, M.; Borutinskaitė, V.; Navakauskienė, R. Anti-leukemic effects of HDACi Belinostat and HMTi 3-Deazaneplanocin A on human acute promyelocytic leukemia cells. Eur. J. Pharmacol., 2017, 799, 143-153.
[http://dx.doi.org/10.1016/j.ejphar.2017.02.014] [PMID: 28192098]
[186]
Medon, M.; Vidacs, E.; Vervoort, S.J.; Li, J.; Jenkins, M.R.; Ramsbottom, K.M.; Trapani, J.A.; Smyth, M.J.; Darcy, P.K.; Atadja, P.W.; Henderson, M.A.; Johnstone, R.W.; Haynes, N.M. HDAC inhibitor panobinostat engages host innate immune defenses to promote the tumoricidal effects of trastuzumab in HER2+ tumors. Cancer Res., 2017, 77(10), 2594-2606.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2247] [PMID: 28249907]
[187]
Maeda, T.; Towatari, M.; Kosugi, H.; Saito, H. Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood, 2000, 96(12), 3847-3856.
[http://dx.doi.org/10.1182/blood.V96.12.3847] [PMID: 11090069]
[188]
Armeanu, S.; Bitzer, M.; Lauer, U.M.; Venturelli, S.; Pathil, A.; Krusch, M.; Kaiser, S.; Jobst, J.; Smirnow, I.; Wagner, A.; Steinle, A.; Salih, H.R. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res., 2005, 65(14), 6321-6329.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4252] [PMID: 16024634]
[189]
Reddy, P.; Maeda, Y.; Hotary, K.; Liu, C.; Reznikov, L.L.; Dinarello, A.C.; Ferrara, L.M.J. Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graftversus-host disease and preserves graft-versusleukemia effect. Proc. Natl. Acad. Sci. USA, 2004, 101(11), 3921-3926.
[http://dx.doi.org/10.1073/pnas.0400380101] [PMID: 15001702]
[190]
Gatla, H.R.; Zou, Y.; Uddin, M.M.; Singha, B.; Bu, P.; Vancura, A.; Vancurova, I. Histone deacetylase (HDAC) inhibition induces IκB Kinase (IKK)-dependent Interleukin-8/CXCL8 expression in ovarian cancer cells. J. Biol. Chem., 2017, 292(12), 5043-5054.
[http://dx.doi.org/10.1074/jbc.M116.771014] [PMID: 28167529]
[191]
Catalano, M.G.; Pugliese, M.; Gallo, M.; Brignardello, E.; Milla, P.; Orlandi, F.; Limone, P.P.; Arvat, E.; Boccuzzi, G.; Piovesan, A. Valproic acid, a histone deacetylase inhibitor, in combination with paclitaxel for anaplastic thyroid cancer: Results of a multicenter randomized controlled phase II/III trial. Int. j. of endocrinol, 2016, 2016, 2930414
[http://dx.doi.org/10.1155/2016/2930414] [PMID: 27766105]
[192]
Saha, S.K.; Yin, Y.; Kim, K.; Yang, G-M.; Dayem, A.A.; Choi, H.Y.; Cho, S-G. Valproic acid induces endocytosis-mediated doxorubicin internalization and shows synergistic cytotoxic effects in hepatocellular carcinoma cells. Int. J. Mol. Sci., 2017, 18(5), 1048.
[http://dx.doi.org/10.3390/ijms18051048] [PMID: 28498322]
[193]
Michaelis, M.; Suhan, T.; Michaelis, U.R.; Beek, K.; Rothweiler, F.; Tausch, L.; Werz, O.; Eikel, D.; Zörnig, M.; Nau, H.; Fleming, I.; Doerr, H.W.; Cinatl, J., Jr Valproic acid induces extracellular signal-regulated kinase 1/2 activation and inhibits apoptosis in endothelial cells. Cell Death Differ., 2006, 13(3), 446-453.
[http://dx.doi.org/10.1038/sj.cdd.4401759] [PMID: 16167071]
[194]
Nidhyanandan, S.; Thippeswamy, B.S.; Chandrasekhar, K.B.; Reddy, N.D.; Kulkarni, N.M.; Karthikeyan, K.; Khan, F.R.; Raghul, J.; Vijaykanth, G.; Narayanan, S. Enhanced anticancer efficacy of histone deacetyl inhibitor, suberoylanilide hydroxamic acid, in combination with a phosphodiesterase inhibitor, pentoxifylline, in human cancer cell lines and in-vivo tumor xenografts. Anticancer Drugs, 2017, 28(9), 1002-1017.
[http://dx.doi.org/10.1097/CAD.0000000000000544] [PMID: 28727579]
[195]
Vitfell-Rasmussen, J.; Judson, I.; Safwat, A.; Jones, R.L.; Rossen, P.B.; Lind-Hansen, M.; Knoblauch, P.; Krarup-Hansen, A. A Phase I/II clinical trial of Belinostat (PXD101) in combination with doxorubicin in patients with soft tissue sarcomas. Sarcoma, 2016, 2016(8), 1-9.
[http://dx.doi.org/10.1155/2016/2090271]
[196]
Berdeja, J.G.; Gregory, T.B.; Faber, E.; Matous, J.; Hart, L.; Mace, J.R.; Arrowsmith, E.R.; Flinn, I.W. A phase I/II study of the combination of panobinostat and carfilzomib in patients with relapsed or relapsed/refractory multiple myeloma (MM): Final analysis of second dose expansion. Blood, 2016, 128(22), 4530.
[http://dx.doi.org/10.1182/blood.V128.22.4530.4530]
[197]
Yang, X.; Shi, Z.; Zhang, N.; Ou, Z.; Fu, S.; Hu, X.; Shen, Z. Suberoyl bis-hydroxamic acid enhances cytotoxicity induced by proteasome inhibitors in breast cancer cells. Cancer Cell Int., 2014, 14(1), 107.
[http://dx.doi.org/10.1186/s12935-014-0107-7] [PMID: 25729327]
[198]
Tarhini, A.A.; Zahoor, H.; McLaughlin, B.; Gooding, W.E.; Schmitz, J.C.; Siegfried, J.M.; Socinski, M.A.; Argiris, A. Phase I trial of carboplatin and etoposide in combination with panobinostat in patients with lung cancer. Anticancer Res., 2013, 33(10), 4475-4481.
[PMID: 24123018]
[199]
Vilas-Zornoza, A.; Agirre, X.; Abizanda, G.; Moreno, C.; Segura, V.; De Martino Rodriguez, A.; José-Eneriz, E.S.; Miranda, E.; Martín-Subero, J.I.; Garate, L.; Blanco-Prieto, M.J.; García de Jalón, J.A.; Rio, P.; Rifón, J.; Cigudosa, J.C.; Martinez-Climent, J.A.; Román-Gómez, J.; Calasanz, M.J.; Ribera, J.M.; Prósper, F. Preclinical activity of LBH589 alone or in combination with chemotherapy in a xenogeneic mouse model of human acute lymphoblastic leukemia. Leukemia, 2012, 26(7), 1517-1526.
[http://dx.doi.org/10.1038/leu.2012.31] [PMID: 22307227]
[200]
Tran, K.; Risingsong, R.; Royce, D.B.; Williams, C.R.; Sporn, M.B.; Pioli, P.A.; Gediya, L.K.; Njar, V.C.; Liby, K.T. The combination of the histone deacetylase inhibitor vorinostat and synthetic triterpenoids reduces tumorigenesis in mouse models of cancer. Carcinogenesis, 2013, 34(1), 199-210.
[http://dx.doi.org/10.1093/carcin/bgs319] [PMID: 23042302]
[201]
Ramalingam, S.S.; Maitland, M.L.; Frankel, P.; Argiris, A.E.; Koczywas, M.; Gitlitz, B.; Thomas, S.; Espinoza-Delgado, I.; Vokes, E.E.; Gandara, D.R.; Belani, C.P. Carboplatin and Paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J. Clin. Oncol., 2010, 28(1), 56-62.
[http://dx.doi.org/10.1200/JCO.2009.24.9094] [PMID: 19933908]
[202]
Kato, Y.; Salumbides, B.C.; Wang, X-F.; Qian, D.Z.; Williams, S.; Wei, Y.; Sanni, T.B.; Atadja, P.; Pili, R. Antitumor effect of the histone deacetylase inhibitor LAQ824 in combination with 13-cis-retinoic acid in human malignant melanoma. Mol. Cancer Ther., 2007, 6(1), 70-81.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0125] [PMID: 17237267]
[203]
Jee, C.D.; Lee, H.S.; Bae, S.I.; Yang, H.K.; Lee, Y.M.; Rho, M.S.; Kim, W.H. Loss of caspase-1 gene expression in human gastric carcinomas and cell lines. Int. J. Oncol., 2005, 26(5), 1265-1271.
[http://dx.doi.org/10.3892/ijo.26.5.1265] [PMID: 15809717]
[204]
Keen, J.C.; Yan, L.; Mack, K.M.; Pettit, C.; Smith, D.; Sharma, D.; Davidson, N.E. A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor α (ER) in ER negative human breast cancer cells in combination with 5-aza 2′-deoxycytidine. Breast Cancer Res. Treat., 2003, 81(3), 177-186.
[http://dx.doi.org/10.1023/A:1026146524737] [PMID: 14620913]
[205]
Kim, M.S.; Blake, M.; Baek, J.H.; Kohlhagen, G.; Pommier, Y.; Carrier, F. Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res., 2003, 63(21), 7291-7300.
[PMID: 14612526]
[206]
Li, Y.; Wang, Y.; Zhou, Y.; Li, J.; Chen, K.; Zhang, L.; Deng, M.; Deng, S.; Li, P.; Xu, B. Cooperative effect of chidamide and chemotherapeutic drugs induce apoptosis by DNA damage accumulation and repair defects in acute myeloid leukemia stem and progenitor cells. Clin. Epigenetics, 2017, 9(1), 83.
[http://dx.doi.org/10.1186/s13148-017-0377-8] [PMID: 28814980]
[207]
Kato, Y.; Yoshino, I.; Egusa, C.; Maeda, T.; Pili, R.; Tsuboi, R. Combination of HDAC inhibitor MS-275 and IL-2 increased anti-tumor effect in a melanoma model via activated cytotoxic T cells. J. Dermatol. Sci., 2014, 75(2), 140-147.
[http://dx.doi.org/10.1016/j.jdermsci.2014.04.014] [PMID: 24866536]
[208]
Hubeek, I.; Comijn, E.M.; Van der Wilt, C.L.; Merriman, R.L.; Padron, J.M.; Kaspers, G.J.; Peters, G.J. CI-994 (N-acetyl-dinaline) in combination with conventional anti-cancer agents is effective against acute myeloid leukemia in vitro and in vivo. Oncol. Rep., 2008, 19(6), 1517-1523.
[http://dx.doi.org/10.3892/or.19.6.1517] [PMID: 18497959]
[209]
Kato, Y.; Yoshimura, K.; Shin, T.; Verheul, H.; Hammers, H.; Sanni, T.B.; Salumbides, B.C.; Van Erp, K.; Schulick, R.; Pili, R. Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS-275 in combination with interleukin 2 in a murine model of renal cell carcinoma. Clin. Cancer Res., 2007, 13(15 Pt 1), 4538-4546.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0014] [PMID: 17671140]
[210]
Baradari, V.; Höpfner, M.; Huether, A.; Schuppan, D.; Scherübl, H. Histone deacetylase inhibitor MS-275 alone or combined with bortezomib or sorafenib exhibits strong antiproliferative action in human cholangiocarcinoma cells. World J. Gastroenterol., 2007, 13(33), 4458-4466.
[http://dx.doi.org/10.3748/wjg.v13.i33.4458] [PMID: 17724801]
[211]
Pauer, L.R.; Olivares, J.; Cunningham, C.; Williams, A.; Grove, W.; Kraker, A.; Olson, S.; Nemunaitis, J. Phase I study of oral CI-994 in combination with carboplatin and paclitaxel in the treatment of patients with advanced solid tumors. Cancer Invest., 2004, 22(6), 886-896.
[http://dx.doi.org/10.1081/CNV-200039852] [PMID: 15641487]
[212]
Okada, K.; Hakata, S.; Terashima, J.; Gamou, T.; Habano, W.; Ozawa, S. Combination of the histone deacetylase inhibitor depsipeptide and 5-fluorouracil upregulates major histocompatibility complex class II and p21 genes and activates caspase-3/7 in human colon cancer HCT-116 cells. Oncol. Rep., 2016, 36(4), 1875-1885.
[http://dx.doi.org/10.3892/or.2016.5008] [PMID: 27509880]
[213]
Hui, K.F.; Chiang, A.K. Combination of proteasome and class I HDAC inhibitors induces apoptosis of NPC cells through an HDAC6-independent ER stress-induced mechanism. Int. J. Cancer, 2014, 135(12), 2950-2961.
[http://dx.doi.org/10.1002/ijc.28924] [PMID: 24771510]
[214]
Buoncervello, M.; Borghi, P.; Romagnoli, G.; Spadaro, F.; Belardelli, F.; Toschi, E.; Gabriele, L. Apicidin and docetaxel combination treatment drives CTCFL expression and HMGB1 release acting as potential antitumor immune response inducers in metastatic breast cancer cells. Neoplasia, 2012, 14(9), 855IN817-867IN819.
[http://dx.doi.org/10.1593/neo.121020] [PMID: 23019417]
[215]
Kano, Y.; Akutsu, M.; Tsunoda, S.; Izumi, T.; Kobayashi, H.; Mano, H.; Furukawa, Y. Cytotoxic effects of histone deacetylase inhibitor FK228 (depsipeptide, formally named FR901228) in combination with conventional anti-leukemia/lymphoma agents against human leukemia/lymphoma cell lines. Invest. New Drugs, 2007, 25(1), 31-40.
[http://dx.doi.org/10.1007/s10637-006-9000-0] [PMID: 16865529]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy