Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Facile and Fast Detection of Genistein in Derris scandens by Square Wave Voltammetry using a Cobalt(II) Phthalocyanine-Modified Screen-Printed Electrochemical Sensor

Author(s): Surinya Traipop, Suchada Chuanuwatanakul*, Orawon Chailapakul and Eakkasit Punrat

Volume 16, Issue 3, 2020

Page: [341 - 348] Pages: 8

DOI: 10.2174/1573411014666180521091053

Price: $65

Abstract

Background: Recently, Derris scandens, a Thai herbal medicine with anti-inflammatory activity, is widely used as beverage and supplementary food. When the traditional medicine is a choice for health therapy, the simple and reliable equipment is required to control the suitable consuming amount of the active component.

Objective: To develop the electrochemical sensor for genistein determination in Derris scandens with high sensitivity and rapid operation.

Methods: An in-house screen-printed electrochemical sensor consisting of a three-electrode system was developed for genistein determination. A silver/silver chloride (Ag/AgCl) reference electrode, a carbon counter electrode and a carbon working electrode were prepared on a 0.3-mm-thick plastic substrate by the screen-printing technique using conductive ink. The dimensions of each sensor were 2.5×1.0 cm. Only 50 µL of sample solution was required on this device for the determination of genistein concentration by rapid response square wave voltammetry.

Results: The oxidation peak of genistein appeared with good response in acidic media at a peak potential of 0.6 V. Moreover, the signal was enhanced by modifying the conductive carbon ink with cobalt( II) phthalocyanine. Under the optimized conditions, the linear range was found to be 2.5-150 µM and the detection limit was 1.5 µM. Moreover, the small volume extraction was successfully developed without any further pre-concentration. This proposed method was applied to determine genistein in Derris scandens with satisfying results.

Conclusion: The proposed method is promising as an alternative method for genistein determination with facile and fast analysis.

Keywords: Cobalt(II) phthalocyanine, Derris scandens, electrochemical sensor, genistein, screen-printing, square-wave voltammetry.

« Previous
Graphical Abstract

[1]
Laupattarakasem, P.; Houghton, P.J.; Hoult, J.R.S.; Itharat, A. An evaluation of the activity related to inflammation of four plants used in Thailand to treat arthritis. J. Ethnopharmacol., 2003, 85(2-3), 207-215.
[http://dx.doi.org/10.1016/S0378-8741(02)00367-7] [PMID: 12639742]
[2]
Srimongkol, Y.; Warachit, P.; Chavalittumrong, P.; Sriwanthana, B.; Pairour, R.; Inthep, C.; Suphaphon, B.; Wongsinkongman, P. A study of the efficacy of Derris scandens (Roxb.) Benth. extract compared with diclofenac for the alleviation of low back pain. J. Thai Trad. & Alter. Med., 2007, 5(1), 17-23.
[3]
Chavalittumrong, P.; Sriwanthana, B.; Pattamadilok, S.; Rattanajarasroj, S.; Chantapet, P.; Warachit, P. Safety of Derris scandens hydroalcoholic extract in healthy volunteers. J. Thai Trad. & Alter. Med., 2005, 3(1), 17-26.
[4]
Laupattarakasem, P.; Houghton, P.J.; Hoult, J.R.S. Anti-inflammatory isoflavonoids from the stems of Derris scandens. Planta Med., 2004, 70(6), 496-501.
[http://dx.doi.org/10.1055/s-2004-827147] [PMID: 15229800]
[5]
Dixon, R.A.; Ferreira, D. Genistein. Phytochemistry, 2002, 60(3), 205-211.
[http://dx.doi.org/10.1016/S0031-9422(02)00116-4] [PMID: 12031439]
[6]
Szkudelska, K.; Nogowski, L. Genistein--a dietary compound inducing hormonal and metabolic changes. J. Steroid Biochem. Mol. Biol., 2007, 105(1-5), 37-45.
[http://dx.doi.org/10.1016/j.jsbmb.2007.01.005] [PMID: 17588743]
[7]
de Lemos, M.L. Effects of soy phytoestrogens genistein and daidzein on breast cancer growth. Ann. Pharmacother., 2001, 35(9), 1118-1121.
[http://dx.doi.org/10.1345/aph.10257] [PMID: 11573864]
[8]
Yan, G.R.; Zou, F.Y.; Dang, B.L.; Zhang, Y.; Yu, G.; Liu, X.; He, Q.Y. Genistein-induced mitotic arrest of gastric cancer cells by downregulating KIF20A, a proteomics study. Proteomics, 2012, 12(14), 2391-2399.
[http://dx.doi.org/10.1002/pmic.201100652] [PMID: 22887948]
[9]
Neelakandan, C.; Chang, T.; Alexander, T.; Define, L.; Evancho-Chapman, M.; Kyu, T. In vitro evaluation of antioxidant and anti-inflammatory properties of genistein-modified hemodialysis membranes. Biomacromolecules, 2011, 12(7), 2447-2455.
[http://dx.doi.org/10.1021/bm200591q] [PMID: 21657246]
[10]
Fritz, W.A.; Coward, L.; Wang, J.; Lamartiniere, C.A. Dietary genistein: perinatal mammary cancer prevention, bioavailability and toxicity testing in the rat. Carcinogenesis, 1998, 19(12), 2151-2158.
[http://dx.doi.org/10.1093/carcin/19.12.2151] [PMID: 9886571]
[11]
Ju, Y.H.; Allred, C.D.; Allred, K.F.; Karko, K.L.; Doerge, D.R.; Helferich, W.G. Physiological concentrations of dietary genistein dose-dependently stimulate growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in athymic nude mice. J. Nutr., 2001, 131(11), 2957-2962.
[http://dx.doi.org/10.1093/jn/131.11.2957] [PMID: 11694625]
[12]
Tham, D.M.; Gardner, C.D.; Haskell, W.L. Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence1. J. Clin. Endocrinol. Metab., 1998, 83(7), 2223-2235.
[http://dx.doi.org/10.1210/jcem.83.7.4752] [PMID: 9661587]
[13]
Müllner, C.; Sontag, G. Determination of some phytoestrogens in soybeans and their processed products with HPLC and coulometric electrode array detection. Fresenius J. Anal. Chem., 1999, 364(3), 261-265.
[http://dx.doi.org/10.1007/s002160051334]
[14]
Klejdus, B.; Vacek, J.; Adam, V.; Zehnálek, J.; Kizek, R.; Trnková, L.; Kubán, V. Determination of isoflavones in soybean food and human urine using liquid chromatography with electrochemical detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 806(2), 101-111.
[http://dx.doi.org/10.1016/j.jchromb.2004.03.044] [PMID: 15171918]
[15]
Yanaka, K.; Takebayashi, J.; Matsumoto, T.; Ishimi, Y. Determination of 15 isoflavone isomers in soy foods and supplements by high-performance liquid chromatography. J. Agric. Food Chem., 2012, 60(16), 4012-4016.
[http://dx.doi.org/10.1021/jf205154x] [PMID: 22433078]
[16]
Mitani, K.; Narimatsu, S.; Kataoka, H. Determination of daidzein and genistein in soybean foods by automated on-line in-tube solid-phase microextraction coupled to high-performance liquid chromatography. J. Chromatogr. A, 2003, 986(2), 169-177.
[http://dx.doi.org/10.1016/S0021-9673(02)02014-9] [PMID: 12597624]
[17]
Thomas, B.F.; Zeisel, S.H.; Busby, M.G.; Hill, J.M.; Mitchell, R.A.; Scheffler, N.M.; Brown, S.S.; Bloeden, L.T.; Dix, K.J.; Jeffcoat, A.R. Quantitative analysis of the principle soy isoflavones genistein, daidzein and glycitein, and their primary conjugated metabolites in human plasma and urine using reversed-phase high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. B Biomed. Sci. Appl., 2001, 760(2), 191-205.
[http://dx.doi.org/10.1016/S0378-4347(01)00269-9] [PMID: 11530977]
[18]
Liggins, J.; Bluck, L.J.C.; Runswick, S.; Atkinson, C.; Coward, W.A.; Bingham, S.A. Daidzein and genistein content of fruits and nuts. J. Nutr. Biochem., 2000, 11(6), 326-331.
[http://dx.doi.org/10.1016/S0955-2863(00)00085-1] [PMID: 11002128]
[19]
Grace, P.B.; Taylor, J.I.; Botting, N.P.; Fryatt, T.; Oldfield, M.F.; Bingham, S.A. Quantification of isoflavones and lignans in urine using gas chromatography/mass spectrometry. Anal. Biochem., 2003, 315(1), 114-121.
[http://dx.doi.org/10.1016/S0003-2697(02)00707-8] [PMID: 12672419]
[20]
Peng, Y.; Chu, Q.; Liu, F.; Ye, J. Determination of isoflavones in soy products by capillary electrophoresis with electrochemical detection. Food Chem., 2004, 87(1), 135-139.
[http://dx.doi.org/10.1016/j.foodchem.2003.11.007]
[21]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[http://dx.doi.org/10.1016/j.talanta.2017.08.027] [PMID: 28917742]
[22]
Alavi-Tabari, S.A.R.; Khalilzadeh, M.A.; Karimi-Maleh, H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem. (Lausanne Switz.), 2018, 811, 84-88.
[http://dx.doi.org/10.1016/j.jelechem.2018.01.034]
[23]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P.; Sadrnia, A. Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug. Appl. Surf. Sci., 2018, 441, 55-60.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.237]
[24]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. Food Measure, 2018, 12(1), 634-640.
[http://dx.doi.org/10.1007/s11694-017-9676-1]
[25]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[http://dx.doi.org/10.1016/j.jfca.2017.06.006]
[26]
Zhang, X.; Zheng, J.; Gao, H. Electrochemical behavior of genistein and its polarographic determination in soybeans. Anal. Lett., 2001, 34(11), 1901-1912.
[http://dx.doi.org/10.1081/AL-100106120]
[27]
Fogliatto, D.K.; Barbosa, A.M.J.; Ferreira, V.S. Voltammetric determination of the phytoestrogen genistein in soy flours and soy based supplements using cationic surfactant cetyltrimetylammonium bromide. Colloids Surf. B Biointerfaces, 2010, 78(2), 243-249.
[http://dx.doi.org/10.1016/j.colsurfb.2010.03.007] [PMID: 20399078]
[28]
Renedo, O.D.; Alonso-Lomillo, M.A.; Martínez, M.J.A. Recent developments in the field of screen-printed electrodes and their related applications. Talanta, 2007, 73(2), 202-219.
[http://dx.doi.org/10.1016/j.talanta.2007.03.050] [PMID: 19073018]
[29]
Li, M.; Li, Y.T.; Li, D.W.; Long, Y.T. Recent developments and applications of screen-printed electrodes in environmental assays--a review. Anal. Chim. Acta, 2012, 734, 31-44.
[http://dx.doi.org/10.1016/j.aca.2012.05.018] [PMID: 22704470]
[30]
De Wael, K.; Adriaens, A. Comparison between the electrocatalytic properties of different metal ion phthalocyanines and porphyrins towards the oxidation of hydroxide. Talanta, 2008, 74(5), 1562-1567.
[http://dx.doi.org/10.1016/j.talanta.2007.09.034] [PMID: 18371818]
[31]
Zagal, J.H.; Herrera, P. Electrochemistry of cysteine and cystine on metal-phthalocyanines adsorbed on a graphite electrode. Electrochim. Acta, 1985, 30(4), 449-454.
[http://dx.doi.org/10.1016/0013-4686(85)80033-5]
[32]
Noyrod, P.; Chailapakul, O.; Wonsawat, W.; Chuanuwatanakul, S. The simultaneous determination of isoproturon and carbendazim pesticides by single drop analysis using a graphene-based electrochemical sensor. J. Electroanal. Chem. (Lausanne Switz.), 2014, 719, 54-59.
[http://dx.doi.org/10.1016/j.jelechem.2014.02.001]
[33]
García, P.; Romero, C.; Brenes, M. Bioactive substances in black ripe olives produced in Spain and the USA. J. Food Compos. Anal., 2018, 66, 193-198.
[http://dx.doi.org/10.1016/j.jfca.2017.12.022]
[34]
Crawford, L.M.; Holstege, D.M.; Wang, S.C. High-throughput extraction method for phenolic compounds in olive fruit (Olea europaea). J. Food Compos. Anal., 2018, 66, 136-144.
[http://dx.doi.org/10.1016/j.jfca.2017.12.013]
[35]
De Oliveira, T.L.; De Oliveira, A.P.; Villa, R.D. Solid-liquid extraction as a clean sample preparation procedure for determination of Na and K in meat products. J. Food Compos. Anal., 2017, 62, 164-167.
[http://dx.doi.org/10.1016/j.jfca.2017.05.010]
[36]
Escarpa, A.; González, M.C.; Blasco, A.J.; del Carmen Rogerio, M.; Hervás, M. Evaluation of accuracy of electrochemical isoflavonoid index for the determination of total isoflavones in soy samples. Electroanalysis, 2007, 19(9), 952-957.
[http://dx.doi.org/10.1002/elan.200603809]
[37]
Inzelt, G. Pseudo-reference Electrodes. Handbook of Reference Electrodes; ; Inzelt, G.; Lewenstam, A.; Scholz, F., Eds.;. Springer Berlin Heidelberg: Berlin, Heidelberg,, 2013, pp. 331-332.
[http://dx.doi.org/10.1007/978-3-642-36188-3_14]
[38]
Siswana, M.P.; Ozoemena, K.I.; Nyokong, T. Electrocatalysis of asulam on cobalt phthalocyanine modified multi-walled carbon nanotubes immobilized on a basal plane pyrolytic graphite electrode. Electrochim. Acta, 2006, 52(1), 114-122.
[http://dx.doi.org/10.1016/j.electacta.2006.03.090]
[39]
Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed; John Wiley & Sons: New York, 2001.
[40]
Alemu, H.; Khoabane, N.M.; Tseki, P.F. Eelectrochemical oxidation of niclosamide at a glassy carbon electrode and its determination by voltammetry. Bull. Chem. Soc. Ethiop., 2003, 17(1), 95-106.
[http://dx.doi.org/10.4314/bcse.v17i1.61740]
[41]
Saracino, M.A.; Raggi, M.A. Analysis of soy isoflavone plasma levels using HPLC with coulometric detection in postmenopausal women. J. Pharm. Biomed. Anal., 2010, 53(3), 682-687.
[http://dx.doi.org/10.1016/j.jpba.2010.06.001] [PMID: 20580512]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy