[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[2]
Li, S.; Huang, N.F.; Hsu, S. Mechanotransduction in endothelial cell migration. J. Cell. Biochem., 2005, 96, 1110-1126.
[3]
Giroux, S. Tremblay.; M, Bernard.; D, Cardin-Girard, J.F.; Aubry, S.; Larouche, L.; Rousseau, S.; Huot, J.; Landry, J.; Jeannotte, L.; Charron, J. Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr. Biol., 1999, 9, 369-372.
[4]
Klemke, R.L.; Cai, S.; Giannini, A.L.; Gallagher, P.J.; de Lanerolle, P.; Cheresh, D.A. Regulation of cell motility by mitogen-activated protein kinase. J. Cell Biol., 1997, 137, 481-492.
[5]
Folkman, J. Tumour angiogenesis: Therapeutic implications. N. Engl. J. Med., 1971, 285, 1182-1186.
[6]
O’Reilly, M.S.; Holmgren, L.; Shing, Y.; Chen, C.; Rosenthal, R.A.; Moses, M.; Lane, W.S.; Cao, Y.; Sage, E.H.; Folkman, J. Angiostatin: A novel angiogenesisinhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 1994, 79, 315-328.
[7]
Ishigami, S.I.; Arii, S.; Furutani, M.; Niwano, M.; Harada, T.; Mizumoto, M.; Mori, A.; Onodera, H.; Imamura, M. Predictive value of Vascular Endothelial Growth Factor (VEGF) in metastasis and prognosis of human colorectal cancer. Br. J. Cancer, 1998, 78, 1379-1384.
[8]
Ferrara, N. Molecular and biological properties of vascular endothelial growth factor. J. Mol. Med. , 1999, 77, 527-543.
[9]
Hidalgo, M.; Eckhardt, S.G. Development of matrix metalloproteinase inhibitors in cancer therapy. J. Natl. Cancer Inst., 2001, 93, 178-193.
[10]
Gialeli, C.; Theocharis, A.D.; Karamanos, N.K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J., 2011, 278, 16-27.
[11]
Vandenbroucke, R.E.; Libert, C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat. Rev. Drug Discov., 2014, 13, 904-927.
[12]
Gil, M.; Kim, Y.K.; Kim, K.E.; Kim, W.; Park, C.S.; Lee, K.J. Cellular prion protein regulates invasion and migration of breast cancer cells through MMP-9 activity. Biochem. Biophys. Res. Commun., 2016, 470, 213-219.
[13]
Gregory, A.D.; Houghton, A.M. Tumor-associated neutrophils: New targets for cancer therapy. Cancer Res., 2011, 71, 2411-2416.
[14]
Chen, Y.J.; Chang, L.S. Simvastatin induces NFκB/p65 down-regulation and JNK1/c-Jun/ATF-2 activation, leading to matrix metalloproteinase-9 (MMP-9) but not MMP-2 down-regulation in human leukemia cells. Biochem. Pharmacol., 2014, 92, 530-543.
[15]
Boocock, C.A.; Charnock-Jones, D.S.; Sharkey, A.M.; McLaren, J.; Barker, P.J.; Wright, K.A.; Twentyman, P.R.; Smith, S.K. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J. Natl. Cancer Inst., 1995, 87, 506-516.
[16]
Manenti, L.; Paganoni, P.; Floriani, I.; Torri, W.; Buda, A.; Taraboletti, G.; Landoni, F.; Labianca, R.; Belotti, D.; Giavazzi, R. Expression level of vascular endothelial growth factor, matrix metalloproteinase 2 & 9 and tissue inhibitor of metalloproteinases 1 & 2 in plasma of patients with ovarian carcinoma. Eur. J. Cancer, 2003, 39, 1948-1956.
[17]
Xu, L.; Yoneda, J.; Herrera, C.; Wood, J.; Killion, J.J.; Fidler, I.J. Inhibition of malignant ascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. Int. J. Oncol., 2000, 16, 445-454.
[18]
Rashad, A.E.; Mahmoud, A.E.; Ali, M.M. Synthesis and anticancereffects of some novel pyrazolo [3, 4-d]pyrimidine derivatives by generating reactive oxygen species in human breast adenocarcinoma cells. Eur. J. Med. Chem., 2011, 46, 1019-1026.
[19]
Ghorab, M.M.; Ragab, F.A.; Alqasoumi, S.I.; Alafeefy, A.M.; Aboulmagd, S.A. Synthesis of some newpyrazolo[3, 4-d]pyrimidine derivatives of expected anticancer and radioprotective activity. Eur. J. Med. Chem., 2010, 45, 171-178.
[20]
Kumar, A.; Ahmad, I.; Chhikara, B.S.; Tiwari, R.; Mandal, D.; Parang, K. Synthesis of 3-phenylpyrazolopyrimidine-1, 2, 3-triazole conjugates and evaluationof their SRC kinase inhibitory and anticancer activities. Bioorg. Med. Chem. Lett., 2011, 21, 1342-1346.
[21]
Hassan, G. S, Kadry, H.H.; Abou-Seri, S.M.; Ali, M.M.; Mahmoud, A.E. Synthesis and in vitro cytotoxic activity of novel pyrazolo[3,4-d]pyrimidines and relatedpyrazolehydrazones toward breast adenocarcinoma MCF-7 cell line. Bioorg. Med. Chem. Lett., 2011, 19, 6808-6817.
[22]
Abd El Hamid, M.K.; Mihovilovic, M.D.; El-Nassan, H.B. Synthesis of novel pyrazolo[3, 4-d]pyrimidine derivatives as potential anti-breastcancer agents. Eur. J. Med. Chem., 2012, 57, 323-328.
[23]
Kim, D.C.; Lee, Y.R.; Yang, B.S.; Shin, K.J.; Kim, D.J.; Chung, B.Y.; Yoo, K.H. Synthesis and biologicalevaluations of pyrazolo[3, 4-d]pyrimidines as cyclin-dependent kinase 2 inhibitors. Eur. J. Med. Chem., 2003, 38, 525-532.
[24]
Traxler, P.; Bold, G.; Frei, J.; Lang, M.; Lydon, N.; Mett, H.;
Buchdunger, E.; Meyer, T.; Mueller, M.; Furet, P. Use of a pharmacophore
model forthe design of EGFR tyrosine kinase inhibi-tors: 4-(phenylamino)pyrazolo[3, 4-d]pyrimidines. J. Med. Chem.,
1997, 40, 3601-16.
[25]
Indovina, P.; Giorgi, F.; Rizzo, V.; Khadang, B.; Schenone, S.; Di Marzo, D.; Forte, I.M.; Tomei, V.; Mattioli, E.; D’Urso, V.; Grilli, B.; Botta, M.; Giordano, A.; Pentimalli, F. New pyrazolo[3, 4-d]pyrimidine SRC inhibitors induce apoptosis in mesothelioma cell lines throughp27 nuclear stabilization. Oncogene, 2012, 31, 929-938.
[26]
Carraro, F.; Naldini, A.; Pucci, A.; Locatelli, G.A.; Maga, G.; Schenone, S.; Bruno, O.; Ranise, A.; Bondavalli, F.; Brullo, C.; Fossa, P.; Menozzi, G.; Mosti, L.; Modugno, M.; Tintori, C.; Manetti, F.; Botta, M. Pyrazolo[3,4-d]pyrimidines as potent antiproliferative and proapoptotic agents toward A431 and8701-BC cells in culture via inhibition of c-Src phosphorylation. J. Med. Chem., 2006, 49, 1549-1561.
[27]
Santucci, M.A.; Corradi, V.; Mancini, M.; Manetti, F.; Radi, M.; Schenone, S.; Botta, M. C6-unsubstitutedpyrazolo[3, 4-d]pyrimidines are dual Src/Abl inhibitors effectiveagainst imatinibmesylate resistant chronic myeloid leukemia celllines. ChemMedChem, 2009, 4, 118-126.
[28]
Radi, M.; Dreassi, E.; Brullo, C.; Crespan, E.; Tintori, C.; Bernardo, V.; Valoti, M.; Zamperini, C.; Daigl, H.; Musumeci, F.; Carraro, F.; Naldini, A.; Filippi, I.; Maga, G.; Schenone, S.; Botta, M. Design, synthesis, biologicalactivity, and ADME properties of pyrazolo[3, 4-d]pyrimidines activein hypoxic human leukemia cells: a lead optimization study. J. Med. Chem., 2011, 54, 2610-2626.
[29]
Richard, D.J.; Verheijen, J.C.; Curran, K.; Kaplan, J.; Toral-Barza, L.; Hollander, I.; Lucas, J.; Yu, K.; Zask, A. Incorporation of watersolubilizinggroups in pyrazolopyrimidinemTOR inhibitors: Discovery of highly potent and selective analogs with improved humanmicrosomal stability. Bioorg. Med. Chem. Lett., 2009, 19, 6830-6835.
[30]
Markwalder, J.A.; Arnone, M.R.; Benfield, P.A.; Boisclair, M.; Burton, C.R.; Chang, C.H.; Cox, S.S.; Czerniak, P.M.; Dean, C.L.; Doleniak, D.; Grafstrom, R.; Harrison, B.A.; Kaltenbach, R. F 3rd.; Nugiel, D.A.; Rossi, K.A.; Sherk, S.R.; Sisk, L.M.; Stouten, P.; Trainor, G.L.; Worland, P.; Seitz, S.P. Synthesis andbiological evaluation of 1-aryl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one inhibitors of cyclin dependent kinases. J. Med. Chem., 2004, 47, 5894-5911.
[31]
El-Enany, M.M.; Kamel, M.M.; Khalil, O.M.; El-Nassan, H.B. Synthesis and antitumor activity of novel 6-aryl and 6-alkylpyrazolo [3,4-d]pyrimidin-4-one derivatives. Eur. J. Med. Chem., 2010, 45, 5286-5291.
[32]
Malki, A.; Ashour, H.M.A.; Elbayaa, R.Y.; Issa, D.A.E.; Aziz, H.A.; Chen, X. Novel 1,5-diphenyl-6-substituted 1H-pyrazolo[3, 4-d]pyrimidin-4(5H)-ones induced apoptosis in RKO colon cancer cells. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1286-1299.
[33]
El-Subbagh, H.I.; El-Sherbeny, M.A.; Nasr, M.N.; Goda, F.E.; Badria, F.A. Novel diarylsulphide derivatives as potential cytotoxic agents. Boll. Chim. Farm., 1995, 134, 80-84.
[34]
Khalil, A.A.; Abdel Hamide, S.G.; Al-Obaid, A.M.; El-Subbagh, H.I. Synthesis, in vitro and in vivo evaluation of a delivery system for targeting anticancer drugs to the brain. Arch. Pharm. Pharm. Med. Chem, 2003, 336, 95-103.
[35]
Hodous, B.L. Geuns-Meyer. S.D.; Hughes. P.E.; Albrecht.; B.K.; Bellon, S.; Bready, J.; Caenepeel, S.; Cee, V.J.; Chaffee, S.C.; Coxon, A.; Emery, M.; Fretland, J.; Gallant, P.; Gu, Y.; Hoffman, D.; Johnson, R.E.; Kendall, R.; Kim, J.L.; Long, A.M.; Morrison, M.; Olivieri, P.R.; Patel, V.F.; Polverino, A.; Rose, P.; Tempest, P.; Wang, L.; Whittington, D.A.; Zhao, H. Evolution of a Highly Selective and Potent 2-(Pyridin-2-yl)-1,3,5-triazine Tie-2 Kinase Inhibitor. J. Med. Chem., 2007, 50(4), 611-626.
[36]
Tochowicz, A.; Maskos, K.; Huber, R.; Oltenfreiter, R.; Dive, V.; Yiotakis, A.; Zanda, M.; Pourmotabbed, T.; Bode, W.; Goettig, P. Crystal structures of MMP-9 complexes with five inhibitors: Contribution of the flexible Arg424 side-chain to selectivity. J. Mol. Biol., 2007, 371(4), 989-1006.
[37]
Alam El-Din, M.H.; Loutfy, A.S.; Fathy, N.; Elberry, H.M.; Mayla, M.A.; Kassem, S.; Naqvi, A. Molecular docking based screening of compounds against VP40 from Ebola virus. Bioinformation, 2016, 12(3), 192-196.
[38]
Guex, N.and; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer.An environment for comparative protein modeling.
Electrophoresis, 1997, 18, (Copyright (C) 2017 American Chemical
Society (ACS). All Rights Reserved.), 2714-2723.,
[39]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[40]
Taraboletti, G.; Micheletti, G.; Rieppi, M.; Poli, M.; Turatto, M.; Rossi, C.; Borsotti, P.; Roccabianca, P.; Scanziani, E.; Nicoletti, M.I.; Bombardelli, E.; Morazzoni, P.; Riva, A.; Giavazzi, R. Methyl N-aryldithiocarbamates: Useful reagents for the annelation of pyrimidines and 1, 3-oxazines to five-membered heterocyclic rings. Heterocycles, 1987, 26, 1303-1312.
[41]
Belotti, D.; Vergani, V.; Drudis, T.; Borsotti, P.; Pitelli, M.R.; Viale, G.; Giavazzi, R.; Taraboletti, G. The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin. Cancer Res., 1996, 2, 1843-1849.
[42]
Taraboletti, G.; Micheletti, G.; Rieppi, M.; Poli, M.; Turatto, M.; Rossi, C.; Borsotti, P.; Roccabianca, P.; Scanziani, E.; Nicoletti, M.I.; Bombardelli, E.; Morazzoni, P.; Riva, A.; Giavazzi, R. Antiangiogenic and antitumor activity of IDN 5390, a new taxane derivative. Clin. Cancer Res., 2002, 8, 1182-1188.
[43]
Sultan, A.S.; Xie, J.; LeBaron, M.J.; Ealley, E.L.; Nevalainen, M.T.; Rui, H. Stat5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells. Oncogene, 2005, 24, 746-760.
[44]
Kamal, A.; Dastagiri, D.; Ramaiah, M.J.; Reddy, J.S.; Bharathi, E.V.; Srinivas, C.; Pal, D.; Bhadra, M.P. Synthesis of imidazothiazole-chalcone derivatives as anticancer and apoptosis inducing agents. ChemMedChem, 2010, 5(11), 1937-1947.