Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design and Synthesis of Novel Thioethers Derived from 1,5-Diphenyl-6- thioxo-6,7-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-ones as Antiangiogenic Agents

Author(s): Ahmed Malki*, Doaa A.E Issa, Rasha Y. Elbayaa* and Hayam M.A. Ashour

Volume 16, Issue 2, 2019

Page: [200 - 212] Pages: 13

DOI: 10.2174/1570180815666180518112321

Price: $65

Abstract

Background: In attempts to discover new antiangiogenic entities, a novel series of thioethers derived from 6-thioxo-6,7-dihydro-1H-pyrazolo[3,4-d]pyrimidine-4(5H)ones was considered and designed.

Methods: Virtual screening was carried out through docking of the compounds into the vascular endothelial growth factor and matrix metalloproteinase-9 binding sites. Molecular docking studies were performed using Lamarckian Genetic Algorithm. Compounds possessing lowest ligandprotein pairwise interaction energies were synthesized and screened for their antiproliferative activities against five cancer cell lines namely MHCC97H (liver), MDA-MB 231 (Breast), Colo205 (Colon), A549 (lung), A498 (kidney) and IC50 values were determined for the most potent compounds. Additionally, they were tested for their antiangiogenic activities by testing their ability to inhibit Human Umbilical Vein Endothelial Cell (HUVEC), cord formation and migration in response to chemoattractant.

Results: Three compounds 2a, 2b and 5b showed significant antiangiogenic activities. The allyl thioether 2b was the most active with chemotaxis activity data nearly comparable to that of the positive control, TNP-470. Additionally, 2a, 2b and 5b, contrary to TNP-470, interfered with the migration of HUVECs in response to vascular endothelial growth factor rather than endothelial cells proliferation or cord formation. Compounds 2a, 2b and 5b were also investigated for their inhibitory effects on MMPs to investigate the relationship between their angiogenic activity and MMPs. Results revealed that compound 2b was the most effective MMP-9 inhibitor in this series. Additionally, compound 2b reduced the expression levels of VEGF and pERK1/2.

Conclusion: Our results suggest that compound 2b is considered as a promising antiangiogenic agent by targeting VEGF and MMP-9.

Keywords: Pyrazolo[3, 4-d]pyrimidine-4(5H)ones, thioethers, angiogenesis, VEGF, docking, MMP-9.

Graphical Abstract

[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[2]
Li, S.; Huang, N.F.; Hsu, S. Mechanotransduction in endothelial cell migration. J. Cell. Biochem., 2005, 96, 1110-1126.
[3]
Giroux, S. Tremblay.; M, Bernard.; D, Cardin-Girard, J.F.; Aubry, S.; Larouche, L.; Rousseau, S.; Huot, J.; Landry, J.; Jeannotte, L.; Charron, J. Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr. Biol., 1999, 9, 369-372.
[4]
Klemke, R.L.; Cai, S.; Giannini, A.L.; Gallagher, P.J.; de Lanerolle, P.; Cheresh, D.A. Regulation of cell motility by mitogen-activated protein kinase. J. Cell Biol., 1997, 137, 481-492.
[5]
Folkman, J. Tumour angiogenesis: Therapeutic implications. N. Engl. J. Med., 1971, 285, 1182-1186.
[6]
O’Reilly, M.S.; Holmgren, L.; Shing, Y.; Chen, C.; Rosenthal, R.A.; Moses, M.; Lane, W.S.; Cao, Y.; Sage, E.H.; Folkman, J. Angiostatin: A novel angiogenesisinhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 1994, 79, 315-328.
[7]
Ishigami, S.I.; Arii, S.; Furutani, M.; Niwano, M.; Harada, T.; Mizumoto, M.; Mori, A.; Onodera, H.; Imamura, M. Predictive value of Vascular Endothelial Growth Factor (VEGF) in metastasis and prognosis of human colorectal cancer. Br. J. Cancer, 1998, 78, 1379-1384.
[8]
Ferrara, N. Molecular and biological properties of vascular endothelial growth factor. J. Mol. Med. , 1999, 77, 527-543.
[9]
Hidalgo, M.; Eckhardt, S.G. Development of matrix metalloproteinase inhibitors in cancer therapy. J. Natl. Cancer Inst., 2001, 93, 178-193.
[10]
Gialeli, C.; Theocharis, A.D.; Karamanos, N.K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J., 2011, 278, 16-27.
[11]
Vandenbroucke, R.E.; Libert, C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat. Rev. Drug Discov., 2014, 13, 904-927.
[12]
Gil, M.; Kim, Y.K.; Kim, K.E.; Kim, W.; Park, C.S.; Lee, K.J. Cellular prion protein regulates invasion and migration of breast cancer cells through MMP-9 activity. Biochem. Biophys. Res. Commun., 2016, 470, 213-219.
[13]
Gregory, A.D.; Houghton, A.M. Tumor-associated neutrophils: New targets for cancer therapy. Cancer Res., 2011, 71, 2411-2416.
[14]
Chen, Y.J.; Chang, L.S. Simvastatin induces NFκB/p65 down-regulation and JNK1/c-Jun/ATF-2 activation, leading to matrix metalloproteinase-9 (MMP-9) but not MMP-2 down-regulation in human leukemia cells. Biochem. Pharmacol., 2014, 92, 530-543.
[15]
Boocock, C.A.; Charnock-Jones, D.S.; Sharkey, A.M.; McLaren, J.; Barker, P.J.; Wright, K.A.; Twentyman, P.R.; Smith, S.K. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J. Natl. Cancer Inst., 1995, 87, 506-516.
[16]
Manenti, L.; Paganoni, P.; Floriani, I.; Torri, W.; Buda, A.; Taraboletti, G.; Landoni, F.; Labianca, R.; Belotti, D.; Giavazzi, R. Expression level of vascular endothelial growth factor, matrix metalloproteinase 2 & 9 and tissue inhibitor of metalloproteinases 1 & 2 in plasma of patients with ovarian carcinoma. Eur. J. Cancer, 2003, 39, 1948-1956.
[17]
Xu, L.; Yoneda, J.; Herrera, C.; Wood, J.; Killion, J.J.; Fidler, I.J. Inhibition of malignant ascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. Int. J. Oncol., 2000, 16, 445-454.
[18]
Rashad, A.E.; Mahmoud, A.E.; Ali, M.M. Synthesis and anticancereffects of some novel pyrazolo [3, 4-d]pyrimidine derivatives by generating reactive oxygen species in human breast adenocarcinoma cells. Eur. J. Med. Chem., 2011, 46, 1019-1026.
[19]
Ghorab, M.M.; Ragab, F.A.; Alqasoumi, S.I.; Alafeefy, A.M.; Aboulmagd, S.A. Synthesis of some newpyrazolo[3, 4-d]pyrimidine derivatives of expected anticancer and radioprotective activity. Eur. J. Med. Chem., 2010, 45, 171-178.
[20]
Kumar, A.; Ahmad, I.; Chhikara, B.S.; Tiwari, R.; Mandal, D.; Parang, K. Synthesis of 3-phenylpyrazolopyrimidine-1, 2, 3-triazole conjugates and evaluationof their SRC kinase inhibitory and anticancer activities. Bioorg. Med. Chem. Lett., 2011, 21, 1342-1346.
[21]
Hassan, G. S, Kadry, H.H.; Abou-Seri, S.M.; Ali, M.M.; Mahmoud, A.E. Synthesis and in vitro cytotoxic activity of novel pyrazolo[3,4-d]pyrimidines and relatedpyrazolehydrazones toward breast adenocarcinoma MCF-7 cell line. Bioorg. Med. Chem. Lett., 2011, 19, 6808-6817.
[22]
Abd El Hamid, M.K.; Mihovilovic, M.D.; El-Nassan, H.B. Synthesis of novel pyrazolo[3, 4-d]pyrimidine derivatives as potential anti-breastcancer agents. Eur. J. Med. Chem., 2012, 57, 323-328.
[23]
Kim, D.C.; Lee, Y.R.; Yang, B.S.; Shin, K.J.; Kim, D.J.; Chung, B.Y.; Yoo, K.H. Synthesis and biologicalevaluations of pyrazolo[3, 4-d]pyrimidines as cyclin-dependent kinase 2 inhibitors. Eur. J. Med. Chem., 2003, 38, 525-532.
[24]
Traxler, P.; Bold, G.; Frei, J.; Lang, M.; Lydon, N.; Mett, H.; Buchdunger, E.; Meyer, T.; Mueller, M.; Furet, P. Use of a pharmacophore model forthe design of EGFR tyrosine kinase inhibi-tors: 4-(phenylamino)pyrazolo[3, 4-d]pyrimidines. J. Med. Chem., 1997, 40, 3601-16.
[25]
Indovina, P.; Giorgi, F.; Rizzo, V.; Khadang, B.; Schenone, S.; Di Marzo, D.; Forte, I.M.; Tomei, V.; Mattioli, E.; D’Urso, V.; Grilli, B.; Botta, M.; Giordano, A.; Pentimalli, F. New pyrazolo[3, 4-d]pyrimidine SRC inhibitors induce apoptosis in mesothelioma cell lines throughp27 nuclear stabilization. Oncogene, 2012, 31, 929-938.
[26]
Carraro, F.; Naldini, A.; Pucci, A.; Locatelli, G.A.; Maga, G.; Schenone, S.; Bruno, O.; Ranise, A.; Bondavalli, F.; Brullo, C.; Fossa, P.; Menozzi, G.; Mosti, L.; Modugno, M.; Tintori, C.; Manetti, F.; Botta, M. Pyrazolo[3,4-d]pyrimidines as potent antiproliferative and proapoptotic agents toward A431 and8701-BC cells in culture via inhibition of c-Src phosphorylation. J. Med. Chem., 2006, 49, 1549-1561.
[27]
Santucci, M.A.; Corradi, V.; Mancini, M.; Manetti, F.; Radi, M.; Schenone, S.; Botta, M. C6-unsubstitutedpyrazolo[3, 4-d]pyrimidines are dual Src/Abl inhibitors effectiveagainst imatinibmesylate resistant chronic myeloid leukemia celllines. ChemMedChem, 2009, 4, 118-126.
[28]
Radi, M.; Dreassi, E.; Brullo, C.; Crespan, E.; Tintori, C.; Bernardo, V.; Valoti, M.; Zamperini, C.; Daigl, H.; Musumeci, F.; Carraro, F.; Naldini, A.; Filippi, I.; Maga, G.; Schenone, S.; Botta, M. Design, synthesis, biologicalactivity, and ADME properties of pyrazolo[3, 4-d]pyrimidines activein hypoxic human leukemia cells: a lead optimization study. J. Med. Chem., 2011, 54, 2610-2626.
[29]
Richard, D.J.; Verheijen, J.C.; Curran, K.; Kaplan, J.; Toral-Barza, L.; Hollander, I.; Lucas, J.; Yu, K.; Zask, A. Incorporation of watersolubilizinggroups in pyrazolopyrimidinemTOR inhibitors: Discovery of highly potent and selective analogs with improved humanmicrosomal stability. Bioorg. Med. Chem. Lett., 2009, 19, 6830-6835.
[30]
Markwalder, J.A.; Arnone, M.R.; Benfield, P.A.; Boisclair, M.; Burton, C.R.; Chang, C.H.; Cox, S.S.; Czerniak, P.M.; Dean, C.L.; Doleniak, D.; Grafstrom, R.; Harrison, B.A.; Kaltenbach, R. F 3rd.; Nugiel, D.A.; Rossi, K.A.; Sherk, S.R.; Sisk, L.M.; Stouten, P.; Trainor, G.L.; Worland, P.; Seitz, S.P. Synthesis andbiological evaluation of 1-aryl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4-one inhibitors of cyclin dependent kinases. J. Med. Chem., 2004, 47, 5894-5911.
[31]
El-Enany, M.M.; Kamel, M.M.; Khalil, O.M.; El-Nassan, H.B. Synthesis and antitumor activity of novel 6-aryl and 6-alkylpyrazolo [3,4-d]pyrimidin-4-one derivatives. Eur. J. Med. Chem., 2010, 45, 5286-5291.
[32]
Malki, A.; Ashour, H.M.A.; Elbayaa, R.Y.; Issa, D.A.E.; Aziz, H.A.; Chen, X. Novel 1,5-diphenyl-6-substituted 1H-pyrazolo[3, 4-d]pyrimidin-4(5H)-ones induced apoptosis in RKO colon cancer cells. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1286-1299.
[33]
El-Subbagh, H.I.; El-Sherbeny, M.A.; Nasr, M.N.; Goda, F.E.; Badria, F.A. Novel diarylsulphide derivatives as potential cytotoxic agents. Boll. Chim. Farm., 1995, 134, 80-84.
[34]
Khalil, A.A.; Abdel Hamide, S.G.; Al-Obaid, A.M.; El-Subbagh, H.I. Synthesis, in vitro and in vivo evaluation of a delivery system for targeting anticancer drugs to the brain. Arch. Pharm. Pharm. Med. Chem, 2003, 336, 95-103.
[35]
Hodous, B.L. Geuns-Meyer. S.D.; Hughes. P.E.; Albrecht.; B.K.; Bellon, S.; Bready, J.; Caenepeel, S.; Cee, V.J.; Chaffee, S.C.; Coxon, A.; Emery, M.; Fretland, J.; Gallant, P.; Gu, Y.; Hoffman, D.; Johnson, R.E.; Kendall, R.; Kim, J.L.; Long, A.M.; Morrison, M.; Olivieri, P.R.; Patel, V.F.; Polverino, A.; Rose, P.; Tempest, P.; Wang, L.; Whittington, D.A.; Zhao, H. Evolution of a Highly Selective and Potent 2-(Pyridin-2-yl)-1,3,5-triazine Tie-2 Kinase Inhibitor. J. Med. Chem., 2007, 50(4), 611-626.
[36]
Tochowicz, A.; Maskos, K.; Huber, R.; Oltenfreiter, R.; Dive, V.; Yiotakis, A.; Zanda, M.; Pourmotabbed, T.; Bode, W.; Goettig, P. Crystal structures of MMP-9 complexes with five inhibitors: Contribution of the flexible Arg424 side-chain to selectivity. J. Mol. Biol., 2007, 371(4), 989-1006.
[37]
Alam El-Din, M.H.; Loutfy, A.S.; Fathy, N.; Elberry, H.M.; Mayla, M.A.; Kassem, S.; Naqvi, A. Molecular docking based screening of compounds against VP40 from Ebola virus. Bioinformation, 2016, 12(3), 192-196.
[38]
Guex, N.and; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer.An environment for comparative protein modeling. Electrophoresis, 1997, 18, (Copyright (C) 2017 American Chemical Society (ACS). All Rights Reserved.), 2714-2723.,
[39]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[40]
Taraboletti, G.; Micheletti, G.; Rieppi, M.; Poli, M.; Turatto, M.; Rossi, C.; Borsotti, P.; Roccabianca, P.; Scanziani, E.; Nicoletti, M.I.; Bombardelli, E.; Morazzoni, P.; Riva, A.; Giavazzi, R. Methyl N-aryldithiocarbamates: Useful reagents for the annelation of pyrimidines and 1, 3-oxazines to five-membered heterocyclic rings. Heterocycles, 1987, 26, 1303-1312.
[41]
Belotti, D.; Vergani, V.; Drudis, T.; Borsotti, P.; Pitelli, M.R.; Viale, G.; Giavazzi, R.; Taraboletti, G. The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin. Cancer Res., 1996, 2, 1843-1849.
[42]
Taraboletti, G.; Micheletti, G.; Rieppi, M.; Poli, M.; Turatto, M.; Rossi, C.; Borsotti, P.; Roccabianca, P.; Scanziani, E.; Nicoletti, M.I.; Bombardelli, E.; Morazzoni, P.; Riva, A.; Giavazzi, R. Antiangiogenic and antitumor activity of IDN 5390, a new taxane derivative. Clin. Cancer Res., 2002, 8, 1182-1188.
[43]
Sultan, A.S.; Xie, J.; LeBaron, M.J.; Ealley, E.L.; Nevalainen, M.T.; Rui, H. Stat5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells. Oncogene, 2005, 24, 746-760.
[44]
Kamal, A.; Dastagiri, D.; Ramaiah, M.J.; Reddy, J.S.; Bharathi, E.V.; Srinivas, C.; Pal, D.; Bhadra, M.P. Synthesis of imidazothiazole-chalcone derivatives as anticancer and apoptosis inducing agents. ChemMedChem, 2010, 5(11), 1937-1947.

© 2025 Bentham Science Publishers | Privacy Policy