[1]
Costa, L.G.; Giordano, G.; Cole, T.B.; Marsillach, J.; Furlong, C.E. Paraoxonase 1 (PON1) as a genetic determinant of susceptibility to organophosphate toxicity. Toxicology, 2013, 307, 115-122.
[2]
Furlong, C.E.; Suzuki, S.M.; Stevens, R.C.; Marsillach, J.; Richter, R.J.; Jarvik, G.P.; Checkoway, H.; Samii, A.; Costa, L.G.; Griffith, A.; Roberts, J.W.; Yearout, D.; Zabetian, C.P. Human PON1, a biomarker of risk of disease and exposure. Chem. Biol. Interact., 2010, 187(1-3), 355-361.
[3]
Kulka, M. A review of paraoxonase 1 properties and diagnostic applications. Pol. J. Vet. Sci., 2016, 19(1), 225-2324.
[4]
Shekhanawar, M.; Shekhanawar, S.M.; Krisnaswamy, D.; Indumati, V.; Satishkumar, D.; Vijay, V.; Rajeshwari, T.; Amareshwar, M. The role of ‘paraoxonase-1 activity’ as an antioxidant in coronary artery diseases. J. Clin. Diagn. Res., 2013, 7(7), 1284-1287.
[5]
Efrat, M.; Aviram, M. Macrophage paraoxonase 1 (PON1) binding sites. Biochem. Biophys. Res. Commun., 2008, 376(1), 105-110.
[6]
Rosenblat, M.; Vaya, J.; Shih, D.; Aviram, M. Paraoxonase 1 (PON1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells: A possible role for lysophosphatidylcholine. Atherosclerosis, 2005, 179(1), 69-77.
[7]
Soran, H.; Younis, N.N.; Charlton-Menys, V.; Durrington, P. Variation in paraoxonase-1 activity and atherosclerosis. Curr. Opin. Lipidol., 2009, 20(4), 265-274.
[8]
Costa, L.G.; Giordano, G.; Cole, T.B.; Marsillach, J.; Furlong, C.E. Paraoxonase 1 (PON1) as a genetic determinant of susceptibility to organophosphate toxicity. Toxicology, 2013, 307, 115-122.
[9]
Ceron, J.J.; Tecles, F.; Tvarijonaviciute, A. Serum paraoxonase 1 (PON1) measurement: an update. BMC Vet. Res., 2014, 10, 74.
[10]
Aviram, M.; Vaya, J. Paraoxonase 1 activities, regulation, and interactions with atherosclerotic lesion. Curr. Opin. Lipidol., 2013, 24(4), 339-344.
[11]
Aviram, M.; Rosenblat, M. Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic. Biol. Med., 2004, 37(9), 1304-1316.
[12]
Meek, E.C.; Chambers, H.W.; Pringle, R.B.; Chambers, J.E. The effect of PON1 enhancers on reducing acetylcholinesterase inhibition following organophosphate anticholinesterase exposure in rats. Toxicology, 2015, 336, 79-83.
[13]
Shawali, A.S. 1,3,4-Thiadiazoles of pharmacological interest: Recent trends in their synthesis via tandem 1,3-dipolar cycloaddition. Review J. Adv. Res., 2014, 5(1), 1-17.
[14]
Haider, S.; Alam, M.S.; Hamid, H. 1,3,4-Thiadiazoles: A potent multi targeted pharmacological scaffold. Eur. J. Med. Chem., 2015, 92, 156-177.
[15]
Matysiak, J. Biological and pharmacological activities of 1,3,4-thiadiazole based compounds. Mini Rev. Med. Chem., 2015, 15(9), 762-775.
[16]
Dwivedi, J.; Kaur, N.; Kishore, D.; Kumari, S.; Sharma, S. Synthetic and biological aspects of thiadiazoles and their condensed derivatives: An overview. Curr. Top. Med. Chem., 2016, 16(26), 2884-2920.
[17]
Frija, L.M.T.; Pombeiro, A.J.L.; Kopylovich, M.N. Coordination chemistry of thiazoles, isothiazoles and thiadiazoles. Coord. Chem. Rev., 2016, 308, 32-55.
[18]
Aliabadi, A. 1,3,4-Thiadiazole based anticancer agents. Anticancer. Agents Med. Chem., 2016, 16(10), 1301-1314.
[19]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[20]
Hu, Y.; Li, C.Y.; Wang, X.M.; Yang, Y.H.; Zhu, H.L. 1,3,4-Thiadiazole: Synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem. Rev., 2014, 114(10), 5572-5610.
[21]
Altintop, M.D.; Ozdemir, A.; Kucukoglu, K.; Turan-Zitouni, G.; Nadaroglu, H.; Kaplancikli, Z.A. Synthesis and evaluation of new thiadiazole derivatives as potential inhibitors of human carbonic anhydrase isozymes (hCA-I and hCA-II). J. Enzyme Inhib. Med. Chem., 2015, 30(1), 32-37.
[22]
Harel, M.; Aharoni, A.; Gaidukov, L.; Brumshtein, B.; Khersonsky, O.; Meged, R.; Dvir, H.; Ravelli, R.B.; McCarthy, A.; Toker, L.; Silman, I.; Sussman, J.L.; Tawfik, D.S. Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat. Struct. Mol. Biol., 2004, 11(5), 412-419.
[23]
Demir, Y.; Nadaroglu, H.; Demir, N. Effect of glimepride on paraoxanase activity. Pharm. Biol., 2006, 44(5), 396-399.
[24]
Renault, F.; Chabriѐre, E.; Andrieu, J.; Dublet, B.; Massona, P.; Rochua, D. Tandem purification of two HDL-associated partner proteins in human plasma, paraoxonase (PON1) and phosphate binding protein (HPBP) using hydroxy apatite chromatography. J. Chromatogr. B ., 2006, 836, 15-21.
[25]
Demir, N.; Nadaroglu, H.; Demir, Y. Purification of human serum paraoxonase and effect of acetylsalicylic acid on paraoxonase activity. Pharm. Biol., 2008, 46(6), 393-399.
[26]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dyebinding. Anal. Biochem., 1976, 72, 248.
[27]
Laemmli, U.K. Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(229), 680-685.
[28]
Sinan, S.; Kockar, F.; Arslan, O. Novel purification strategy for human PON1 and inhibition of the activity by cephalosporin and aminoglikozide derived antibiotics. Biochimie, 2006, 88, 565-574.
[29]
Alici, H.A.; Ekinci, D.; Beydemir, Ş. Intravenous anesthetics inhibit human paraoxonase-1 (PON1) activity in vitro and in vivo. Clin. Biochem., 2008, 41, 1384-1390.
[30]
Dilek, E.B.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Impacts of some antibiotics on human serum paraoxonase 1 activity. J. Enzyme Inhib. Med. Chem., 2013, 28(4), 758-764.
[31]
Ekinci, D.; Beydemir, Ş. Evaluation of the impacts of antibiotic drugs on PON 1; a major bioscavenger against cardiovascular diseases. Eur. J. Pharmacol., 2009, 617(1-3), 84-89.
[32]
Akbaba, Y.; Türkeş, C.; Polat, L.; Söyüt, H.; Şahin, E.; Menzek, A.; Göksu, S.; Beydemir, Ş. Synthesis and paroxonase activities of novel bromophenols. J. Enzyme Inhib. Med. Chem., 2013, 28(5), 1073-1079.
[33]
Tavori, H.; Khatib, S.; Aviram, M.; Vaya, J. Characterization of the PON1 active site using modeling simulation, in relation to PON1 lactonase activity. Bioorg. Med. Chem., 2008, 16(15), 7504-7509.
[34]
Van Den Driessche, G.; Fourches, D. Adverse drug reactions triggered by the common HLA-B*57:01 variant: A molecular docking study. J. Cheminform., 2017, 9, 13.
[35]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46, 3-26.
[36]
Jorgensen, W.L.; Duffy, E.M. Prediction of drug solubility from structure. Adv. Drug Deliv. Rev., 2002, 54, 355-366.
[37]
Frecer, V.; Berti, F.; Benedetti, F.; Miertus, S. Design of peptidomimetic inhibitors of aspartic protease of HIV-1 containing –PheψPro– core and displaying favourable ADME-related properties. J. Mol. Graph. Model., 2008, 27, 376-387.