[1]
Daystar, J.; Reeb, C.; Gonzalez, R.; Venditti, R.; Kelley, S.S. Environmental life cycle impacts of cellulosic ethanol in the Southern US produced from loblolly pine, eucalyptus, unmanaged hardwoods, forest residues, and switchgrass using a thermochemical conversion pathway. Fuel Process. Technol., 2015, 138, 164-174.
[2]
Gombert, A.K.; van Maris, A.J. Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes. Curr. Opin. Biotechnol., 2015, 33, 81-86.
[3]
Ho, D.P.; Ngo, H.H.; Guo, W. A mini review on renewable sources for biofuel. Bioresour. Technol., 2014, 169, 742-749.
[4]
Maity, S.K. Opportunities, recent trends and challenges of integrated biorefinery: part I. Renew. Sustainable. Energy Rev., 2015, 43, 1427-1445.
[5]
Mood, S.H.; Golfeshan, A.H.; Tabatabaei, M.; Jouzani, G.S.; Najafi, G.H.; Gholami, M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustainable. Energy Rev., 2013, 27, 77-93.
[6]
Narra, M.; Balasubramanian, V.; James, J.P. Enhanced enzymatic hydrolysis of mild alkali pre-treated rice straw at high-solid loadings using in-house cellulases in a bench scale system. Bioproc Biosyst. Eng., 2016, 39(6), 993-1003.
[7]
Modenbach, A.A.; Nokes, S.E. The use of high‐solids loadings in biomass pretreatment-a review. Biotechnol. Bioeng., 2012, 109(6), 1430-1442.
[8]
Kremer, F.; Blank, L.M.; Jones, P.R.; Akhtar, M.K. A comparison of the microbial production and combustion characteristics of three alcohol biofuels: Ethanol, 1-butanol, and 1-octanol. Front. Bioeng. Biotechnol., 2015, 3, 112.
[9]
Chen, X.; Kuhn, E.; Jennings, E.W.; Nelson, R.; Tao, L.; Zhang, M. DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g· L− 1) during enzymatic hydrolysis and high ethanol concentrations (> 10% v/v) during fermentation without hydrolysate purification or concentration. Energy Environ. Sci., 2016, 9, 1237-1245.
[10]
López-Linares, J.C.; Romero, I.; Cara, C.; Ruiz, E.; Moya, M.; Castro, E. Bioethanol production from rapeseed straw at high solids loading with different process configurations. Fuel, 2014, 122, 112-8.
[11]
Kristensen, J.B.; Felby, C.; Jørgensen, H. Determining yields in high solids enzymatic hydrolysis of biomass. Appl. Biochem. Biotechnol., 2009, 156, 127-132.
[12]
Nguyen, T.Y.; Cai, C.M.; Osman, O.; Kumar, R.; Wyman, C.E. CELF pretreatment of corn stover boosts ethanol titers and yields from high solids SSF with low enzyme loadings. Green Chem., 2016, 18, 1581-1589.
[13]
Hodge, D.B.; Karim, M.N.; Schell, D.J.; McMillan, J.D. Model based fed-batch for high-solids enzymatic cellulose hydrolysis. Appl. Biochem. Biotechnol., 2009, 152, 88-107.
[14]
Olsen, S.N.; Lumby, E.; McFarland, K.; Borch, K.; Westh, P. Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry. Appl. Biochem. Biotechnol., 2011, 163, 626-635.
[15]
Zhu, Y.; Malten, M.; Torry-Smith, M.; McMillan, J.D.; Stickel, J.J. Calculating sugar yields in high solids hydrolysis of biomass. Bioresour. Technol., 2011, 102, 2897-2903.
[16]
Roche, C.M.; Dibble, C.J.; Stickel, J.J. Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high solids loadings. Biotechnol. Biofuels, 2009, 2, 1.
[17]
Roche, C.M.; Dibble, C.J.; Knutsen, J.S.; Stickel, J.J.; Liberatore, M.W. Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnol. Bioeng., 2009, 104, 290-300.
[18]
Ghose, T. Measurement of cellulase activities. Pure Appl. Chem., 1987, 59, 257-268.
[19]
Palmqvist, B.; Lidén, G. Torque measurements reveal large process differences between materials during high solid enzymatic hydrolysis of pretreated lignocellulose. Biotechnol. Biofuels, 2012, 5, 1.
[20]
Luo, X.; Zhu, J. Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses. Enzyme Microb. Technol., 2011, 48, 92-99.
[21]
Vani, S.; Sukumaran, R.K.; Savithri, S. Prediction of sugar yields during hydrolysis of lignocellulosic biomass using artificial neural network modeling. Bioresour. Technol., 2015, 188, 128-135.
[22]
Eckelt, J.; Richardt, D.; Schuster, K.C.; Wolf, B.A. Thermodynamic interactions of natural and of man-made cellulose fibers with water. Cellulose, 2010, 17, 1079-93.
[23]
Przybysz, P.; Dubowik, M.; Kucner, M.A.; Przybysz, K.; Buzała, K.P. Contribution of hydrogen bonds to paper strength properties. PloS One, 2016, 11e0155809