Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Regulatory Role of Amino Acids in Pigs Fed on Protein-restricted Diets

Author(s): Sung Woo Kim*, Hongyu Chen and Wanpuech Parnsen

Volume 20, Issue 2, 2019

Page: [132 - 138] Pages: 7

DOI: 10.2174/1389203719666180517100746

Price: $65

Abstract

The high inclusion of dietary protein and the imbalance of amino acid (AA) composition in animal husbandry result in inefficient utilization of protein resources and increased nitrogen excretion. Therefore, an efficient approach to alleviate the nitrogen excretion and increase the utilization of protein resources is to formulate the AA-balance protein-restricted diet with crystalline AA supplementation. Nowadays, it is essential to thoroughly understand the regulatory mechanisms of AAs on body metabolism and their vital roles in protein-restricted diets. Besides, an establishment of the amino acid balanced protein-restricted diet system is beneficial for the maintenance of healthy environment and sustainable animal husbandry. This review focused on the recent advances on functional roles of AAs and development of a protein-restricted diet system in animal husbandry.

Keywords: Amino acid, ideal amino acid profile, nutrient requirement, protein-restricted diet, dietary protein, pigs.

Graphical Abstract

[1]
Ren, M.; Liu, C.; Zeng, X.; Yue, L.; Mao, X.; Qiao, S.; Wang, J. Amino acids modulates the intestinal proteome associated with immune and stress response in weaning pig. Mol. Biol. Rep., 2014, 41(6), 3611-3620.
[2]
Ma, N.; Tian, Y.; Wu, Y.; Ma, X. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr. Protein Pept. Sci., 2017, 18(8), 795-808.
[3]
Fan, P.; Liu, P.; Song, P.; Chen, X.; Ma, X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep., 2017, 7, 43412.
[4]
Wang, W.; Yang, Q.; Sun, Z.; Chen, X.; Yang, C.; Ma, X. Editorial: Advance of interactions between exogenous natural bioactive peptides and intestinal barrier and immune responses. . Curr. Protein Pept. Sci., 2015, 16(7), 574-575.
[5]
Ma, X. Editorial: Signal proteins involved in glucose and lipid metabolism regulation. Curr. Protein Pept. Sci., 2017, 18(6), 524-524.
[6]
Albin, D.; Wubben, J.; Rowlett, J.; Tappenden, K.; Nowak, R. Changes in small intestinal nutrient transport and barrier function after lipopolysaccharide exposure in two pig breeds. J. Anim. Sci., 2007, 85(10), 2517-2523.
[7]
He, L.; Han, M.; Farrar, S.; Ma, X. Impacts and regulation of dietary nutrients on gut microbiome and immunity. Protein Pept. Lett., 2017, 24, 380-381.
[8]
Ma, X.; Han, M.; Li, D.; Hu, S.; Gilbreath, K.R.; Bazer, F.W.; Wu, G. L-arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids, 2017, 49(5), 957-964.
[9]
Hu, S.; Han, M.; Rezaei, A.; Li, D.; Wu, G.; Ma, X. L-arginine modulates glucose and lipid metabolism in obesity and diabetes. Curr. Protein Pept. Sci., 2017, 18(6), 599-608.
[10]
Zheng, P.; Yu, B.; He, J.; Tian, G.; Luo, Y.; Mao, X.; Zhang, K.; Che, L.; Chen, D. Protective effects of dietary arginine supplementation against oxidative stress in weaned piglets.. Br. J. Nutr., 2013, 109(12), 2253-2260.
[11]
Du, K.; Wang, C.; Liu, P.; Li, Y.; Ma, X. Effects of dietary mycotoxins on gut microbiome. Protein Pept. Lett., 2017, 24, 397-405.
[12]
Wang, J.; Han, M.; Zhang, G.; Qiao, S.; Li, D.; Ma, X. The signal pathway of antibiotic alternatives on intestinal microbiota and immune function. Curr. Protein Pept. Sci., 2016, 17, 785-796.
[13]
Mateo, R.D.; Wu, G.; Moon, H.K.; Carroll, J.A.; Kim, S.W. Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J. Anim. Sci., 2008, 86, 827-835.
[14]
Kim, S.W.; Wu, G. Dietary arginine supplementation enhances the grwoth of milk-fed young pigs. J. Nutr., 2004, 134, 625-630.
[15]
Mateo, R.D.; Wu, G.; Bazer, F.W.; Park, J.C.; Shinzato, I.; Kim, S.W. Dietary L-arginine supplementation enhances the reproductive performance of gilts. J. Nutr., 2007, 137, 652-656.
[16]
Zeng, X.F.; Huang, Z.M.; Zhang, F.R.; Mao, X.B.; Zhang, S.H.; Qiao, S.Y. Oral administration of N-carbamylglutamate might improve growth performance and intestinal function of suckling piglets. Livest. Sci., 2015, 181, 242-248.
[17]
Lin, C. Amino acid nutrition for growth and health of neonatal pigs. M.S Thesis. Texas Tech University: Lubbock, May 2007..
[18]
Zhang, F.R.; Zeng, X.F.; Yang, F.J.; Huang, Z.M.; Liu, H.; Ma, X.; Qiao, S.Y. Dietary N-carbamylglutamate supplementation boosts intestinal mucosal immunity in Escherichia coli challenged piglets. PLoS One, 2013, 8(6), e66280.
[19]
Ren, M.; Zhang, S.; Liu, X.; Li, S.; Mao, X.; Zeng, X.; Qiao, S. Different lipopolysaccharide branched-chain amino acids modulate porcine intestinal endogenous beta-defensin expression through the Sirt1/ERK/90RSK pathway. J. Agric. Food Chem., 2016, 64(17), 3371-3379.
[20]
Zhang, S.H.; Ren, M.; Zeng, X.F.; He, P.L.; Ma, X.; Qiao, S.Y. Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways. . Amino Acids, 2014, 46(12), 2633-2642.
[21]
Zhen, H.M.; Nakamura, K.; Kitaura, Y.; Kadota, Y.; Ishikawa, T.; Kondo, Y.; Xu, M.; Shimomura, Y. Regulation of the plasma amino acid profile by leucine via the system L amino acid transporter. Biosci. Biotechnol. Biochem., 2015, 79(12), 2057-2062.
[22]
Zhang, S.H.; Yang, Q.; Ren, M.; Qiao, S.Y.; He, P.L.; Li, D.F.; Zeng, X.F. Effects of isoleucine on glucose uptake through the enhancement of muscular membrane concentrations of GLUT1 and GLUT4 and intestinal membrane concentrations of Na+/glucose co-transporter 1 (SGLT-1) and GLUT2. Br. J. Nutr., 2016, 116(4), 593-602.
[23]
Mao, X.; Zeng, X.; Huang, Z.; Wang, J.; Qiao, S. Leptin and leucine synergistically regulate protein metabolism in C2C12 myotubes and mouse skeletal muscles. Br. J. Nutr., 2013, 110(2), 256-264.
[24]
Mao, X.B.; Zeng, X.F.; Wang, J.J.; Qiao, S.Y. Leucine promotes leptin receptor expression in mouse C2C12 myotubes through the mTOR pathway. Mol. Biol. Rep., 2011, 38(5), 3201-3206.
[25]
Rudar, M.; Zhu, C.L.; de Lange, C.F. Dietary Leucine supplementation decreases whole-body protein turnover before, but not during, immune system stimulation in pigs.. J. Nutr., 2017, 147(1), 45-51.
[26]
Dardevet, D.; Sornet, C.; Bayle, G.; Prugnaud, J.; Pouyet, C.; Grizard, J. Postprandial stimulation of muscle protein synthesis in old rats can be restored by a leucine-supplemented meal. J. Nutr., 2002, 132(1), 95-100.
[27]
Laeger, T.; Reed, S.D.; Henagan, T.M.; Fernandez, D.H.; Taghavi, M.; Addington, A.; Munzberg, H.; Martin, R.J.; Hutson, S.M.; Morrison, C.D. Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2014, 307(3), R310-R320.
[28]
Ma, X.; Zheng, C.; Hu, Y.; Wang, L.; Yang, X.; Jiang, Z. Dietary L-arginine supplementation affects the skeletal longissimus muscle proteome in finishing pigs.. PLoS One, 2015, 10(1), e0117294.
[29]
Wang, W.; Zeng, X.; Mao, X.; Wu, G.; Qiao, S. Optimal dietary true ileal digestible threonine for supporting the mucosal barrier in small intestine of weanling pigs. J. Nutr., 2010, 140(5), 981-986.
[30]
Mao, X.; Lai, X.; Yu, B.; He, J.; Yu, J.; Zheng, P.; Tian, G.; Zhang, K.; Chen, D. Effects of dietary threonine supplementation on immune challenge induced by swine Pseudorabies live vaccine in weaned pigs. Arch. Anim. Nutr., 2014, 68(1), 1-15.
[31]
Baird, C.H.; Niederlechner, S.; Beck, R.; Kallweit, A.R.; Wischmeyer, P.E. L-threonine induces heat shock protein expression and decreases apoptosis in heat-stressed intestinal epithelial cells. Nutrition, 2013, 29(11-12), 1404-1411.
[32]
Chen, Y.P.; Cheng, Y.F.; Li, X.H.; Yang, W.L.; Wen, C.; Zhuang, S.; Zhou, Y.M. Effects of threonine supplementation on the growth performance, immunity, oxidative status, intestinal integrity, and barrier function of broilers at the early age. Poult. Sci., 2016, 96(2), 405-413.
[33]
Wils-Plotz, E.L.; Jenkins, M.C.; Dilger, R.N. Modulation of the intestinal environment, innate immune response, and barrier function by dietary threonine and purified fiber during a coccidiosis challenge in broiler chicks. Poult. Sci., 2013, 92(3), 735-745.
[34]
Wu, G. Functional amino acids in nutrition and health. Amino Acids, 2013, 45(3), 407-411.
[35]
Kim, S.W.; Mateo, R.D.; Yin, Y-L.; Wu, G. Functional amino acids and fatty acids for enhancing production performance of sows and piglets. Asian-Austral. J. Anim. Sci., 2007, 20, 295-306.
[36]
Wu, G.; Bazer, F.W.; Dai, Z.; Li, D.; Wang, J.; Wu, Z. Amino acid nutrition in animals: protein synthesis and beyond. Annu. Rev. Anim. Biosci., 2014, 2(1), 387-417.
[37]
Shen, Y.B.; Weaver, A.C.; Kim, S.W. Effect of feed grade L-methionine on growth performance and gut health in nursery pigs compared with conventional DL-methionine. J. Anim. Sci., 2014, 92, 5530-5539.
[38]
Shen, Y.B.; Perket, P.; Park, I.; Malheiros, R.D.; Kim, S.W. Effects of feed grade L-methionine on intestinal redox status, intestinal development, and growth performance of young chickens compared with conventional DL-methionine. J. Anim. Sci., 2015, 93, 2977-2986.
[39]
Wang, H.; Ji, Y.; Wu, G.; Sun, K.; Sun, Y.; Li, W.; Wang, B.; He, B.; Zhang, Q.; Dai, Z. L-Tryptophan activates mammalian target of rapamycin and enhances expression of tight junction proteins in intestinal porcine epithelial cells. J. Nutr., 2015, 145(6), 1156-1162.
[40]
Shen, Y.B.; Voilque, G.; Kim, D.J.; Odle, J.; Kim, S.W. Effects of increasing tryptohan intake on growth and physiological changes in nursery pigs. J. Anim. Sci., 2012, 90, 2264-2275.
[41]
Shen, Y.B.; Voilque, G.; Odle, J.; Kim, S.W. Dietary L-tryptophan supplementation with reduced large neutral amino acids enhances feed efficiency and decreases stress hormone strestion in nursery pigs under social-mixing stress. J. Nutr., 2012, 142, 1540-1546.
[42]
Ma, W.; Lu, J.; Jiang, S.; Cai, D.; Pan, S.; Jia, Y.; Zhao, R. Maternal protein restriction depresses the duodenal expression of iron transporters and serum iron level in male weaning piglets. Br. J. Nutr., 2017, 117(7), 923-929.
[43]
Han, M.; Wang, C.; Liu, P.; Li, D.; Li, Y.; Ma, X. Dietary fiber gap and host gut microbiota. Protein Pept. Lett., 2017, 24, 388-396.
[44]
Gloaguen, M.; Le Floc’h, N.; Corrent, E.; Primot, Y.; van Milgen, J. The use of free amino acids allows formulating very low crude protein diets for piglets. J. Anim. Sci., 2014, 92(2), 637-644.
[45]
Morales, A.; Buenabad, L.; Castillo, G.; Arce, N.; Araiza, B.A.; Htoo, J.K.; Cervantes, M. Low-protein amino acid-supplemented diets for growing pigs: effect on expression of amino acid transporters, serum concentration, performance, and carcass composition. J. Anim. Sci., 2015, 93(5), 2154-2164.
[46]
Fan, P.; Song, P.; Li, L.; Huang, C.; Chen, J.; Yang, W.; Qiao, S.; Wu, G.; Zhang, G.; Ma, X. Roles of biogenic amines in intestinal signaling. Curr. Protein Pept. Sci., 2017, 18, 532-540.
[47]
Bunger, L.; Lambe, N.R.; McLean, K.; Cesaro, G.; Walling, G.A.; Whitney, H.; Jagger, S.; Fullarton, P.; Maltin, C.A.; Wood, J.D. Effects of low protein diets on performance of pigs with a lean genotype between 40 and 115 kg liveweight. Anim. Prod. Sci., 2015, 55(4), 461-466.
[48]
Wang, D.; Wan, X.B.; Peng, J.; Xiong, Q.; Niu, H.D.; Li, H.; Chai, J.; Jiang, S.W. The effects of reduced dietary protein level on amino acid transporters and mTOR signaling pathway in pigs. Biochem. Biophys. Res. Commun., 2017, 485(2), 319-327.
[49]
Yan, G.K.; Li, X.Z.; Cheng, X.F.; Peng, Y.; Long, B.S.; Fan, Q.W.; Wang, Z.C.; Zheng, Z.L.; Shi, M.; Yan, X.H. Proteomic profiling reveals oxidative phosphorylation pathway is suppressed in longissimus dorsi muscle of weaned piglets fed low-protein diet supplemented with limiting amino acids. Int. J. Biochem. Cell Biol., 2016, 79, 288-297.
[50]
Zhou, L.P.; Fang, L.D.; Sun, Y.; Su, Y.; Zhu, W.Y. Effects of the dietary protein level on the microbial composition and metabolomic profile in the hindgut of the pig. Anaerobe, 2016, 38, 61-69.
[51]
He, L.Q.; Wu, L.; Xu, Z.Q.; Li, T.J.; Yao, K.; Cui, Z.J.; Yin, Y.L.; Wu, G.Y. Low-protein diets affect ileal amino acid digestibility and gene expression of digestive enzymes in growing and finishing pigs. Amino Acids, 2016, 48, 21-30.
[52]
Li, Y.H.; Li, F.N.; Wu, L.; Wei, H.K.; Liu, Y.Y.; Li, T.J.; Tan, B.; Kong, X.F.; Yao, K.; Chen, S.; Wu, F.; Duan, Y.H.; Yin, Y.L. Effects of dietary protein restriction on muscle fiber characteristics and mTORC1 pathway in the skeletal muscle of growing-finishing pigs. J. Anim. Sci. Biotech., 2016, 7, 8.
[53]
Duan, Y.H.; Guo, Q.P.; Wen, C.Y.; Wang, W.L.; Li, Y.H.; Tan, B.; Li, F.N.; Yin, Y.L. Free amino acid profile and expression of genes implicated in protein metabolism in skeletal muscle of growing pigs fed low-protein diets supplemented with branched-chain amino acids. J. Agric. Food Chem., 2016, 64, 9390-9400.
[54]
Han, M.; Song, P.; Huang, C.; Rezaei, A.; Brown, M.A.; Ma, X. Dietary grape seed proanthocyanidins (GSPs) improve weaned intestinal microbiota and mucosal barrier using a piglet model. Oncotarget, 2016, 7, 80313-80326.
[55]
Zhang, S.H.; Chu, L.C.; Qiao, S.Y.; Mao, X.B.; Zeng, X.F. Effects of dietary leucine supplementation in low crude protein diets on performance, nitrogen balance, whole-body protein turnover, carcass characteristics and meat quality of finishing pigs. Anim. Sci. J., 2016, 87, 911-920.
[56]
Zheng, L.F.; Wei, H.K.; He, P.L.; Zhao, S.J.; Xiang, Q.H.; Pang, J.M.; Peng, J. Effects of supplementation of branched-chain amino acids to reduced-protein diet on skeletal muscle protein synthesis and degradation in the fed and fasted states in a piglet model. Nutrients, 2017, 9(1), 17.
[57]
Yi, X.W.; Zhang, S.R.; Yang, Q.A.; Yin, H.H.; Qiao, S.Y. Influence of dietary net energy content on performance of growing pigs fed low crude protein diets supplemented with crystalline amino acids. J. Swine Health Prod., 2010, 18(6), 294-300.
[58]
Chen, H.; Yi, X.; Zhang, G.; Lu, N.; Chu, L.; Thacker, P.A.; Qiao, S. Studies on reducing nitrogen excretion: .net energy requirement of finishing pigs maximizing performance and carcass quality fed low crude protein diets supplemented with crystalline amino acids. . Anim. Husbandry Biotechno. J., 2011, 02(2), 84-93.
[59]
Zhang, G.J.; Yi, X.W.; Chu, L.C.; Lu, N.; John, H.; Qiao, S.Y. Effects of dietary net energy density and standardized ileal digestible lysine: net energy ratio on the performance and carcass characteristic of growing-finishing pigs fed low crude protein supplemented with crystalline amino acids diets.. Agr. Sci. China, 2011, 10(4), 602-610.
[60]
Ma, W.F.; Zeng, X.F.; Liu, X.T.; Xie, C.Y.; Zhang, G.J.; Zhang, S.H.; Qiao, S.Y. Estimation of the standardized ileal digestible lysine requirement and the ideal ratio of threonine to lysine for late finishing gilts fed low crude protein diets supplemented with crystalline amino acids. Anim. Feed Sci. Technol., 2015, 201, 46-56.
[61]
Zhang, G.J.; Song, Q.L.; Xie, C.Y.; Chu, L.C.; Thacker, P.A.; Htoo, J.K.; Qiao, S.Y. Estimation of the ideal standardized ileal digestible tryptophan to lysine ratio for growing pigs fed low crude protein diets supplemented with crystalline amino acids. Livest. Sci., 2012, 149(3), 260-266.
[62]
Ma, W.F.; Zhang, S.H.; Zeng, X.F.; Liu, X.T.; Xie, C.Y.; Zhang, G.J.; Qiao, S.Y. The appropriate standardized ileal digestible tryptophan to lysine ratio improves pig performance and regulates hormones and muscular amino acid transporters in late finishing gilts fed low-protein diets. J. Anim. Sci., 2015, 93(3), 1052-1060.
[63]
Wessels, A.G.; Kluge, H.; Mielenz, N.; Corrent, E.; Bartelt, J.; Stangl, G.I. Estimation of the leucine and histidine requirements for piglets fed a low-protein diet. Animal, 2016, 10(11), 1803-1811.
[64]
Gloaguen, M.; Le Floc’h, N.; Primot, Y.; Corrent, E.; van Milgen, J. Performance of piglets in response to the standardized ileal digestible phenylalanine and tyrosine supply in low-protein diets. Animal, 2014, 8(9), 1412-1419.
[65]
Nutrient Requirements of Swine: Tenth Revised Edition, by Subcommittee on Swine Nutrition, Committee on Animal Nutrition and National Research Council, 1998.
[66]
Nutrient Requirements of Swine: Eleventh Revised Edition, by Subcommittee on Swine Nutrition, Committee on Animal Nutrition and National Research Council, 2012.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy