[1]
Berger EA, Doms RW, Fenyo EM, et al. A new classification for HIV-1. Nature 1998; 391(6664): 240.
[2]
Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Sci 1996; 272(5270): 1955-8.
[3]
Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272(5263): 872-7.
[4]
Surdo M, Balestra E, Saccomandi P, et al. Inhibition of dual/mixed tropic HIV-1 isolates by CCR5-inhibitors in primary lymphocytes and macrophages. PLoS One 2013; 8(7): e68076.
[5]
Xiang SH, Pacheco B, Bowder D, Yuan W, Sodroski J. Characterization of a dual-tropic human immunodeficiency virus (HIV-1) strain derived from the prototypical X4 isolate HXBc2. Virology 2013; 438(1): 5-13.
[6]
Naif HM. Pathogenesis of HIV Infection. Infect Dis Rep 2013; 5(Suppl. 1): e6.
[7]
Wilen CB, Tilton JC, Doms RW. HIV: Cell binding and entry. Cold Spring Harb Perspect Med 2012; 2(8): a006866.
[8]
de Roda Husman AM, Schuitemaker H. Chemokine receptors and the clinical course of HIV-1 infection. Trends Microbiol 1998; 6(6): 244-9.
[9]
Ross TM, Bieniasz PD, Cullen BR. Role of chemokine receptors in HIV-1 infection and pathogenesis. Adv Virus Res 1999; 52: 233-67.
[10]
Kristiansen TB, Knudsen TB, Eugen-Olsen J. Chemokine receptors and their crucial role in human immunodeficiency virus infection: major breakthroughs in HIV research. Scand J Immunol 1998; 48(4): 339-46.
[11]
Martin-Garcia J, Kolson DL, Gonzalez-Scarano F. Chemokine receptors in the brain: their role in HIV infection and pathogenesis. AIDS 2002; 16(13): 1709-30.
[12]
Suresh P, Wanchu A. Chemokines and chemokine receptors in HIV infection: role in pathogenesis and therapeutics. J Postgrad Med 2006; 52(3): 210-7.
[13]
Gorry PR, Sterjovski J, Churchill M, et al. The role of viral coreceptors and enhanced macrophage tropism in human immunodeficiency virus type 1 disease progression. Sex Health 2004; 1(1): 23-34.
[14]
Burger H, Hoover D. HIV-1 tropism, disease progression, and clinical management. J Infect Dis 2008; 198(8): 1095-7.
[15]
Weiser B, Philpott S, Klimkait T, et al. HIV-1 coreceptor usage and CXCR4-specific viral load predict clinical disease progression during combination antiretroviral therapy. AIDS 2008; 22(4): 469-79.
[16]
Gijsbers EF, van Sighem A, Harskamp AM, et al. The presence of CXCR4-using HIV-1 prior to start of antiretroviral therapy is an independent predictor of delayed viral suppression. PLoS One 2013; 8(10): e76255.
[17]
Brumme ZL, Dong WW, Yip B, et al. Clinical and immunological impact of HIV envelope V3 sequence variation after starting initial triple antiretroviral therapy. AIDS 2004; 18(4): F1-9.
[18]
Seclen E, Soriano V, Gonzalez MM, et al. Impact of baseline HIV-1 tropism on viral response and CD4 cell count gains in HIV-infected patients receiving first-line antiretroviral therapy. J Infect Dis 2011; 204(1): 139-44.
[19]
Waters L, Mandalia S, Randell P, Wildfire A, Gazzard B, Moyle G. The impact of HIV tropism on decreases in CD4 cell count, clinical progression, and subsequent response to a first antiretroviral therapy regimen. Clin Infect Dis 2008; 46(10): 1617-23.
[20]
Lanca AM, Collares JK, Ferreira JL, et al. HIV-1 tropism and CD4 T lymphocyte recovery in a prospective cohort of patients initiating HAART in Ribeirao Preto, Brazil. Mem Inst Oswaldo Cruz 2012; 107(1): 96-101.
[21]
Perry CM. Maraviroc: A review of its use in the management of CCR5-tropic HIV-1 infection. Drugs 2010; 70(9): 1189-213.
[22]
Vandekerckhove LP, Wensing AM, Kaiser R, et al. European guidelines on the clinical management of HIV-1 tropism testing. Lancet Infect Dis 2011; 11(5): 394-407.
[23]
Perez-Olmeda M, Alcami J. Determination of HIV tropism and its use in the clinical practice. Expert Rev Anti Infect Ther 2013; 11(12): 1291-302.
[24]
Poveda E, Alcami J, Paredes R, et al. Genotypic determination of HIV tropism - clinical and methodological recommendations to guide the therapeutic use of CCR5 antagonists. AIDS Rev 2010; 12(3): 135-48.
[25]
Poveda E, Paredes R, Moreno S, et al. Update on clinical and methodological recommendations for genotypic determination of HIV tropism to guide the usage of CCR5 antagonists. AIDS Rev 2012; 14(3): 208-17.
[26]
Parra J, Portilla J, Pulido F, et al. Clinical utility of maraviroc. Clin Drug Investig 2011; 31(8): 527-42.
[27]
Ratcliff AN, Shi W, Arts EJ. HIV-1 resistance to maraviroc conferred by a CD4 binding site mutation in the envelope glycoprotein gp120. J Virol 2013; 87(2): 923-34.
[28]
Surdo M, Alteri C, Puertas MC, et al. Effect of maraviroc on non- R5 tropic HIV-1: refined analysis of subjects from the phase IIb study A4001029. Clin Microbiol Infect 2015; 21(1): 103 e1-6.
[29]
Svicher V, Balestra E, Cento V, et al. HIV-1 dual/mixed tropic isolates show different genetic and phenotypic characteristics and response to maraviroc in vitro. Antiviral Res 2011; 90(1): 42-53.
[30]
Ray N, Doms RW. HIV-1 coreceptors and their inhibitors. Curr Top Microbiol Immunol 2006; 303: 97-120.
[31]
Kagan RM, Johnson EP, Siaw M, et al. A genotypic test for HIV-1 tropism combining Sanger sequencing with ultradeep sequencing predicts virologic response in treatment-experienced patients. PLoS One 2012; 7(9): e46334.
[32]
Cardozo T, Kimura T, Philpott S, Weiser B, Burger H, Zolla-Pazner S. Structural basis for coreceptor selectivity by the HIV type 1 V3 loop. AIDS Res Hum Retroviruses 2007; 23(3): 415-26.
[33]
McGovern RA, Thielen A, Portsmouth S, et al. Population-based
sequencing of the V3-loop can predict the virological response to
maraviroc in treatment-naive patients of the MERIT trial. J Acquir
Immune Defic Syndr (1999). 2012; 61(3): 279-86.
[34]
Swenson LC, Mo T, Dong WW, et al. Deep V3 sequencing for HIV type 1 tropism in treatment-naive patients: a reanalysis of the MERIT trial of maraviroc. Clin Infect Dis 2011; 53(7): 732-42.
[35]
Swenson LC, Mo T, Dong WW, et al. Deep sequencing to infer HIV-1 co-receptor usage: application to three clinical trials of maraviroc in treatment-experienced patients. J Infect Dis 2011; 203(2): 237-45.
[36]
Thompson MA, Aberg JA, Hoy JF, et al. Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society-USA panel. JAMA 2012; 308(4): 387-402.
[37]
Brown J, Burger H, Weiser B, et al. A genotypic HIV-1 proviral DNA coreceptor tropism assay: characterization in viremic subjects. AIDS Res Ther 2014; 11(1): 14.
[38]
Parisi SG, Andreis S, Mengoli C, et al. Baseline cellular HIV DNA load predicts HIV DNA decline and residual HIV plasma levels during effective antiretroviral therapy. J of Clin Microbiol 2012; 50(2): 258-63.
[39]
Soulie C, Fourati S, Lambert-Niclot S, et al. Factors associated with proviral DNA HIV-1 tropism in antiretroviral therapy-treated patients with fully suppressed plasma HIV viral load: implications for the clinical use of CCR5 antagonists. J Antimicrob Chemother 2010; 65(4): 749-51.
[40]
Jensen MA, Coetzer M, van ’t Wout AB, Morris L, Mullins JI. A reliable phenotype predictor for human immunodeficiency virus type 1 subtype C based on envelope V3 sequences. J Virol 2006; 80(10): 4698-704.
[41]
Lengauer T, Sander O, Sierra S, Thielen A, Kaiser R. Bioinformatics prediction of HIV coreceptor usage. Nat Biotechnol 2007; 25(12): 1407-10.
[42]
Zhang H, Tully DC, Zhang T, Moriyama H, Thompson J, Wood C. Molecular determinants of HIV-1 subtype C coreceptor transition from R5 to R5X4. Virology 2010; 407(1): 68-79.
[43]
Groenink M, Andeweg AC, Fouchier RA, et al. Phenotype-associated env gene variation among eight related human immunodeficiency virus type 1 clones: evidence for in vivo recombination and determinants of cytotropism outside the V3 domain. J Virol 1992; 66(10): 6175-80.
[44]
Monno L, Saracino A, Scudeller L, et al. Impact of mutations outside the V3 region on coreceptor tropism phenotypically assessed in patients infected with HIV-1 subtype B. Antimicrob Agents Chemother 2011; 55(11): 5078-84.
[45]
Zhang J, Gao X, Martin J, et al. Evolution of coreceptor utilization to escape CCR5 antagonist therapy. Virol 2016; 494: 198-214.
[46]
Ceresola ER, Nozza S, Sampaolo M, et al. Performance of commonly used genotypic assays and comparison with phenotypic assays of HIV-1 coreceptor tropism in acutely HIV-1-infected patients. J Antimicrob Chemother 2015; 70(5): 1391-5.
[47]
Raymond S, Delobel P, Mavigner M, et al. Development and performance of a new recombinant virus phenotypic entry assay to determine HIV-1 coreceptor usage. J Clin Virol 2010; 47(2): 126-30.
[48]
Low AJ, Swenson LC, Harrigan PR. HIV coreceptor phenotyping in the clinical setting. AIDS Rev 2008; 10(3): 143-51.
[49]
Braun P, Wiesmann F. Phenotypic assays for the determination of coreceptor tropism in HIV-1 infected individuals. Eur J Med Res 2007; 12(9): 463-72.
[50]
Kalu AW, Telele NF, Gebreselasie S, et al. Prediction of coreceptor usage by five bioinformatics tools in a large Ethiopian HIV-1 subtype C cohort. PLoS One 2017; 12(8): e0182384.
[51]
Siddik AB, Haas A, Rahman MS, et al. Phenotypic co-receptor tropism and Maraviroc sensitivity in HIV-1 subtype C from East Africa. Sci Rep 2018; 8(1): 2363.
[52]
Gupta S, Neogi U, Srinivasa H, Banerjea AC, Shet A. HIV-1 coreceptor tropism in India: increasing proportion of X4-tropism in subtype C strains over two decades. J Acquir Immune Defic Syndr 2014; 65(4): 397-404.
[53]
Ashokkumar M, Aralaguppe SG, Tripathy SP, Hanna LE, Neogi U. Unique Phenotypic Characteristics of Recently Transmitted HIV-1 Subtype C Envelope Glycoprotein gp120: Use of CXCR6 Coreceptor by Transmitted Founder Viruses. J Virol 2018; 92(9): e00063-18.
[54]
Edwards S, Stucki H, Bader J, et al. A diagnostic HIV-1 tropism system based on sequence relatedness. J of Clin Microbiol 2015; 53(2): 597-610.
[55]
Sarzotti-Kelsoe M, Bailer RT, Turk E, et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J Immunol Methods 2014; 409: 131-46.
[56]
Pankaj K. Methods for Rapid Virus Identification and Quantification. Mater Methods 2013; 3: 207.
[57]
Wulff NH, Tzatzaris M, Young PJ. Monte Carlo simulation of the Spearman-Kaerber TCID50. J Clin Bioinforma 2012; 2(1): 5.
[58]
Cashin K, Gray LR, Harvey KL, et al. Reliable genotypic tropism tests for the major HIV-1 subtypes. Sci Rep 2015; 5: 8543.
[59]
Raymond S, Delobel P, Mavigner M, et al. Correlation between genotypic predictions based on V3 sequences and phenotypic determination of HIV-1 tropism. AIDS 2008; 22(14): F11-6.
[60]
Mulinge M, Lemaire M, Servais JY, et al. HIV-1 tropism determination using a phenotypic Env recombinant viral assay highlights overestimation of CXCR4-usage by genotypic prediction algorithms for CRF01_AE and CRF02_AG. PLoS One 2013; 8(5): e60566. [corrected].
[61]
Gupta S, Neogi U, Srinivasa H, Shet A. Performance of genotypic
tools for prediction of tropism in HIV-1 subtype C V3 loop sequences.
Intervirology 2015; 58(1): 1-5.
[62]
Tremblay C, Hardy I, Lalonde R, et al. HIV-1 tropism testing and clinical management of CCR5 antagonists: Quebec review and recommendations. Can J Infect Dis Med Microbiol 2013; 24(4): 202-8.
[63]
Delgado E, Fernandez-Garcia A, Vega Y, et al. Evaluation of genotypic tropism prediction tests compared with in vitro co-receptor usage in HIV-1 primary isolates of diverse subtypes. J Antimicrob Chemother 2012; 67(1): 25-31.
[64]
Abebe A, Demissie D, Goudsmit J, et al. HIV-1 subtype C syncytium- and non-syncytium-inducing phenotypes and coreceptor usage among Ethiopian patients with AIDS. AIDS 1999; 13(11): 1305-11.
[65]
Bjorndal A, Sonnerborg A, Tscherning C, Albert J, Fenyo EM. Phenotypic characteristics of human immunodeficiency virus type 1 subtype C isolates of Ethiopian AIDS patients. AIDS Res Hum Retroviruses 1999; 15(7): 647-53.
[66]
Kalu AW, Telele NF, Gebreselasie S, et al. Monophylogenetic HIV-1C epidemic in Ethiopia is dominated by CCR5-tropic viruses-an analysis of a prospective country-wide cohort. BMC Infect Dis 2017; 17(1): 37.
[67]
Symons J, van Lelyveld SF, Hoepelman AI, et al. Maraviroc is able to inhibit dual-R5 viruses in a dual/mixed HIV-1-infected patient. J Antimicrob Chemother 2011; 66(4): 890-5.