Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Synthesis of Lignin-Based Polyurethanes: A Mini-Review

Author(s): Júlia Rocha Gouveia, Cleber Lucius da Costa, Lara Basílio Tavares and Demetrio Jackson dos Santos*

Volume 16, Issue 4, 2019

Page: [345 - 352] Pages: 8

DOI: 10.2174/1570193X15666180514125817

Price: $65

Abstract

Lignin is a natural polymer composed primarily of phenylpropanoid structures with an abundance of reactive groups: aliphatic and aromatic hydroxyls, phenols, and carbonyls. Considering the large quantity of hydroxyl groups, lignin has significant potential as a replacement for petroleum-based polyols in polyurethane (PU) synthesis and as a value-added, renewable raw material for this purpose. Several methods of lignin-based polyurethane synthesis are reviewed in this paper for reactive and thermoplastic systems: direct lignin incorporation, chemical lignin modification and depolymerization. Despite the unmodified lignin low reactivity towards diisocyanates, its direct incorporation as polyol generates highly brittle PUs, but with proper performance when applied as adhesive for wood. PU brittleness can be reduced employing polyols obtained from lignin/chain extender blends, in which glass transition temperature (Tg), mechanical properties and PU homogeneity are strongly affected by lignin content. The potential applications of lignin can be enhanced by lignin chemical modifications, including oxyalkylation and depolymerization, improving polyurethanes properties. Another PU category, lignin- based thermoplastic polyurethane (LTPU) synthesis, emerges as a sustainable alternative and is also presented in this work.

Keywords: Lignin, polyurethanes, organic synthesis, thermoplastic, depolymerization, lignin modification.

Graphical Abstract

[1]
Zimmer, B.; Nies, C.; Schmitt, C.; Possart, W. Chemistry, polymer dynamics and mechanical properties of a two-part polyurethane elastomer during and after crosslinking. Part I: Dry conditions. Polymer, 2017, 115, 77-95.
[2]
Singh, R.; Kukrety, A.; Chouhan, A.; Atray, N.; Ray, S. Recent progress in the preparation of eco-friendly lubricant and fuel additives through organic transformations of biomaterials. Mini Rev. Org. Chem., 2017, 14(1), 44-55.
[3]
Deligeorgiev, T.; Gadjev, N.; Vasilev, A.; Kaloyanova, S.; Vaquero, J.J.; Builla-Alvarez, J. Green chemistry in organic synthesis. Mini Rev. Org. Chem., 2010, 7(1), 44-53.
[4]
Meyer, H.P.; Turner, N.J. Biotechnological manufacturing options for organic chemistry. Mini Rev. Org. Chem., 2009, 6(4), 300-306.
[5]
Fan, S.; Zhang, P.; Li, F.; Jin, S.; Wang, S.; Zhou, S. A review of lignocellulose change during hydrothermal pretreatment for bioenergy production. Curr. Org. Chem., 2016, 20(26), 2799-2809.
[6]
Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; Langan, P.; Naskar, A.K.; Saddler, J.N.; Tschaplinski, T.J.; Tuskan, G.A.; Wyman, C.E. Lignin valorization: Improving lignin processing in the biorefinery. Science, 2014, 344(6185), 1246843.
[7]
Doherty, W.O.S.; Mousavioun, P.; Fellows, C.M. Value-adding to cellulosic ethanol: Lignin polymers. Ind. Crops Prod., 2011, 33(2), 259-276.
[8]
Naseem, A.; Tabasum, S.; Zia, K.M.; Zuber, M.; Ali, M.; Noreen, A. Lignin-derivatives based polymers, blends and composites: A review. Int. J. Biol. Macromol., 2016, 93, 296-313.
[9]
Ponomarenko, J.; Dizhbite, T.; Lauberts, M.; Volperts, A.; Dobele, G.; Telysheva, G. Analytical pyrolysis. A tool for revealing of lignin structure-antioxidant activity relationship. J. Anal. Appl. Pyrol, 2015, 113, 360-369.
[10]
Kai, D.; Tan, M.J.; Chee, P.L.; Chua, Y.K.; Yap, Y.L.; Loh, X.J. Towards lignin-based functional materials in a sustainable world. Green Chem., 2016, 18(5), 1175-1200.
[11]
Ten, E.; Vermerris, W. Recent developments in polymers derived from industrial lignin. J. Appl. Polym. Sci., 2015, 132(24), 1-13.
[12]
Lora, J.H.; Glasser, W.G. Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. J. Polym. Environ., 2002, 10(1-2), 39-48.
[13]
Neumann, G.T.; Pimentel, B.R.; Rensel, D.J.; Hicks, J.C. Correlating lignin structure to aromatic products in the catalytic fast pyrolysis of lignin model compounds containing β–O–4 linkages. Catal. Sci. Technol., 2014, 4(11), 3953-3963.
[14]
Laurichesse, S.; Avérous, L. Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci., 2014, 39(7), 1266-1290.
[15]
Saraf, V.P.; Glasser, W.G. Engineering plastics from lignin. III. Structure property relationships in solution cast polyurethane films. J. Appl. Polym. Sci., 1984, 29(5), 1831-1841.
[16]
Silva, E.A.B.; Zabkova, M.; Araújo, J.D.; Cateto, C.A.; Barreiro, M.F.; Belgacem, M.N.; Rodrigues, A.E. An integrated process to produce vanillin and lignin-based polyurethanes from kraft lignin. Chem. Eng. Res. Des., 2009, 87(9), 1276-1292.
[17]
Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C. Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: A review. Renew. Sustain. Energy Rev., 2016, 60, 317-329.
[18]
Upton, B.M.; Kasko, A.M. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective. Chem. Rev., 2016, 116(4), 2275-2306.
[19]
Sen, S.; Patil, S.; Argyropoulos, D.S. Thermal properties of lignin in copolymers, blends, and composites: A review. Green Chem., 2015, 17(11), 4862-4887.
[20]
Wang, Y.; Cai, C.M. Recent advances in lignin-based polyurethanes. TAPPI J., 2017, 16(4), 203-207.
[21]
Griffini, G.; Passoni, V.; Suriano, R.; Levi, M.; Turri, S. Polyurethane coatings based on chemically unmodified fractionated lignin. ACS Sustain. Chem.& Eng., 2015, 3(6), 1145-1154.
[22]
Janik, H.; Sienkiewicz, M.; Kucinska-Lipka, J. Polyurethanes. In: Handbook of Thermoset Plastics; Dodiuk, H.; Goodman, S.H., Eds.; Elsevier: San DIego, 2014; p. 217.
[23]
Luo, J.; Luo, J.; Yuan, C.; Zhang, W.; Li, J.; Gao, Q.; Chen, H. An eco-friendly wood adhesive from soy protein and lignin: Performance properties. RSC Adv, 2015, 5(122), 100849-100855.
[24]
Zhao, M.; Jing, J.; Zhu, Y.; Yang, X.; Wang, X.; Wang, Z. Preparation and performance of lignin-phenol-formaldehyde adhesives. Int. J. Adhes. Adhes., 2016, 64, 163-167.
[25]
Anh, P.T.; Jian, L.; Jin‐Zhen, C. Fabrication and characterization of isolated lignin as adhesive for three‐ply plywood. Polym. Compos., 2018, 39(2), 484-490.
[26]
Nacas, A.M.; Ito, N.M.; Sousa, R.R.D.; Spinacé, M.A.; Dos Santos, D.J. Effects of NCO:OH ratio on the mechanical properties and chemical structure of kraft lignin-based polyurethane adhesive. J. Adhes., 2017, 93(1-2), 18-29.
[27]
Avelino, F.; Almeida, S.L.; Duarte, E.B. Thermal and mechanical properties of coconut shell lignin-based polyurethanes synthesized by solvent-free polymerization. J. Mater. Sci., 2018, 53(2), 1470-1486.
[28]
Xue, B.L.; Wen, J.L.; Sun, R.C. Lignin-based rigid polyurethane foam reinforced with pulp fiber: Synthesis and characterization. ACS Sustain. Chem. Eng., 2014, 2(6), 1474-1480.
[29]
Carriço, C.S.; Fraga, T.; Pasa, V.M.D. Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur. Polym. J., 2016, 85, 53-61.
[30]
Cinelli, P.; Anguillesi, I.; Lazzeri, A. Green synthesis of flexible polyurethane foams from liquefied lignin. Eur. Polym. J., 2013, 49(6), 1174-1184.
[31]
Tavares, L.B. Bio-based polyurethane prepared from kraft lignin and modified castor oil. Express Polym. Lett., 2016, 10(11), 927-940.
[32]
Chung, H.; Washburn, N.R. Improved lignin polyurethane properties with lewis acid treatment. ACS Appl. Mater. Interf, 2012, 4(6), 2840-2846.
[33]
Sadeghifar, H.; Cui, C.; Argyropoulos, D.S. Toward thermoplastic lignin polymers. Part 1. Selective masking of phenolic hydroxyl groups in kraft lignins via methylation and oxypropylation chemistries. Ind. Eng. Chem. Res., 2012, 51(51), 16713-16720.
[34]
Wu, L.C.; Glasser, W.G. Engineering plastics from lignin. I. Synthesis of hydroxypropyl lignin. J. Appl. Polym. Sci., 1984, 29(4), 1111-1123.
[35]
Glasser, W.G.; Barnett, C.A.; Rials, T.G.; Saraf, V.P. Engineering plastics from lignin II. Characterization of hydroxyalkyl lignin derivatives. J. Appl. Polym. Sci., 1984, 29(5), 1815-1830.
[36]
Cateto, C.A.; Barreiro, M.F.; Rodrigues, A.E.; Belgacem, M.N. Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind. Eng. Chem. Res., 2009, 48(5), 2583-2589.
[37]
Cateto, C.A.; Barreiro, M.F.; Ottati, C.; Lopretti, M.; Rodrigues, A.E.; Belgacem, M.N. Lignin-based rigid polyurethane foams with improved biodegradation. J. Cell. Plast., 2013, 50(1), 81-95.
[38]
Nadji, H.; Bruzzèse, C.; Belgacem, M.N.; Benaboura, A.; Gandini, A. Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol. Mater. Eng., 2005, 290(10), 1009-1016.
[39]
Li, Y.; Ragauskas, A.J. Kraft lignin-based rigid polyurethane foam. J. Wood Chem. Technol., 2012, 32(3), 210-224.
[40]
Bernardini, J.; Cinelli, P.; Anguillesi, I.; Coltelli, M.B.; Lazzeri, A. Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur. Polym. J., 2015, 64, 147-156.
[41]
Kühnel, I.; Podschun, J.; Saake, B.; Lehnen, R. Synthesis of lignin polyols via oxyalkylation with propylene carbonate. Holzforschung, 2015, 69(5), 531-538.
[42]
Kühnel, I.; Saake, B.; Lehnen, R. Oxyalkylation of lignin with propylene carbonate: Influence of reaction parameters on the ensuing bio-based polyols. Ind. Crops Prod., 2017, 101, 75-83.
[43]
Silva, E.A.B.D.; Zabkova, M.; Araújo, J.D.; Cateto, C.A.; Barreiro, M.F.; Belgacem, M.N.; Rodrigues, A.E. An integrated process to produce vanillin and lignin-based polyurethanes from kraft lignin. Chem. Eng. Res. Des., 2009, 87(9), 1276-1292.
[44]
Pandey, M.P.; Kim, C.S. Lignin depolymerization and conversion: A review of thermochemical methods. Chem. Eng. Technol., 2011, 34(1), 29-41.
[45]
Sun, Z.; Fridrich, B.; De Santi, A.; Elangovan, S.; Barta, K. Bright side of lignin depolymerization: Toward new platform chemicals. Chem. Rev., 2017, 118(2), 614-678.
[46]
Xu, C.; Arancon, R.A.D.; Labidi, J.; Luque, R. Lignin depolymerisation strategies: Towards valuable chemicals and fuels. Chem. Soc. Rev., 2014, 43(22), 7485-7500.
[47]
Yang, G.; Jahan, M.S.; Ni, Y. Structural characterization of pre-hydrolysis liquor lignin and its comparison with other technical lignins. Curr. Org. Chem., 2013, 17(15), 1589-1595.
[48]
Perchyonok, V.T.; Lykakis, I.N. Recent advances in free radical chemistry of C-C bond formation in aqueous media: From mechanistic origins to applications. Mini Rev. Org. Chem., 2008, 5, 19-32.
[49]
Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C.C. Production of polyols via direct hydrolysis of kraft lignin: Optimization of process parameters. Bioresour. Technol., 2014, 4(2), 44-51.
[50]
Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C. Preparation of bio-based rigid polyurethane foam using hydrolytically depolymerized kraft lignin via direct replacement or oxypropylation. Eur. Polym. J., 2015, 68, 1-9.
[51]
Xue, B.L.; Huang, P.L.; Sun, Y.C.; Li, X.P.; Sun, R.C. Hydrolytic depolymerization of corncob lignin in the view of a bio-based rigid polyurethane foam synthesis. RSC Adv, 2017, 7(10), 6123-6130.
[52]
Li, H.; Sun, J.; Wang, C.; Liu, S.; Yuan, D. Modulus, strength, and toughness polyurethane elastomer based on unmodified lignin. ACS Sustain. Chem. Eng., 2017, 5(9), 7942-7949.
[53]
Yilgör, I.; Yilgör, E.; Wilkes, G.L. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer , 2015, 58, A1-A36.
[54]
Li, X.; Stribeck, A.; Schulz, I.; Pöselt, E.; Eling, B.; Hoell, A. Nanostructure of thermally aged thermoplastic polyurethane and its evolution under strain. Eur. Polym. J., 2016, 81, 569-581.
[55]
Saralegi, A.; Rueda, L.; Fernández-D’Arlas, B.; Mondragon, I.; Eceiza, A.; Corcuera, M.A. Thermoplastic polyurethanes from renewable resources: Effect of soft segment chemical structure and molecular weight on morphology and final properties. Polym. Int., 2013, 62(1), 106-115.
[56]
Zia, K.M.; Bhatti, H.N.; Ahmad Bhatti, I. Methods for polyurethane and polyurethane composites, recycling and recovery: A review. React. Funct. Polym., 2007, 67(8), 675-692.
[57]
Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Islam, M.R.; Jeyaratnam, N.; Yuvaraj, A.R. Polyurethane types, synthesis and applications. A review. RSC Adv, 2016, 6(115), 114453-114482.
[58]
Jakab, B.E.; Faix, O.; Till, F.; Szekely, T. Thermogravimetry / mass spectrometry of various lignosulfonates as well as of a kraft and acetosolv lignin. Holzforschung, 1991, 45(5), 355-360.
[59]
Cui, C.; Sadeghifar, H.; Sen, S.; Argyropoulos, D.S. Toward thermoplastic lignin polymers; Part II: Thermal & polymer characteristics of kraft lignin & derivatives. BioResour, 2013, 8(1), 864-886.
[60]
Sen, S.; Patil, S.; Argyropoulos, D.S. Methylation of softwood kraft lignin with dimethyl carbonate. Green Chem., 2015, 17, 1077-1087.
[61]
Saito, T.; Perkins, J.H.; Jackson, D.C.; Trammel, N.E.; Hunt, M.A.; Naskar, A.K. Development of lignin-based polyurethane thermoplastics. RSC Adv, 2013, 3(44), 21832.
[62]
Laurichesse, S.; Huillet, C.; Avérous, L. Original polyols based on organosolv lignin and fatty acids: New bio-based building blocks for segmented polyurethanes synthesis. Green Chem., 2014, 16, 3958-3970.
[63]
Jeong, H.; Park, J.; Kim, S.; Lee, J.; Ahn, N.; Roh, H. Preparation and characterization of thermoplastic polyurethanes using partially acetylated kraft lignin. Fibers Polym., 2013, 14(7), 1082-1093.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy