Review Article

Aporphines和阿尔茨海默氏病:面向未来的医学方法

卷 26, 期 18, 2019

页: [3253 - 3259] 页: 7

弟呕挨: 10.2174/0929867325666180514102933

价格: $65

摘要

阿尔茨海默氏病(AD)是一种神经退行性疾病,会逐渐减少中枢神经系统(CNS)内部的部分认知,并影响忍受这种疾病的患者的记忆和情绪。 根据所用化合物的不同,已经在具有不同疾病进展等级的患者中评估了许多药物,其结果各不相同。 其中一些提供依赖性,而其他一些则具有影响情感部分和治疗经济成本的副作用。 天然产物已经多样化了其治疗用途,并且已经根据其易于医疗管理和生物利用度而用于AD的治疗。 在这篇综述中,从本质上讲,在自然界中使用紫杉醇治疗从自然和/或合成来源分离的生物碱主要用作胆碱酯酶抑制剂(乙酰胆碱酯酶和丁酰胆碱酯酶),例如加兰他敏,尽管有人质疑其用途。 稍微有效或微不足道。Aporphines的使用提供了产生具有复杂性的含氮化学结构的新疗法的可能性,并且在本综述中比较侧重于实际治疗范围。

关键词: Aporphines

[1]
Alzheimer’s Association 2014 Alzheimer’s disease facts and figures. Alzheimers Dement., 2014, 10(2), e47-e92.
[http://dx.doi.org/10.1016/j.jalz.2014.02.001] [PMID: 24818261]
[2]
Tanzi, R.E.; Bertram, L. Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell, 2005, 120(4), 545-555.
[http://dx.doi.org/10.1016/j.cell.2005.02.008] [PMID: 15734686]
[3]
World Health Organization and Alzheimer’s Disease InternationalDementia: a public health priority; , 2012, pp. 1- 102.ISBN: 978 92 4 1564458.
[4]
Götz, J.; Ittner, L.M. Animal models of Alzheimer’s disease and frontotemporal dementia. Nat. Rev. Neurosci., 2008, 9(7), 532-544.
[http://dx.doi.org/10.1038/nrn2420] [PMID: 18568014]
[5]
Pohanka, M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap., 2011, 155, 219-229.
[http://dx.doi.org/10.5507/bp.2011.036] [PMID: 22286807]
[6]
Pohanka, M.; Adam, V.; Kizek, R. An acetylcholinesterase-based chronoamperometric biosensor for fast and reliable assay of nerve agents. Sensors (Basel), 2013, 13(9), 11498-11506.
[http://dx.doi.org/10.3390/s130911498] [PMID: 23999806]
[7]
Scarpini, E.; Scheltens, P.; Feldman, H. Treatment of Alzheimer’s disease: current status and new perspectives. Lancet Neurol., 2003, 2(9), 539-547.
[http://dx.doi.org/10.1016/S1474-4422(03)00502-7] [PMID: 12941576]
[8]
Muñoz-Torrero, D. Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer’s disease. Curr. Med. Chem., 2008, 15(24), 2433-2455.
[http://dx.doi.org/10.2174/092986708785909067] [PMID: 18855672]
[9]
Terry, A.V. Jr. Buccafusco, J.J. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther., 2003, 306(3), 821-827.
[http://dx.doi.org/10.1124/jpet.102.041616] [PMID: 12805474]
[10]
Chen, Y.; Xu, X.; Fu, T.; Li, W.; Liu, Z.; Sun, H. Discovery of new scaffolds from approved drugs as acetylcholinesterase inhibitors. RSC Advances, 2015, 5, 90288-90294.
[http://dx.doi.org/10.1039/C5RA19551A]
[11]
Pohanka, M. Copper, aluminum, iron and calcium inhibit human acetylcholinesterase in vitro. Environ. Toxicol. Pharmacol., 2014, 37(1), 455-459.
[http://dx.doi.org/10.1016/j.etap.2014.01.001] [PMID: 24473150]
[12]
Luo, Z.; Sheng, J.; Sun, Y.; Lu, C.; Yan, J.; Liu, A.; Luo, H.B.; Huang, L.; Li, X. Synthesis and evaluation of multi-target-directed ligands against Alzheimer’s disease based on the fusion of donepezil and ebselen. J. Med. Chem., 2013, 56(22), 9089-9099.
[http://dx.doi.org/10.1021/jm401047q] [PMID: 24160297]
[13]
Yang, Z.; Song, Z.; Xue, W.; Sheng, J.; Shu, Z.; Shi, Y.; Liang, J.; Yao, X. Synthesis and structure-activity relationship of nuciferine derivatives as potential acetylcholinesterase inhibitors. Med. Chem. Res., 2014, 23, 3178-3186.
[http://dx.doi.org/10.1007/s00044-013-0905-9]
[14]
Ribarič, S. The pharmacological properties and therapeutic use of apomorphine. Molecules, 2012, 17(5), 5289-5309.
[http://dx.doi.org/10.3390/molecules17055289] [PMID: 22565480]
[15]
Cometa, M.F.; Fortuna, S.; Palazzino, G.; Volpe, M.T.; Rengifo Salgado, E.; Nicoletti, M.; Tomassini, L. New cholinesterase inhibiting bisbenzylisoquinoline alkaloids from Abuta grandifolia. Fitoterapia, 2012, 83(3), 476-480.
[http://dx.doi.org/10.1016/j.fitote.2011.12.015] [PMID: 22230193]
[16]
Tang, H.; Zhao, L-Z.; Zhao, H-T.; Huang, S-L.; Zhong, S-M.; Qin, J-K.; Chen, Z-F.; Huang, Z-S.; Liang, H. Hybrids of oxoisoaporphine-tacrine congeners: novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors. Eur. J. Med. Chem., 2011, 46(10), 4970-4979.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.002] [PMID: 21871694]
[17]
(a) aLi, Y-P.; Ning, F-X.; Yang, M-B.; Li, Y-C.; Nie, M-H.; Ou, T-M.; Tan, J-H.; Huang, S-L.; Li, D.; Gu, L-Q.; Huang, Z.S. Syntheses and characterization of novel oxoisoaporphine derivatives as dual inhibitors for cholinesterases and amyloid beta aggregation. Eur. J. Med. Chem., 2011, 46 (5), 1572-1572.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.005] [PMID: 21367493]
(b) Tang, H.; Zhao, H-T.; Zhong, S-M.; Wang, ZY.; Chen, Z-F.; Liang, H. Novel oxoisoaporphine-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase- induced beta-amyloid aggregation. Bioorg. Med. Chem. Lett., 2012, 22(6), 2257-2261.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.090] [PMID: 22341944]
[18]
Tang, H.; Wei, Y-B.; Zhang, C.; Ning, F-X.; Qiao, W.; Huang, S-L.; Ma, L.; Huang, Z-S.; Gu, L-Q. Synthesis, biological evaluation and molecular modeling of oxoisoaporphine and oxoaporphine derivatives as new dual inhibitors of acetylcholinesterase/butyrylcholinesterase. Eur. J. Med. Chem., 2009, 44(6), 2523-2532.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.021] [PMID: 19243862]
[19]
Prado-Prado, F.; García-Mera, X.; Escobar, M.; Sobarzo-Sánchez, E.; Yañez, M.; Riera-Fernandez, P.; González-Díaz, H.; Riera-Fernandez, P. 2D MI-DRAGON: a new predictor for protein-ligands interactions and theoretic-experimental studies of US FDA drug-target network, oxoisoaporphine inhibitors for MAO-A and human parasite proteins. Eur. J. Med. Chem., 2011, 46(12), 5838-5851.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.045] [PMID: 22005185]
[20]
Pecic, S.; McAnuff, M.A.; Harding, W.W. Nantenine as an acetylcholinesterase inhibitor: SAR, enzyme kinetics and molecular modeling investigations. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 46-55.
[http://dx.doi.org/10.3109/14756361003671078] [PMID: 20583856]
[21]
Jung, H.A.; Min, B-S.; Yokozawa, T.; Lee, J-H.; Kim, Y.S.; Choi, J.S. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biol. Pharm. Bull., 2009, 32(8), 1433-1438.
[http://dx.doi.org/10.1248/bpb.32.1433] [PMID: 19652386]
[22]
Lashuel, H.A.; Hartley, D.M.; Balakhaneh, D.; Aggarwal, A.; Teichberg, S.; Callaway, D.J.E. New class of inhibitors of amyloid-beta fibril formation. Implications for the mechanism of pathogenesis in Alzheimer’s disease. J. Biol. Chem., 2002, 277(45), 42881-42890.
[http://dx.doi.org/10.1074/jbc.M206593200] [PMID: 12167652]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy