[1]
American Diabetes Association. Standards of medical care in diabetes-2009. Diabetes Care, 2009, 32(Suppl. 1), S13-S61.
[2]
Scheen, A.J. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet., 1996, 30(5), 359-371.
[3]
Sirtori, C.R.; Franceschini, G.; Galli-Kienle, M.; Cighetti, G.; Galli, G.; Bondioli, A. Disposition of metformin (N,N-dimethylbigu-anide) in man. Clin. Pharmacol. Ther., 1978, 24(6), 683-693.
[4]
Pentikainen, P.J.; Neuvonen, P.J.; Penttila, A. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur. J. Clin. Pharmacol., 1979, 16(3), 195-202.
[5]
Tucker, G.T.; Casey, C.; Phillips, P.J.; Connor, H.; Ward, J.D.; Woods, H.F. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br. J. Clin. Pharmacol., 1981, 12(2), 235-246.
[6]
Grover, J.K.; Vats, V.; Rathi, S.S. Anti-hyperglycemic effect of Eugenia jambolana and Tinospora cordifolia in experimental diabetes and their effects on key metabolic enzymes involved in carbohydrate metabolism. J. Ethnopharmacol., 2000, 73(3), 461-470.
[7]
Kumar, R.; Balaji, S.; Uma, T.S.; Sehgal, P.K. Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K. J. Ethnopharmacol., 2009, 126(3), 533-537.
[8]
Oh, W.K.; Lee, C.H.; Lee, M.S.; Bae, E.Y.; Sohn, C.B.; Oh, H. Antidiabetic effects of extracts from Psidium guajava. J. Ethnopharmacol., 2005, 96(3), 411-415.
[9]
Roman-Ramos, R.; Flores-Saenz, J.L.; Alarcon-Aguilar, F.J. Anti-hyperglycemic effect of some edible plants. J. Ethnopharmacol., 1995, 48(1), 25-32.
[10]
Vats, V.; Yadav, S.P.; Grover, J.K. Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin-induced alterations in glycogen content and carbohydrate metabolism in rats. J. Ethnopharmacol., 2004, 90(1), 155-160.
[11]
Kumar, D.; Trivedi, N.; Dixit, R.K. Evaluation of the synergistic effect of Allium sativum, Eugenia jambolana, Momordica charantia, Ocimum sanctum and Psidium guajav on hepatic and intestinal drug metabolizing enzymes in rats. J. Intercult. Ethnopharmacol., 2016, 5(4)
[12]
Bhatta, R.S.; Kumar, D.; Chhonker, Y.S.; Saxena, A.K.; Jain, G.K. Bioanalytical method development and validation of novel antithrombotic agent S002-333 by LC-MS/MS and its application to pharmacokinetic studies. BMC, 2010, 24(11), 1234-1239.
[13]
Kumar, D.; Khanna, A.K.; Pratap, R.; Sexana, J.K.; Bhatta, R.S. Dose escalation pharmacokinetics and lipid lowering activity of a novel farnesoid X receptor modulator: 16-Dehydropregnenolone. Indian J. Pharmacol., 2012, 44(1), 57-62.
[14]
Bhatta, R.S.; Rathi, C.; Chandasana, H.; Kumar, D.; Chhonker, Y.S.; Jain, G.K. LC–MS method for determination of amphotericin B in rabbit tears and its application to ocular pharmacokinetic study. Chroma, 2011, 73(5-6), 487-493.
[15]
Bhatta, R.S.; Chandasana, H.; Rathi, C.; Kumar, D.; Chhonker, Y.S.; Jain, G.K. Bioanalytical method development and validation of natamycin in rabbit tears and its application to ocular pharmacokinetic studies. J. Pharm. Biomed. Anal., 2011, 54(5), 1096-1100.
[16]
Park, J.M.; Moon, C.H.; Lee, M.G. Pharmacokinetic changes of methotrexate after intravenous administration to streptozotocin-induced diabetes mellitus rats. Res. Commun. Mol. Pathol. Pharmacol., 1996, 93(3), 343-352.
[17]
Kim, Y.C.; Lee, A.K.; Lee, J.H.; Lee, I.; Lee, D.C.; Kim, S.H. Pharmacokinetics of theophylline in diabetes mellitus rats: Induction of CYP1A2 and CYP2E1 on 1,3-dimethyluric acid formation. Eur. J. Pharm. Sci., 2005, 26(1), 114-123.
[18]
Bailey, C.J.; Day, C. Metformin: Its botanical background. Prac. Diab. Int, 2004, 21(3), 115-117.
[19]
Hu, Z.; Yang, X.; Ho, P.C.; Chan, S.Y.; Heng, P.W.; Chan, E. Herb-drug interactions: A literature review. Drugs, 2005, 65(9), 1239-1282.
[20]
Singh, R.; Panduri, J.; Kumar, D.; Kumar, D.; Chandsana, H.; Ramakrishna, R. Evaluation of memory enhancing clinically available standardized extract of Bacopa monniera on P-glycoprotein and cytochrome P450 3A in Sprague-Dawley rats. PLoS One, 2013, 8(8), e72517.
[21]
Gohil, K.; Patel, J.A. Herb-drug interactions: A review and study based on assessment of clinical case reports in literature. Ind. J. Pharmacol., 2007, 39(3), 129.
[22]
Kumar, D.; Trivedi, N.; Dixit, R.K. Evaluation of the potential effect of Allium sativum, Momordica charantia, Eugenia jambolana, Ocimum sanctum, and Psidium guajava on intestinal p-glycoprotein in rats. J. Intercult. Ethnopharmacol., 2017, 6(1), 68-74.
[23]
Shimojo, N.; Ishizaki, T.; Imaoka, S.; Funae, Y.; Fuji, S.; Okuda, K. Changes in amounts of cytochrome P450 isozymes and levels of catalytic activities in hepatic and renal microsomes of rats with streptozocin-induced diabetes. Biochem. Pharmacol., 1993, 46(4), 621-627.
[24]
Sakuma, T.; Honma, R.; Maguchi, S.; Tamaki, H.; Nemoto, N. Different expression of hepatic and renal cytochrome P450s between the streptozotocin-induced diabetic mouse and rat. Xenobiotica, 2001, 31(4), 223-237.
[25]
Choi, Y.H.; Lee, M.G. Effects of enzyme inducers and inhibitors on the pharmacokinetics of metformin in rats: Involvement of CYP2C11, 2D1 and 3A1/2 for the metabolism of metformin. Br. J. Pharmacol., 2006, 149(4), 424-430.
[26]
Kimura, N.; Masuda, S.; Tanihara, Y.; Ueo, H.; Okuda, M.; Katsura, T. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab. Pharmacokinet., 2005, 20(5), 379-386.
[27]
Terada, T.; Masuda, S.; Asaka, J.; Tsuda, M.; Katsura, T.; Inui, K. Molecular cloning, functional characterization and tissue distribution of rat H+/organic cation antiporter MATE1. Pharm. Res., 2006, 23(8), 1696-1701.
[28]
Proctor, W.R.; Bourdet, D.L.; Thakker, D.R. Mechanisms underlying saturable intestinal absorption of metformin. Drug Metab. Dispos., 2008, 36(8), 1650-1658.
[29]
Wang, D.S.; Jonker, J.W.; Kato, Y.; Kusuhara, H.; Schinkel, A.H.; Sugiyama, Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J. Pharmacol. Experiment. Therapeut, 2002, 302(2), 510-515.
[30]
Muller, J.; Lips, K.S.; Metzner, L.; Neubert, R.H.; Koepsell, H.; Brandsch, M. Drug specificity and intestinal membrane localization of human Organic Cation Transporters (OCT). Biochem. Pharmacol., 2005, 70(12), 1851-1860.
[31]
Seithel, A.; Karlsson, J.; Hilgendorf, C.; Bjorquist, A.; Ungell, A.L. Variability in mRNA expression of ABC- and SLC-transporters in human intestinal cells: Comparison between human segments and Caco-2 cells. Eur. J. Pharm. Sci., 2006, 28(4), 291-299.
[32]
Masuda, S.; Terada, T.; Yonezawa, A.; Tanihara, Y.; Kishimoto, K.; Katsura, T. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J. Am. Soc. Nephrol., 2006, 17(8), 2127-2135.
[33]
Zhou, M.; Xia, L.; Wang, J. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab. Dispos., 2007, 35(10), 1956-1962.