[1]
Bates, R. Introduction. In: Organic Synthesis Using Transition Metals; John Wiley & Sons, Ltd: New Jersey, 2012; pp. 1-20.
[2]
Wang, D.; Astruc, D. The recent development of efficient earth-abundant transition-metal nanocatalysts. Chem. Soc. Rev., 2017, 46, 816-854.
[3]
Woodward, S. The primary organometallic in copper-catalyzed reactions. In: Copper-Catalyzed Asymmetric Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,, 2014; pp. 3-32.
[4]
Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev., 2016, 116, 3722-3811.
[5]
Allen, S.E.; Walvoord, R.R.; Padilla-Salinas, R.; Kozlowski, M.C. Aerobic copper-catalyzed organic reactions. Chem. Rev., 2013, 113, 6234-6458.
[6]
Stanley, L.M.; Sibi, M.P. Enantioselective copper-catalyzed 1,3-dipolar cycloadditions. Chem. Rev., 2008, 108, 2887-2902.
[7]
Chemler, S.R.; Fuller, P.H. Heterocycle synthesis by copper facilitated addition of heteroatoms to alkenes, alkynes and arenes. Chem. Soc. Rev., 2007, 36, 1153-1160.
[8]
Guo, X.X.; Gu, D.W.; Wu, Z.; Zhang, W. Copper-catalyzed C–H functionalization reactions: Efficient synthesis of heterocycles. Chem. Rev., 2015, 115, 1622-1651.
[9]
Zhang, C.; Tang, C.; Jiao, N. Recent advances in copper-catalyzed dehydrogenative functionalization via a Single Electron Transfer (SET) process. Chem. Soc. Rev., 2012, 41, 3464-3484.
[10]
Wang, Y.; Mo, M.; Zhu, K.; Zheng, C.; Zhang, H.; Wang, W.; Shao, Z. Asymmetric synthesis of syn-propargylamines and unsaturated [beta]-amino acids under Bronsted base catalysis. Nat. Commun., 2015, 6, Article ID 8544.
[11]
Zani, L.; Bolm, C. Direct addition of alkynes to imines and related C[double bond,length as m-dash]N electrophiles: A convenient access to propargylamines. Chem.Comm., 2006, 4263-4275.
[12]
Jiang, B.; Xu, M. Highly enantioselective construction of fused pyrrolidine systems that contain a quaternary stereocenter: Concise formal synthesis of (+)-conessine. Angew. Chem. Int. Ed., 2004, 43, 2543-2546.
[13]
Konishi, M.; Ohkuma, H.; Tsuno, T.; Oki, T.; VanDuyne, G.D.; Clardy, J. Crystal and molecular structure of dynemicin A: A novel 1,5-diyn-3-ene antitumor antibiotic. J. Am. Chem. Soc., 1990, 112, 3715-3716.
[14]
Connolly, P.J.; Wetter, S.K.; Beers, K.N.; Hamel, S.C.; Chen, R.H.K.; Wachter, M.P.; Ansell, J.; Singer, M.M.; Steber, M.; Ritchie, D.M.; Argentieri, D.C. N-Hydroxyurea and hydroxamic acid inhibitors of cyclooxygenase and 5-lipoxygenase. Bioorg. Med. Chem. Lett., 1999, 9, 979-984.
[15]
Trost, B.M.; Chung, C.K.; Pinkerton, A.B. Stereocontrolled total synthesis of (+)-streptazolin by a palladium-catalyzed reductive diyne cyclization. Angew. Chem. Int. Ed., 2004, 43, 4327-4329.
[16]
Yu, P.H.; Davis, B.A.; Boulton, A.A. Aliphatic propargylamines: Potent, selective, irreversible monoamine oxidase B inhibitors. J. Med. Chem., 1992, 35, 3705-3713.
[17]
Naoi, M.; Maruyama, W.; Shamoto-Nagai, M.; Yi, H.; Akao, Y.; Tanaka, M. Oxidative stress in mitochondria. Mol. Neurobiol., 2005, 31, 81-93.
[18]
Uhlig, N.; Yoo, W.J.; Zhao, L.; Li, C.J. Catalytic nucleophilic addition of alkynes to imines: The A3 (Aldehyde–Alkyne–Amine) Coupling. In: Modern Alkyne Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2014; pp. 239-268.
[19]
Lo, V.K.Y.; Liu, Y.; Wong, M.K.; Che, C.M. Gold(III) salen complex-catalyzed synthesis of propargylamines via a three-component coupling reaction. Org. Lett., 2006, 8, 1529-1532.
[20]
Datta, K.K.R.; Reddy, B.V.S.; Ariga, K.; Vinu, A. Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction. Angew. Chem. Int. Ed., 2010, 49, 5961-5965.
[21]
Kidwai, M.; Bansal, V.; Kumar, A.; Mozumdar, S. The first Au-nanoparticles catalyzed green synthesis of propargylamines via a three-component coupling reaction of aldehyde, alkyne and amine. Green Chem., 2007, 9, 742-745.
[22]
Liu, L.; Tai, X.; Zhang, N.; Meng, Q.; Xin, C. Supported Au/MIL-53(Al): A reusable green solid catalyst for the three-component coupling reaction of aldehyde, alkyne, and amine. React. Kinet. Mech. Catal., 2016, 119, 335-348.
[23]
Sarode, P.B.; Bahekar, S.P.; Chandak, H.S. Zn(OTf)2-mediated expeditious and solvent-free synthesis of propargylamines via C–H activation of phenylacetylene. Synlett, 2016, 27, 2209-2212.
[24]
Salam, N.; Sinha, A.; Roy, A.S.; Mondal, P.; Jana, N.R.; Islam, S.M. Synthesis of silver-graphene nanocomposite and its catalytic application for the one-pot three-component coupling reaction and one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles in water. RSC Adv, 2014, 4, 10001-10012.
[25]
Zhao, Y.; Zhou, X.; Okamura, T.A.; Chen, M.; Lu, Y.; Sun, W.Y.; Yu, J.Q. Silver supramolecule catalyzed multicomponent reactions under mild conditions. Dalton Trans., 2012, 41, 5889-5896.
[26]
Jeganathan, M.; Dhakshinamoorthy, A.; Pitchumani, K. One-pot synthesis of propargylamines using Ag(I)-exchanged K10 montmorillonite clay as reusable catalyst in water. ACS Sustain. Chem. Eng., 2014, 2, 781-787.
[27]
Kotadia, D.A.; Soni, S.S. Stable mesoporous Fe/TiO2 nanoparticles: A recoverable catalyst for solvent-free synthesis of propargylamine via CH activation. Appl. Catal. A., 2014, 488, 231-238.
[28]
Jung, B.; Park, K.; Song, K.H.; Lee, S. Continuous flow reactions in water for the synthesis of propargylamines via a metal-free decarboxylative coupling reaction. Tetrahedron Lett., 2015, 56, 4697-4700.
[29]
Mandlimath, T.R.; Sathiyanarayanan, K.I. Facile synthesis of ZnAl2O4 nanoparticles: Efficient and reusable porous nano ZnAl2O4 and copper supported on ZnAl2O4 catalysts for one pot green synthesis of propargylamines and imidazo[1,2-a]pyridines by A3 coupling reactions. RSC Adv, 2016, 6, 3117-3125.
[30]
Khabibullina, G.R.; Zaynullina, F.T.; Karamzina, D.S.; Ibragimov, A.G.; Dzhemilev, U.M. Efficient one-pot method for the synthesis of bis-propargylamines by the reaction of terminal acetylenes with 1,5,3-dioxazepanes catalyzed by copper chloride. Tetrahedron, 2017, 73, 2367-2373.
[31]
Palchak, Z.L.; Lussier, D.J.; Pierce, C.J.; Larsen, C.H. Synthesis of tetrasubstituted propargylamines from cyclohexanone by solvent-free copper(II) catalysis. Green Chem., 2015, 17, 1802-1810.
[32]
Xu, Z.; Yu, X.; Feng, X.; Bao, M. Propargylamine synthesis by copper-catalyzed oxidative coupling of alkynes and tertiary amine N-oxides. J. Org. Chem., 2011, 76, 6901-6905.
[33]
Patil, M.K.; Keller, M.; Reddy, B.M.; Pale, P.; Sommer, J. Copper zeolites as green catalysts for multicomponent reactions of aldehydes, terminal alkynes and amines: An efficient and green synthesis of propargylamines. Eur. J. Org. Chem., 2008, 2008, 4440-4445.
[34]
Yu, D.; Zhang, Y. Copper-catalyzed three-component coupling of terminal alkyne, dihalomethane and amine to propargylic amines. Adv. Synth. Catal., 2011, 353, 163-169.
[35]
Gommermann, N.; Knochel, P. Practical highly enantioselective synthesis of propargylamines through a copper-catalyzed one-pot three-component condensation reaction. Chem. Eur. J., 2006, 12, 4380-4392.
[36]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341.
[37]
Qiu, S.; Xue, M.; Zhu, G. Metal-organic framework membranes: From synthesis to separation application. Chem. Soc. Rev., 2014, 43, 6116-6140.
[38]
Farrusseng, D.; Aguado, S.; Pinel, C. Metal-Organic frameworks: Opportunities for catalysis. Angew. Chem. Int. Ed., 2009, 48, 7502-7513.
[39]
Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev., 2012, 112, 1196-1231.
[40]
Li, P.; Regati, S.; Huang, H.C.; Arman, H.D.; Chen, B.L.; Zhao, J.C.G. A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions. Chin. Chem. Lett., 2015, 26, 6-10.
[41]
Varyani, M.; Khatri, P.K.; Jain, S.l. Amino acid ionic liquid bound copper Schiff base catalyzed highly efficient three component A3-coupling reaction. Catal. Commun., 2016, 77, 113-117.
[42]
Gharibpour, N.; Abdollahi-Alibeik, M.; Moaddeli, A. Super paramagnetic, MCM-41-supported, recyclable copper-complexed dendrimer: A novel nanostructured catalyst for propargylamine synthesis under solvent-free conditions. Chem. Select, 2017, 2, 3137-3146.
[43]
Naeimi, H.; Moradian, M. Encapsulation of copper(I)-Schiff base complex in NaY nanoporosity: An efficient and reusable catalyst in the synthesis of propargylamines via A3-coupling (aldehyde-amine-alkyne) reactions. Appl. Catal. A Gen., 2013, 467, 400-406.
[44]
Machado, B.F.; Serp, P. Graphene‐based materials for catalysis. Catal. Sci. Technol., 2012, 2, 54-75.
[45]
Xiong, X.; Chen, H.; Zhu, R. Highly efficient and scale-up synthesis of propargylamines catalyzed by graphene oxide-supported CuCl2 catalyst under microwave condition. Catal. Commun., 2014, 54, 94-99.
[46]
Kumari, S.; Shekhar, A.; Pathak, D.D. Synthesis and characterization of a Cu(II) Schiff base complex immobilized on graphene oxide and its catalytic application in the green synthesis of propargylamines. RSC Adv, 2016, 6, 15340-15344.
[47]
Karimi, B.; Gholinejad, M.; Khorasani, M. Highly efficient three-component coupling reaction catalyzed by gold nanoparticles supported on periodic mesoporous organosilica with ionic liquid framework. Chem. Comm., 2012, 48, 8961-8963.
[48]
Gholinejad, M.; Karimi, B.; Aminianfar, A.; Khorasani, M. One-pot preparation of propargylamines catalyzed by heterogeneous copper catalyst supported on periodic mesoporous organosilica with ionic liquid framework. ChemPlusChem, 2015, 80, 1573-1579.
[49]
Gholinejad, M.; Saadati, F.; Shaybanizadeh, S.; Pullithadathil, B. Copper nanoparticles supported on starch micro particles as a degradable heterogeneous catalyst for three-component coupling synthesis of propargylamines. RSC Adv, 2016, 6, 4983-4991.
[50]
Sayyahi, S.; Mozafari, S.; Saghanezhad, S.J. Fe3O4 nanoparticle-bonded β-cyclodextrin as an efficient and magnetically retrievable catalyst for the preparation of β-azido alcohols and β-hydroxy thiocyanate. Res. Chem. Intermed., 2016, 42, 511-518.
[51]
Amini, A.; Sayyahi, S.; Saghanezhad, S.J.; Taheri, N. Integration of aqueous biphasic with magnetically recyclable systems: Polyethylene glycol-grafted Fe3O4 nanoparticles catalyzed phenacyl synthesis in water. Catal. Commun., 2016, 78, 11-16.
[52]
Olia, F.K.; Sayyahi, S.; Taheri, N. An Fe3O4 nanoparticle-supported Mn(II)-azo Schiff complex acts as a heterogeneous catalyst in alcoholysis of epoxides. C. R. Chim., 2017, 20, 370-376.
[53]
Shouli, A.; Menati, S.; Sayyahi, S. Copper(II) chelate-bonded magnetite nanoparticles: A new magnetically retrievable catalyst for the synthesis of propargylamines. C. R. Chim., 2017, 20, 765-772.
[54]
Wu, L.; Mendoza-Garcia, A.; Li, Q.; Sun, S. Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev., 2016, 116, 10473-10512.
[55]
Baig, R.B.N.; Varma, R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Comm., 2013, 49, 752-770.
[56]
Nemati, F.; Elhampour, A.; Farrokhi, H.; Bagheri Natanzi, M. Cu2O/nano-CuFe2O4: A novel and recyclable magnetic catalyst for three-component coupling of carbonyl compounds–alkynes–amines under solvent-free condition. Catal. Commun., 2015, 66, 15-20.
[57]
Rezaei, M.; Azizi, K.; Amani, K. Copper–birhodanine complex immobilized on Fe3O4 nanoparticles: DFT studies and heterogeneous catalytic applications in the synthesis of propargylamines in aqueous medium. Appl. Organometal. Chem., 2017, e4120, 1-9.
[58]
Reddy, B.R.P.; Reddy, P.V.G.; Shankar, M.V.; Reddy, B.N. CuI supported on protonated trititanate nanotubes: A reusable catalyst for the one‐pot synthesis of propargylamines via A3‐Coupling. Asian J. Org. Chem., 2017, 6, 712-719.
[59]
Borah, B.J.; Borah, S.J.; Saikia, L.; Dutta, D.K. Efficient three-component coupling reactions catalyzed by Cu0-nanoparticles stabilized on modified montmorillonite. Catal. Sci. Technol., 2014, 4, 1047-1054.
[60]
Cheng, S.; Shang, N.; Feng, C.; Gao, S.; Wang, C.; Wang, Z. Efficient multicomponent synthesis of propargylamines catalyzed by copper nanoparticles supported on metal-organic framework derived nanoporous carbon. Catal. Commun., 2017, 89, 91-95.