Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

转移性乳腺癌中的表观遗传学:其在诊断,预后和治疗中的调节和意义

卷 19, 期 2, 2019

页: [82 - 100] 页: 19

弟呕挨: 10.2174/1568009618666180430130248

价格: $65

conference banner
摘要

尽管治疗方案取得了进展,但乳腺癌(BC)死亡的高发病率主要是由转移引起的。最近,涉及DNA甲基化,组蛋白修饰和microRNA(miRNA)调节的异常表观遗传修饰成为治疗转移性乳腺癌(MBC)的有吸引力的靶标。在这篇综述中,讨论了DNA甲基化,组蛋白修饰和miRNA调节MBC的表观遗传改变。本文讨论了表观遗传药物的临床前和临床试验,如DNA甲基转移酶抑制剂(DNMTi)和组蛋白去乙酰化酶(HDACi)抑制剂,作为单一或联合方案与其他表观遗传药物或标准化疗药物治疗MBCs。表观遗传药物或标准化疗药物的联合方案增强了对MBC的治疗效果。还提出了表观遗传变化可能对MBC的诊断,预后和治疗有影响的证据。已经鉴定了几种基因作为诊断和预后的潜在表观遗传生物标志物,以及MBC的治疗靶标。尽管取得了有限的成功,但应继续努力进行针对MBC的表观遗传药物的临床试验。未来从自然资源中发现表观遗传药物将是MBC的一种有吸引力的自然治疗方案。在将研究转化为临床实践方面需要进一步研究,最终目标是在不久的将来通过表观遗传疗法治疗MBC。

关键词: 乳腺癌,转移,表观遗传治疗,DNA甲基化,组蛋白去乙酰化,microRNA调节,表观遗传生物标志物

图形摘要

[1]
Dedeurwaerder, S.; Fumagalli, D.; Fuks, F. Unravelling the epigenomic dimension of breast cancers. Curr. Opin. Oncol., 2011, 23(6), 559-565.
[2]
Huynh, K.T.; Chong, K.K.; Greenberg, E.S.; Hoon, D.S. Epigenetics of estrogen receptor-negative primary breast cancer. Expert Rev. Mol. Diagn., 2012, 12(4), 371-382.
[3]
Eccles, S.A.; Welch, D.R. Metastasis: recent discoveries and novel treatment strategies. Lancet, 2007, 369(9574), 1742-1757.
[4]
Gupta, G.P. Massague, J. Cancer metastasis: building a framework. Cell, 2006, 127(4), 679-695.
[5]
Balic, M.; Schwarzenbacher, D.; Stanzer, S.; Heitzer, E.; Auer, M.; Geigl, J.B.; Cote, R.J.; Datar, R.H.; Dandachi, N. Genetic and epigenetic analysis of putative breast cancer stem cell models. BMC Cancer, 2013, 13, 358.
[6]
Taby, R.; Issa, J.P. Cancer epigenetics. CA Cancer J. Clin., 2010, 60(6), 376-392.
[7]
Lustberg, M.B.; Ramaswamy, B. Epigenetic targeting in breast cancer: therapeutic impact and future direction. Drug News Perspect., 2009, 22(7), 369-381.
[8]
Cai, F.F.; Kohler, C.; Zhang, B.; Wang, M.H.; Chen, W.J.; Zhong, X.Y. Epigenetic therapy for breast cancer. Int. J. Mol. Sci., 2011, 12(7), 4465-4487.
[9]
Jovanovic, J.; Ronneberg, J.A.; Tost, J.; Kristensen, V. The epigenetics of breast cancer. Mol. Oncol., 2010, 4(3), 242-254.
[10]
Strathdee, G. Epigenetic versus genetic alterations in the inactivation of E-cadherin. Semin. Cancer Biol., 2002, 12(5), 373-379.
[11]
Veeck, J.; Esteller, M. Breast cancer epigenetics: from DNA methylation to microRNAs. J. Mammary Gland Biol. Neoplasia, 2010, 15(1), 5-17.
[12]
Tang, Y.; Wang, Y.; Kiani, M.F.; Wang, B. Classification, Treatment Strategy, and Associated Drug Resistance in Breast Cancer. Clin. Breast Cancer, 2016, 16(5), 335-343.
[13]
Viale, G. The current state of breast cancer classification. Ann. Oncol., 2012, 23(Suppl. 10), x207-x210.
[14]
Hsiao, Y.H.; Chou, M.C.; Fowler, C.; Mason, J.T.; Man, Y.G. Breast cancer heterogeneity: mechanisms, proofs, and implications. J. Cancer, 2010, 1, 6-13.
[15]
Holliday, D.L.; Speirs, V. Choosing the right cell line for breast cancer research. Breast Cancer Res., 2011, 13(4), 215.
[16]
Byler, S.; Goldgar, S.; Heerboth, S.; Leary, M.; Housman, G.; Moulton, K.; Sarkar, S. Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer Res., 2014, 34(3), 1071-1077.
[17]
Sarkar, S.; Goldgar, S.; Byler, S.; Rosenthal, S.; Heerboth, S. Demethylation and re-expression of epigenetically silenced tumor suppressor genes: sensitization of cancer cells by combination therapy. Epigenomics, 2013, 5(1), 87-94.
[18]
Byler, S.; Sarkar, S. Do epigenetic drug treatments hold the key to killing cancer progenitor cells? Epigenomics, 2014, 6(2), 161-165.
[19]
Sarkar, S.; Horn, G.; Moulton, K.; Oza, A.; Byler, S.; Kokolus, S.; Longacre, M. Cancer development, progression, and therapy: an epigenetic overview. Int. J. Mol. Sci., 2013, 14(10), 21087-21113.
[20]
Tam, W.L.; Weinberg, R.A. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med., 2013, 19(11), 1438-1449.
[21]
Nieto, M.A. Epithelial plasticity: a common theme in embryonic and cancer cells. Science, 2013, 342(6159), 1234850.
[22]
Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010, 29(34), 4741-4751.
[23]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: an overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[24]
Heerboth, S.; Lapinska, K.; Snyder, N.; Leary, M.; Rollinson, S.; Sarkar, S. Use of epigenetic drugs in disease: an overview. Genet. Epigenet., 2014, 6, 9-19.
[25]
Lustberg, M.B.; Ramaswamy, B. Epigenetic therapy in breast cancer. Curr. Breast Cancer Rep., 2011, 3(1), 34-43.
[26]
Chik, F.; Szyf, M. Effects of specific DNMT gene depletion on cancer cell transformation and breast cancer cell invasion; toward selective DNMT inhibitors. Carcinogenesis, 2011, 32(2), 224-232.
[27]
Widschwendter, M.; Jones, P.A. DNA methylation and breast carcinogenesis. Oncogene, 2002, 21(35), 5462-5482.
[28]
Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet., 2007, 8(4), 286-298.
[29]
Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell, 2007, 128(4), 683-692.
[30]
Ehrlich, M. DNA methylation in cancer: too much, but also too little. Oncogene, 2002, 21(35), 5400-5413.
[31]
Eden, A.; Gaudet, F.; Waghmare, A.; Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science, 2003, 300(5618), 455.
[32]
Lo, P.K.; Sukumar, S. Epigenomics and breast cancer. Pharmacogenomics, 2008, 9(12), 1879-1902.
[33]
Yan, P.S.; Perry, M.R.; Laux, D.E.; Asare, A.L.; Caldwell, C.W.; Huang, T.H. CpG island arrays: an application toward deciphering epigenetic signatures of breast cancer. Clin. Cancer Res., 2000, 6(4), 1432-1438.
[34]
Bestor, T.H. The DNA methyltransferases of mammals. Hum. Mol. Genet., 2000, 9(16), 2395-2402.
[35]
Hatzimichael, E.; Crook, T. Cancer epigenetics: new therapies and new challenges. J. Drug Deliv., 2013, 2013, 529312.
[36]
Schaefer, M.; Hagemann, S.; Hanna, K.; Lyko, F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res., 2009, 69(20), 8127-8132.
[37]
Giacinti, L.; Claudio, P.P.; Lopez, M.; Giordano, A. Epigenetic information and estrogen receptor alpha expression in breast cancer. Oncologist, 2006, 11(1), 1-8.
[38]
Li, E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet., 2002, 3(9), 662-673.
[39]
Hoque, M.O.; Prencipe, M.; Poeta, M.L.; Barbano, R.; Valori, V.M.; Copetti, M.; Gallo, A.P.; Brait, M.; Maiello, E.; Apicella, A.; Rossiello, R.; Zito, F.; Stefania, T.; Paradiso, A.; Carella, M.; Dallapiccola, B.; Murgo, R.; Carosi, I.; Bisceglia, M.; Fazio, V.M.; Sidransky, D.; Parrella, P. Changes in CpG islands promoter methylation patterns during ductal breast carcinoma progression. Cancer Epidemiol. Biomarkers Prev., 2009, 18(10), 2694-2700.
[40]
Chimonidou, M.; Strati, A.; Tzitzira, A.; Sotiropoulou, G.; Malamos, N.; Georgoulias, V.; Lianidou, E.S. DNA methylation of tumor suppressor and metastasis suppressor genes in circulating tumor cells. Clin. Chem., 2011, 57(8), 1169-1177.
[41]
Kornberg, R.D.; Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell, 1999, 98(3), 285-294.
[42]
Kouzarides, T. Chromatin modifications and their function. Cell, 2007, 128(4), 693-705.
[43]
Nowsheen, S.; Aziz, K.; Tran, P.T.; Gorgoulis, V.G.; Yang, E.S.; Georgakilas, A.G. Epigenetic inactivation of DNA repair in breast cancer. Cancer Lett., 2014, 342(2), 213-222.
[44]
Razin, A.; Cedar, H. Distribution of 5-methylcytosine in chromatin. Proc. Natl. Acad. Sci. USA, 1977, 74(7), 2725-2728.
[45]
Razin, A.; Szyf, M. DNA methylation patterns. Formation and function. Biochim. Biophys. Acta, 1984, 782(4), 331-342.
[46]
Zhang, Y.; Ng, H.H.; Erdjument-Bromage, H.; Tempst, P.; Bird, A.; Reinberg, D. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev., 1999, 13(15), 1924-1935.
[47]
Rauch, T.A.; Wu, X.; Zhong, X.; Riggs, A.D.; Pfeifer, G.P. A human B cell methylome at 100-base pair resolution. Proc. Natl. Acad. Sci. USA, 2009, 106(3), 671-678.
[48]
Wei, Y.; Xia, W.; Zhang, Z.; Liu, J.; Wang, H.; Adsay, N.V.; Albarracin, C.; Yu, D.; Abbruzzese, J.L.; Mills, G.B.; Bast, R.C., Jr; Hortobagyi, G.N.; Hung, M.C. Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol. Carcinog., 2008, 47(9), 701-706.
[49]
Vincent-Salomon, A.; Thiery, J.P. Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res., 2003, 5(2), 101-106.
[50]
Basse, C.; Arock, M. The increasing roles of epigenetics in breast cancer: Implications for pathogenicity, biomarkers, prevention and treatment. Int. J. Cancer, 2015, 137(12), 2785-2794.
[51]
Esquela-Kerscher, A.; Slack, F.J. Oncomirs-microRNAs with a role in cancer. Nat. Rev. Cancer, 2006, 6(4), 259-269.
[52]
Chen, K.; Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nat. Rev. Genet., 2007, 8(2), 93-103.
[53]
Lin, S.; Gregory, R.I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer, 2015, 15(6), 321-333.
[54]
Lujambio, A.; Esteller, M. How epigenetics can explain human metastasis: A new role for microRNAs. Cell Cycle, 2009, 8(3), 377-382.
[55]
Radpour, R.; Barekati, Z.; Kohler, C.; Schumacher, M.M.; Grussenmeyer, T.; Jenoe, P.; Hartmann, N.; Moes, S.; Letzkus, M.; Bitzer, J.; Lefkovits, I.; Staedtler, F.; Zhong, X.Y. Integrated epigenetics of human breast cancer: synoptic investigation of targeted genes, microRNAs and proteins upon demethylation treatment. PLoS One, 2011, 6(11), e27355.
[56]
Bartel, D.P.; Chen, C.Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet., 2004, 5(5), 396-400.
[57]
Volinia, S.; Galasso, M.; Sana, M.E.; Wise, T.F.; Palatini, J.; Huebner, K.; Croce, C.M. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc. Natl. Acad. Sci. USA, 2012, 109(8), 3024-3029.
[58]
Iorio, M.V.; Ferracin, M.; Liu, C.G.; Veronese, A.; Spizzo, R.; Sabbioni, S.; Magri, E.; Pedriali, M.; Fabbri, M.; Campiglio, M.; Menard, S.; Palazzo, J.P.; Rosenberg, A.; Musiani, P.; Volinia, S.; Nenci, I.; Calin, G.A.; Querzoli, P.; Negrini, M.; Croce, C.M. MicroRNA gene expression deregulation in human breast cancer. Cancer Res., 2005, 65(16), 7065-7070.
[59]
Mattiske, S.; Suetani, R.J.; Neilsen, P.M.; Callen, D.F. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol. Biomarkers Prev., 2012, 21(8), 1236-1243.
[60]
Zhu, S.; Wu, H.; Wu, F.; Nie, D.; Sheng, S.; Mo, Y.Y. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res., 2008, 18(3), 350-359.
[61]
Dumont, N.; Tlsty, T.D. Reflections on miR-ing effects in metastasis. Cancer Cell, 2009, 16(1), 3-4.
[62]
Wang, L.; Li, L.; Guo, R.; Li, X.; Lu, Y.; Guan, X.; Gitau, S.C.; Xu, C.; Yang, B.; Shan, H. miR-101 promotes breast cancer cell apoptosis by targeting Janus kinase 2. Cell. Physiol. Biochem., 2014, 34(2), 413-422.
[63]
Liu, J.; Pang, Y.; Wang, H.; Li, Y.; Sun, X.; Xu, F.; Ren, H.; Liu, D. miR-101 inhibits the proliferation and migration of breast cancer cells via downregulating the expression of DNA methyltransferase 3a. Xibao Yu Fenzi Mianyixue Zazhi, 2016, 32(3), 299-303.
[64]
Luo, Q.; Li, X.; Gao, Y.; Long, Y.; Chen, L.; Huang, Y.; Fang, L. MiRNA-497 regulates cell growth and invasion by targeting cyclin E1 in breast cancer. Cancer Cell Int., 2013, 13(1), 95.
[65]
Pouliot, M.C.; Labrie, Y.; Diorio, C.; Durocher, F. The role of methylation in breast cancer susceptibility and treatment. Anticancer Res., 2015, 35(9), 4569-4574.
[66]
Krawczyk, B.; Fabianowska-Majewska, K. Alteration of DNA methylation status in K562 and MCF-7 cancer cell lines by nucleoside analogues. Nucleosides Nucleotides Nucleic Acids, 2006, 25(9-11), 1029-1032.
[67]
Lyko, F.; Brown, R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J. Natl. Cancer Inst., 2005, 97(20), 1498-1506.
[68]
Szyf, M. Epigenetics, DNA methylation, and chromatin modifying drugs. Annu. Rev. Pharmacol. Toxicol., 2009, 49, 243-263.
[69]
Christman, J.K. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 2002, 21(35), 5483-5495.
[70]
Yoshiura, K.; Kanai, Y.; Ochiai, A.; Shimoyama, Y.; Sugimura, T.; Hirohashi, S. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc. Natl. Acad. Sci. USA, 1995, 92(16), 7416-7419.
[71]
Bandyopadhyay, S.; Pai, S.K.; Hirota, S.; Hosobe, S.; Takano, Y.; Saito, K.; Piquemal, D.; Commes, T.; Watabe, M.; Gross, S.C.; Wang, Y.; Ran, S.; Watabe, K. Role of the putative tumor metastasis suppressor gene Drg-1 in breast cancer progression. Oncogene, 2004, 23(33), 5675-5681.
[72]
Kuo, H.K.; Griffith, J.D.; Kreuzer, K.N. 5-Azacytidine induced methyltransferase-DNA adducts block DNA replication in vivo. Cancer Res., 2007, 67(17), 8248-8254.
[73]
Bauman, J.; Verschraegen, C.; Belinsky, S.; Muller, C.; Rutledge, T.; Fekrazad, M.; Ravindranathan, M.; Lee, S.J.; Jones, D. A phase I study of 5-azacytidine and erlotinib in advanced solid tumor malignancies. Cancer Chemother. Pharmacol., 2012, 69(2), 547-554.
[74]
Momparler, R.L. Epigenetic therapy of cancer with 5-aza-2′-deoxycytidine (decitabine). Semin. Oncol., 2005, 32(5), 443-451.
[75]
Qiu, X.; Qiao, F.; Su, X.; Zhao, Z.; Fan, H. Epigenetic activation of E-cadherin is a candidate therapeutic target in human hepatocellular carcinoma. Exp. Ther. Med., 2010, 1(3), 519-523.
[76]
Borges, S.; Doppler, H.; Perez, E.A.; Andorfer, C.A.; Sun, Z.; Anastasiadis, P.Z.; Thompson, E.; Geiger, X.J.; Storz, P. Pharmacologic reversion of epigenetic silencing of the PRKD1 promoter blocks breast tumor cell invasion and metastasis. Breast Cancer Res., 2013, 15(2), R66.
[77]
Xu, J.; Zhou, J-Y.; Tainsky, M.A.; Wu, G.S. Evidence that tumor necrosis factor–related apoptosis-inducing ligand induction by 5-aza-2′-deoxycytidine sensitizes human breast cancer cells to adriamycin. Cancer Res., 2007, 67(3), 1203-1211.
[78]
Mirza, S.; Sharma, G.; Pandya, P.; Ralhan, R. Demethylating agent 5-aza-2-deoxycytidine enhances susceptibility of breast cancer cells to anticancer agents. Mol. Cell. Biochem., 2010, 342(1-2), 101-109.
[79]
Appleton, K.; Mackay, H.J.; Judson, I.; Plumb, J.A.; McCormick, C.; Strathdee, G.; Lee, C.; Barrett, S.; Reade, S.; Jadayel, D.; Tang, A.; Bellenger, K.; Mackay, L.; Setanoians, A.; Schatzlein, A.; Twelves, C.; Kaye, S.B.; Brown, R. Phase I and pharmacodynamic trial of the DNA methyltransferase inhibitor decitabine and carboplatin in solid tumors. J. Clin. Oncol., 2007, 25(29), 4603-4609.
[80]
Chen, M.; Shabashvili, D.; Nawab, A.; Yang, S.X.; Dyer, L.M.; Brown, K.D.; Hollingshead, M.; Hunter, K.W.; Kaye, F.J.; Hochwald, S.N.; Marquez, V.E.; Steeg, P.; Zajac-Kaye, M. DNA methyltransferase inhibitor, zebularine, delays tumor growth and induces apoptosis in a genetically engineered mouse model of breast cancer. Mol. Cancer Ther., 2012, 11(2), 370-382.
[81]
Cheng, J.C.; Yoo, C.B.; Weisenberger, D.J.; Chuang, J.; Wozniak, C.; Liang, G.; Marquez, V.E.; Greer, S.; Orntoft, T.F.; Thykjaer, T.; Jones, P.A. Preferential response of cancer cells to zebularine. Cancer Cell, 2004, 6(2), 151-158.
[82]
Billam, M.; Sobolewski, M.D.; Davidson, N.E. Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res. Treat., 2010, 120(3), 581-592.
[83]
Moyers, S.B.; Kumar, N.B. Green tea polyphenols and cancer chemoprevention: multiple mechanisms and endpoints for phase II trials. Nutr. Rev., 2004, 62(5), 204-211.
[84]
Inoue, M.; Tajima, K.; Mizutani, M.; Iwata, H.; Iwase, T.; Miura, S.; Hirose, K.; Hamajima, N.; Tominaga, S. Regular consumption of green tea and the risk of breast cancer recurrence: follow-up study from the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC), Japan. Cancer Lett., 2001, 167(2), 175-182.
[85]
Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem. Pharmacol., 2011, 82(12), 1807-1821.
[86]
Hong, O.Y.; Noh, E.M.; Jang, H.Y.; Lee, Y.R.; Lee, B.K.; Jung, S.H.; Kim, J.S.; Youn, H.J. Epigallocatechin gallate inhibits the growth of MDA-MB-231 breast cancer cells via inactivation of the beta-catenin signaling pathway. Oncol. Lett., 2017, 14(1), 441-446.
[87]
Meeran, S.M.; Patel, S.N.; Chan, T-H.; Tollefsbol, T.O. A novel prodrug of epigallocatechin-3-gallate: differential epigenetic htert repression in human breast cancer cells. Cancer Prev. Res., 2011, 4(8), 1243-1254.
[88]
Li, Y.; Yuan, Y.Y.; Meeran, S.M.; Tollefsbol, T.O. Synergistic epigenetic reactivation of estrogen receptor-alpha (ERalpha) by combined green tea polyphenol and histone deacetylase inhibitor in ERalpha-negative breast cancer cells. Mol. Cancer, 2010, 9, 274.
[89]
Winquist, E.; Knox, J.; Ayoub, J.P.; Wood, L.; Wainman, N.; Reid, G.K.; Pearce, L.; Shah, A.; Eisenhauer, E. Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a national cancer institute of Canada clinical trials group investigational new drug study. Invest. New Drugs, 2006, 24(2), 159-167.
[90]
Amato, R.J.; Stephenson, J.; Hotte, S.; Nemunaitis, J.; Belanger, K.; Reid, G.; Martell, R.E. MG98, a second-generation DNMT1 inhibitor, in the treatment of advanced renal cell carcinoma. Cancer Invest., 2012, 30(5), 415-421.
[91]
Plummer, R.; Vidal, L.; Griffin, M.; Lesley, M.; de Bono, J.; Coulthard, S.; Sludden, J.; Siu, L.L.; Chen, E.X.; Oza, A.M.; Reid, G.K.; McLeod, A.R.; Besterman, J.M.; Lee, C.; Judson, I.; Calvert, H.; Boddy, A.V. Phase I study of MG98, an oligonucleotide antisense inhibitor of human DNA methyltransferase 1, given as a 7-day infusion in patients with advanced solid tumors. Clin. Cancer Res., 2009, 15(9), 3177-3183.
[92]
de la Cruz-Hernandez, E. DNA demethylating activity of hydralazine in cancer cell lines. Life Sci. Med. Res., 2011.
[93]
Segura-Pacheco, B.; Trejo-Becerril, C.; Perez-Cardenas, E.; Taja-Chayeb, L.; Mariscal, I.; Chavez, A.; Acuna, C.; Salazar, A.M.; Lizano, M.; Duenas-Gonzalez, A. Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin. Cancer Res., 2003, 9(5), 1596-1603.
[94]
Safar, A.M.; Macleod, S.; Fan, C-Y.; Hutchins, L.; Makhoul, I. Hydralazine as a demethylating agent in operable breast cancer. Cancer Res., 2006, 66(8)(Suppl.), 380-380.
[95]
Wagner, J.M.; Hackanson, B.; Lubbert, M.; Jung, M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin. Epigenetics, 2010, 1(3-4), 117-136.
[96]
Namdar, M.; Perez, G.; Ngo, L.; Marks, P.A. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc. Natl. Acad. Sci. USA, 2010, 107(46), 20003-20008.
[97]
Candido, E.P.; Reeves, R.; Davie, J.R. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell, 1978, 14(1), 105-113.
[98]
Louis, M.; Rosato, R.R.; Brault, L.; Osbild, S.; Battaglia, E.; Yang, X.H.; Grant, S.; Bagrel, D. The histone deacetylase inhibitor sodium butyrate induces breast cancer cell apoptosis through diverse cytotoxic actions including glutathione depletion and oxidative stress. Int. J. Oncol., 2004, 25(6), 1701-1711.
[99]
Cho, H.J.; Kim, S.Y.; Kim, K.H.; Kang, W.K.; Kim, J.I.; Oh, S.T.; Kim, J.S.; An, C.H. The combination effect of sodium butyrate and 5-Aza-2′-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines. World J. Surg. Oncol., 2009, 7, 49.
[100]
Travaglini, L.; Vian, L.; Billi, M.; Grignani, F.; Nervi, C. Epigenetic reprogramming of breast cancer cells by valproic acid occurs regardless of estrogen receptor status. Int. J. Biochem. Cell Biol., 2009, 41(1), 225-234.
[101]
Gottlicher, M.; Minucci, S.; Zhu, P.; Kramer, O.H.; Schimpf, A.; Giavara, S.; Sleeman, J.P.; Lo Coco, F.; Nervi, C.; Pelicci, P.G.; Heinzel, T. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J., 2001, 20(24), 6969-6978.
[102]
Wawruszak, A.; Luszczki, J.J.; Grabarska, A.; Gumbarewicz, E.; Dmoszynska-Graniczka, M.; Polberg, K.; Stepulak, A. Assessment of interactions between cisplatin and two histone deacetylase inhibitors in MCF7, T47D and MDA-MB-231 human breast cancer cell lines - an isobolographic analysis. PLoS One, 2015, 10(11), e0143013.
[103]
Terranova-Barberio, M.; Roca, M.S.; Zotti, A.I.; Leone, A.; Bruzzese, F.; Vitagliano, C.; Scogliamiglio, G.; Russo, D.; D’Angelo, G.; Franco, R.; Budillon, A.; Di Gennaro, E. Valproic acid potentiates the anticancer activity of capecitabine in vitro and in vivo in breast cancer models via induction of thymidine phosphorylase expression. Oncotarget, 2016, 7(7), 7715-7731.
[104]
Atmaca, A.; Al-Batran, S.E.; Maurer, A.; Neumann, A.; Heinzel, T.; Hentsch, B.; Schwarz, S.E.; Hovelmann, S.; Gottlicher, M.; Knuth, A.; Jager, E. Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating phase I clinical trial. Br. J. Cancer, 2007, 97(2), 177-182.
[105]
Munster, P.; Marchion, D.; Bicaku, E.; Lacevic, M.; Kim, J.; Centeno, B.; Daud, A.; Neuger, A.; Minton, S.; Sullivan, D. Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC. Clin. Cancer Res., 2009, 15(7), 2488-2496.
[106]
Pal, D.; Saha, S. Hydroxamic acid - A novel molecule for anticancer therapy. J. Adv. Pharm. Technol. Res., 2012, 3(2), 92-99.
[107]
Reid, G.; Metivier, R.; Lin, C.Y.; Denger, S.; Ibberson, D.; Ivacevic, T.; Brand, H.; Benes, V.; Liu, E.T.; Gannon, F. Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor alpha, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene, 2005, 24(31), 4894-4907.
[108]
Rhodes, L.V.; Nitschke, A.M.; Segar, H.C.; Martin, E.C.; Driver, J.L.; Elliott, S.; Nam, S.Y.; Li, M.; Nephew, K.P.; Burow, M.E.; Collins-Burow, B.M. The histone deacetylase inhibitor trichostatin A alters microRNA expression profiles in apoptosis-resistant breast cancer cells. Oncol. Rep., 2012, 27(1), 10-16.
[109]
Wang, S.; Liu, Q.; Zhang, Y.; Liu, K.; Yu, P.; Luan, J.; Duan, H.; Lu, Z.; Wang, F.; Wu, E.; Yagasaki, K.; Zhang, G. Suppression of growth, migration and invasion of highly-metastatic human breast cancer cells by berbamine and its molecular mechanisms of action. Mol. Cancer, 2009, 8, 81.
[110]
Gong, C.; Qu, S.; Lv, X.B.; Liu, B.; Tan, W.; Nie, Y.; Su, F.; Liu, Q.; Yao, H.; Song, E. BRMS1L suppresses breast cancer metastasis by inducing epigenetic silence of FZD10. Nat. Commun., 2014, 5, 5406.
[111]
Bali, P.; Pranpat, M.; Swaby, R.; Fiskus, W.; Yamaguchi, H.; Balasis, M.; Rocha, K.; Wang, H.G.; Richon, V.; Bhalla, K. Activity of suberoylanilide hydroxamic Acid against human breast cancer cells with amplification of her-2. Clin. Cancer Res., 2005, 11(17), 6382-6389.
[112]
Luu, T.H.; Morgan, R.J.; Leong, L.; Lim, D.; McNamara, M.; Portnow, J.; Frankel, P.; Smith, D.D.; Doroshow, J.H.; Wong, C.; Aparicio, A.; Gandara, D.R.; Somlo, G. A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin. Cancer Res., 2008, 14(21), 7138-7142.
[113]
Stearns, V.; Jacobs, L.K.; Fackler, M.; Tsangaris, T.N.; Rudek, M.A.; Higgins, M.; Lange, J.; Cheng, Z.; Slater, S.A.; Jeter, S.C.; Powers, P.; Briest, S.; Chao, C.; Yoshizawa, C.; Sugar, E.; Espinoza-Delgado, I.; Sukumar, S.; Gabrielson, E.; Davidson, N.E. Biomarker modulation following short-term vorinostat in women with newly diagnosed primary breast cancer. Clin. Cancer Res., 2013, 19(14), 4008-4016.
[114]
Munster, P.N.; Marchion, D.; Thomas, S.; Egorin, M.; Minton, S.; Springett, G.; Lee, J.H.; Simon, G.; Chiappori, A.; Sullivan, D.; Daud, A. Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker. Br. J. Cancer, 2009, 101(7), 1044-1050.
[115]
Munster, P.N.; Thurn, K.T.; Thomas, S.; Raha, P.; Lacevic, M.; Miller, A.; Melisko, M.; Ismail-Khan, R.; Rugo, H.; Moasser, M.; Minton, S.E. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br. J. Cancer, 2011, 104(12), 1828-1835.
[116]
Ramaswamy, B.; Fiskus, W.; Cohen, B.; Pellegrino, C.; Hershman, D.L.; Chuang, E.; Luu, T.; Somlo, G.; Goetz, M.; Swaby, R.; Shapiro, C.L.; Stearns, V.; Christos, P.; Espinoza-Delgado, I.; Bhalla, K.; Sparano, J.A. Phase I-II study of vorinostat plus paclitaxel and bevacizumab in metastatic breast cancer: evidence for vorinostat-induced tubulin acetylation and Hsp90 inhibition in vivo. Breast Cancer Res. Treat., 2012, 132(3), 1063-1072.
[117]
Tate, C.R.; Rhodes, L.V.; Segar, H.C.; Driver, J.L.; Pounder, F.N.; Burow, M.E.; Collins-Burow, B.M. Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res., 2012, 14(3), R79.
[118]
Fortunati, N.; Marano, F.; Bandino, A.; Frairia, R.; Catalano, M.G.; Boccuzzi, G. The pan-histone deacetylase inhibitor LBH589 (panobinostat) alters the invasive breast cancer cell phenotype. Int. J. Oncol., 2014, 44(3), 700-708.
[119]
Campone, M.; Conte, P.; Amadori, D.; Pronzato, P.; Wardley, A.; McBride, K.; Fandi, A. Phase I trial of panobinostat (LBH589) in combination with trastuzumab in pretreated HER2-positive metastatic breast cancer (mBC): preliminary safety, efficacy and pharmacokinetic results. Cancer Res., 2009, 69(24)(Suppl.), 6101-6101.
[120]
Tan, W.W.; Allred, J.B.; Moreno-Aspitia, A.; Northfelt, D.W.; Ingle, J.N.; Goetz, M.P.; Perez, E.A. Phase I study of panobinostat (LBH589) and letrozole in postmenopausal metastatic breast cancer patients. Clin. Breast Cancer, 2016, 16(2), 82-86.
[121]
Chakraborty, S.; Tai, D.F.; Lin, Y.C.; Chiou, T.W. Antitumor and antimicrobial activity of some cyclic tetrapeptides and tripeptides derived from marine bacteria. Mar. Drugs, 2015, 13(5), 3029-3045.
[122]
Liu, Y.; Liggitt, D.; Fong, S.; Debs, R.J. Systemic co-administration of depsipeptide selectively targets transfection enhancement to specific tissues and cell types. Gene Ther., 2006, 13(24), 1724-1730.
[123]
Robertson, F.M.; Chu, K.; Boley, K.M.; Ye, Z.; Liu, H.; Wright, M.C.; Moraes, R.; Zhang, X.; Green, T.L.; Barsky, S.H.; Heise, C.; Cristofanilli, M. The class I HDAC inhibitor Romidepsin targets inflammatory breast cancer tumor emboli and synergizes with paclitaxel to inhibit metastasis. J. Exp. Ther. Oncol., 2013, 10(3), 219-233.
[124]
Choi, D.S.; Chang, J.C. Abstract 4129: Chloroquine and romidepsin: combination therapy for treatment of breast cancer metastases. Cancer Res., 2015, 75(15)(Suppl.), 4129-4129.
[125]
Im, J.Y.; Park, H.; Kang, K.W.; Choi, W.S.; Kim, H.S. Modulation of cell cycles and apoptosis by apicidin in estrogen receptor (ER)-positive and-negative human breast cancer cells. Chem. Biol. Interact., 2008, 172(3), 235-244.
[126]
Kim, M.S.; Son, M.W.; Kim, W.B. In Park, Y.; Moon, A., Apicidin, an inhibitor of histone deacetylase, prevents H-ras-induced invasive phenotype. Cancer Lett., 2000, 157(1), 23-30.
[127]
Park, H.; Im, J.Y.; Kim, J.; Choi, W.S.; Kim, H.S. Effects of apicidin, a histone deacetylase inhibitor, on the regulation of apoptosis in H-ras-transformed breast epithelial cells. Int. J. Mol. Med., 2008, 21(3), 325-333.
[128]
Buoncervello, M.; Borghi, P.; Romagnoli, G.; Spadaro, F.; Belardelli, F.; Toschi, E.; Gabriele, L. Apicidin and docetaxel combination treatment drives CTCFL expression and HMGB1 release acting as potential antitumor immune response inducers in metastatic breast cancer cells. Neoplasia, 2012, 14(9), 855-867.
[129]
Feng, J.; Fang, H.; Wang, X.; Jia, Y.; Zhang, L.; Jiao, J.; Zhang, J.; Gu, L.; Xu, W. Discovery of N-hydroxy-4-(3-phenylpropanamido) benzamide derivative 5j, a novel histone deacetylase inhibitor, as a potential therapeutic agent for human breast cancer. Cancer Biol. Ther., 2011, 11(5), 477-489.
[130]
Saito, A.; Yamashita, T.; Mariko, Y.; Nosaka, Y.; Tsuchiya, K.; Ando, T.; Suzuki, T.; Tsuruo, T.; Nakanishi, O. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc. Natl. Acad. Sci. USA, 1999, 96(8), 4592-4597.
[131]
Wang, S.; Huang, J.; Lyu, H.; Lee, C.K.; Tan, J.; Wang, J.; Liu, B. Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells. Cell Death Dis., 2013, 4, e556.
[132]
Srivastava, R.K.; Kurzrock, R.; Shankar, S. MS-275 sensitizes TRAIL-resistant breast cancer cells, inhibits angiogenesis and metastasis, and reverses epithelial-mesenchymal transition in vivo. Mol. Cancer Ther., 2010, 9(12), 3254-3266.
[133]
Xu, J.; Zhou, J.Y.; Wei, W.Z.; Philipsen, S.; Wu, G.S. Sp1-mediated TRAIL induction in chemosensitization. Cancer Res., 2008, 68(16), 6718-6726.
[134]
Pili, R.; Salumbides, B.; Zhao, M.; Altiok, S.; Qian, D.; Zwiebel, J.; Carducci, M.A.; Rudek, M.A. Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br. J. Cancer, 2012, 106(1), 77-84.
[135]
Yardley, D.A.; Ismail-Khan, R.R.; Melichar, B.; Lichinitser, M.; Munster, P.N.; Klein, P.M.; Cruickshank, S.; Miller, K.D.; Lee, M.J.; Trepel, J.B. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J. Clin. Oncol., 2013, 31(17), 2128-2135.
[136]
Riva, L.; Blaney, S.M.; Dauser, R.; Nuchtern, J.G.; Durfee, J.; McGuffey, L.; Berg, S.L. Pharmacokinetics and cerebrospinal fluid penetration of CI-994 (N-acetyldinaline) in the nonhuman primate. Clin. Cancer Res., 2000, 6(3), 994-997.
[137]
Undevia, S.D.; Kindler, H.L.; Janisch, L.; Olson, S.C.; Schilsky, R.L.; Vogelzang, N.J.; Kimmel, K.A.; Macek, T.A.; Ratain, M.J. A phase I study of the oral combination of CI-994, a putative histone deacetylase inhibitor, and capecitabine. Ann. Oncol., 2004, 15(11), 1705-1711.
[138]
Yang, X.; Ferguson, A.T.; Nass, S.J.; Phillips, D.L.; Butash, K.A.; Wang, S.M.; Herman, J.G.; Davidson, N.E. Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res., 2000, 60(24), 6890-6894.
[139]
Sharma, D.; Saxena, N.K.; Davidson, N.E.; Vertino, P.M. Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes. Cancer Res., 2006, 66(12), 6370-6378.
[140]
Keen, J.C.; Yan, L.; Mack, K.M.; Pettit, C.; Smith, D.; Sharma, D.; Davidson, N.E. A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor alpha (ER) in ER negative human breast cancer cells in combination with 5-aza 2′-deoxycytidine. Breast Cancer Res. Treat., 2003, 81(3), 177-186.
[141]
Cooper, S.J.; von Roemeling, C.A.; Kang, K.H.; Marlow, L.A.; Grebe, S.K.; Menefee, M.E.; Tun, H.W.; Colon-Otero, G.; Perez, E.A.; Copland, J.A. Re-expression of tumor suppressor, sFRP1, leads to antitumor synergy of combined HDAC and methyltransferase inhibitors in chemoresistant cancers. Mol. Cancer Ther., 2012, 11(10), 2105-2115.
[142]
Juergens, R.A.; Wrangle, J.; Vendetti, F.P.; Murphy, S.C.; Zhao, M.; Coleman, B.; Sebree, R.; Rodgers, K.; Hooker, C.M.; Franco, N.; Lee, B.; Tsai, S.; Delgado, I.E.; Rudek, M.A.; Belinsky, S.A.; Herman, J.G.; Baylin, S.B.; Brock, M.V.; Rudin, C.M. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov., 2011, 1(7), 598-607.
[143]
Friday, B.B.; Anderson, S.K.; Buckner, J.; Yu, C.; Giannini, C.; Geoffroy, F.; Schwerkoske, J.; Mazurczak, M.; Gross, H.; Pajon, E.; Jaeckle, K.; Galanis, E. Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro-oncol., 2012, 14(2), 215-221.
[144]
Braiteh, F.; Soriano, A.O.; Garcia-Manero, G.; Hong, D.; Johnson, M.M.; Silva Lde, P.; Yang, H.; Alexander, S.; Wolff, J.; Kurzrock, R. Phase I study of epigenetic modulation with 5-azacytidine and valproic acid in patients with advanced cancers. Clin. Cancer Res., 2008, 14(19), 6296-6301.
[145]
Lin, J.; Gilbert, J.; Rudek, M.A.; Zwiebel, J.A.; Gore, S.; Jiemjit, A.; Zhao, M.; Baker, S.D.; Ambinder, R.F.; Herman, J.G.; Donehower, R.C.; Carducci, M.A. A phase I dose-finding study of 5-azacytidine in combination with sodium phenylbutyrate in patients with refractory solid tumors. Clin. Cancer Res., 2009, 15(19), 6241-6249.
[146]
Arce, C.; Perez-Plasencia, C.; Gonzalez-Fierro, A.; de la Cruz-Hernandez, E.; Revilla-Vazquez, A.; Chavez-Blanco, A.; Trejo-Becerril, C.; Perez-Cardenas, E.; Taja-Chayeb, L.; Bargallo, E.; Villarreal, P.; Ramirez, T.; Vela, T.; Candelaria, M.; Camargo, M.F.; Robles, E.; Duenas-Gonzalez, A. A proof-of-principle study of epigenetic therapy added to neoadjuvant doxorubicin cyclophosphamide for locally advanced breast cancer. PLoS One, 2006, 1, e98.
[147]
Candelaria, M.; Gallardo-Rincon, D.; Arce, C.; Cetina, L.; Aguilar-Ponce, J.L.; Arrieta, O.; Gonzalez-Fierro, A.; Chavez-Blanco, A.; de la Cruz-Hernandez, E.; Camargo, M.F.; Trejo-Becerril, C.; Perez-Cardenas, E.; Perez-Plasencia, C.; Taja-Chayeb, L.; Wegman-Ostrosky, T.; Revilla-Vazquez, A.; Duenas-Gonzalez, A. A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Ann. Oncol., 2007, 18(9), 1529-1538.
[148]
Connolly, R.M.; Li, H.; Jankowitz, R.C.; Zhang, Z.; Rudek, M.A.; Jeter, S.C.; Slater, S.A.; Powers, P.; Wolff, A.C.; Fetting, J.H.; Brufsky, A.; Piekarz, R.; Ahuja, N.; Laird, P.W.; Shen, H.; Weisenberger, D.J.; Cope, L.; Herman, J.G.; Somlo, G.; Garcia, A.A.; Jones, P.A.; Baylin, S.B.; Davidson, N.E.; Zahnow, C.A.; Stearns, V. Combination epigenetic therapy in advanced breast cancer with 5-azacitidine and entinostat: a phase ii national cancer institute/stand up to cancer study. Clin. Cancer Res., 2016.
[149]
Parrella, P. Epigenetic signatures in breast cancer: clinical perspective. Breast Care (Basel), 2010, 5(2), 66-73.
[150]
Fackler, M.J.; McVeigh, M.; Mehrotra, J.; Blum, M.A.; Lange, J.; Lapides, A.; Garrett, E.; Argani, P.; Sukumar, S. Quantitative multiplex methylation-specific PCR assay for the detection of promoter hypermethylation in multiple genes in breast cancer. Cancer Res., 2004, 64(13), 4442-4452.
[151]
Yamamoto, N.; Nakayama, T.; Kajita, M.; Miyake, T.; Iwamoto, T.; Kim, S.J.; Sakai, A.; Ishihara, H.; Tamaki, Y.; Noguchi, S. Detection of aberrant promoter methylation of GSTP1, RASSF1A, and RARbeta2 in serum DNA of patients with breast cancer by a newly established one-step methylation-specific PCR assay. Breast Cancer Res. Treat., 2012, 132(1), 165-173.
[152]
Sharma, G.; Mirza, S.; Parshad, R.; Srivastava, A.; Gupta, S.D.; Pandya, P.; Ralhan, R. Clinical significance of Maspin promoter methylation and loss of its protein expression in invasive ductal breast carcinoma: correlation with VEGF-A and MTA1 expression. Tumour Biol., 2011, 32(1), 23-32.
[153]
Melnikov, A.A.; Scholtens, D.M.; Wiley, E.L.; Khan, S.A.; Levenson, V.V. Array-based multiplex analysis of DNA methylation in breast cancer tissues. J. Mol. Diagn., 2008, 10(1), 93-101.
[154]
Wong, S.H.M.; Fang, C.M.; Chuah, L.H.; Leong, C.O.; Ngai, S.C. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit. Rev. Oncol. Hematol., 2018, 121, 11-22.
[155]
Gobel, G.; Auer, D.; Gaugg, I.; Schneitter, A.; Lesche, R.; Muller-Holzner, E.; Marth, C.; Daxenbichler, G. Prognostic significance of methylated RASSF1A and PITX2 genes in blood- and bone marrow plasma of breast cancer patients. Breast Cancer Res. Treat., 2011, 130(1), 109-117.
[156]
Avraham, A.; Uhlmann, R.; Shperber, A.; Birnbaum, M.; Sandbank, J.; Sella, A.; Sukumar, S.; Evron, E. Serum DNA methylation for monitoring response to neoadjuvant chemotherapy in breast cancer patients. Int. J. Cancer, 2012, 131(7), E1166-E1172.
[157]
Fu, D.; Ren, C.; Tan, H.; Wei, J.; Zhu, Y.; He, C.; Shao, W.; Zhang, J. Sox17 promoter methylation in plasma DNA is associated with poor survival and can be used as a prognostic factor in breast cancer. Medicine, 2015, 94(11), e637.
[158]
Zhang, Z.; Yamashita, H.; Toyama, T.; Yamamoto, Y.; Kawasoe, T.; Iwase, H. Reduced expression of the breast cancer metastasis suppressor 1 mRNA is correlated with poor progress in breast cancer. Clin. Cancer Res., 2006, 12(21), 6410-6414.
[159]
Stark, A.M.; Tongers, K.; Maass, N.; Mehdorn, H.M.; Held-Feindt, J. Reduced metastasis-suppressor gene mRNA-expression in breast cancer brain metastases. J. Cancer Res. Clin. Oncol., 2005, 131(3), 191-198.
[160]
Klajic, J.; Fleischer, T.; Dejeux, E.; Edvardsen, H.; Warnberg, F.; Bukholm, I.; Lonning, P.E.; Solvang, H.; Borresen-Dale, A.L.; Tost, J.; Kristensen, V.N. Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors. BMC Cancer, 2013, 13, 456.
[161]
Fang, F.; Turcan, S.; Rimner, A.; Kaufman, A.; Giri, D.; Morris, L.G.; Shen, R.; Seshan, V.; Mo, Q.; Heguy, A.; Baylin, S.B.; Ahuja, N.; Viale, A.; Massague, J.; Norton, L.; Vahdat, L.T.; Moynahan, M.E.; Chan, T.A. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci. Transl. Med., 2011, 3(75), 75ra25.
[162]
Yu, M.; Bardia, A.; Wittner, B.S.; Stott, S.L.; Smas, M.E.; Ting, D.T.; Isakoff, S.J.; Ciciliano, J.C.; Wells, M.N.; Shah, A.M.; Concannon, K.F.; Donaldson, M.C.; Sequist, L.V.; Brachtel, E.; Sgroi, D.; Baselga, J.; Ramaswamy, S.; Toner, M.; Haber, D.A.; Maheswaran, S. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science, 2013, 339(6119), 580-584.
[163]
Howell, P.M.; Liu, Z.; Khong, H.T. Demethylating agents in the treatment of cancer. Pharmaceuticals, 2010, 3(7), 2022-2044.
[164]
Gaudet, F.; Hodgson, J.G.; Eden, A.; Jackson-Grusby, L.; Dausman, J.; Gray, J.W.; Leonhardt, H.; Jaenisch, R. Induction of tumors in mice by genomic hypomethylation. Science, 2003, 300(5618), 489-492.
[165]
Kelly, T.K.; De Carvalho, D.D.; Jones, P.A. Epigenetic modifications as therapeutic targets. Nat. Biotechnol., 2010, 28(10), 1069-1078.
[166]
Chik, F.; Machnes, Z.; Szyf, M. Synergistic anti-breast cancer effect of a combined treatment with the methyl donor S-adenosyl methionine and the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Carcinogenesis, 2014, 35(1), 138-144.
[167]
Fan, M.; Yan, P.S.; Hartman-Frey, C.; Chen, L.; Paik, H.; Oyer, S.L.; Salisbury, J.D.; Cheng, A.S.; Li, L.; Abbosh, P.H.; Huang, T.H.; Nephew, K.P. Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Res., 2006, 66(24), 11954-11966.
[168]
Dokmanovic, M.; Marks, P.A. Prospects: histone deacetylase inhibitors. J. Cell. Biochem., 2005, 96(2), 293-304.
[169]
Tryndyak, V.P.; Beland, F.A.; Pogribny, I.P. E-cadherin transcriptional down-regulation by epigenetic and microRNA-200 family alterations is related to mesenchymal and drug-resistant phenotypes in human breast cancer cells. Int. J. Cancer, 2010, 126(11), 2575-2583.
[170]
Fortunati, N.; Bertino, S.; Costantino, L.; De Bortoli, M.; Compagnone, A.; Bandino, A.; Catalano, M.G.; Boccuzzi, G. Valproic acid restores ER alpha and antiestrogen sensitivity to ER alpha-negative breast cancer cells. Mol. Cell. Endocrinol., 2010, 314(1), 17-22.
[171]
Sabnis, G.J.; Goloubeva, O.; Chumsri, S.; Nguyen, N.; Sukumar, S.; Brodie, A.M. Functional activation of the estrogen receptor-alpha and aromatase by the HDAC inhibitor entinostat sensitizes ER-negative tumors to letrozole. Cancer Res., 2011, 71(5), 1893-1903.
[172]
Wong, S.T. Emerging treatment combinations: integrating therapy into clinical practice. Am. J. Health Syst. Pharm., 2009, 66(23)(Suppl. 6), S9-S14.
[173]
Primeau, M.; Gagnon, J.; Momparler, R.L. Synergistic antineoplastic action of DNA methylation inhibitor 5-AZA-2′-deoxycytidine and histone deacetylase inhibitor depsipeptide on human breast carcinoma cells. Int. J. Cancer, 2003, 103(2), 177-184.
[174]
Kelly, W.K.; O’Connor, O.A.; Krug, L.M.; Chiao, J.H.; Heaney, M.; Curley, T.; MacGregore-Cortelli, B.; Tong, W.; Secrist, J.P.; Schwartz, L.; Richardson, S.; Chu, E.; Olgac, S.; Marks, P.A.; Scher, H.; Richon, V.M. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol., 2005, 23(17), 3923-3931.
[175]
Kelly, W.K.; Richon, V.M.; O’Connor, O.; Curley, T.; MacGregor-Curtelli, B.; Tong, W.; Klang, M.; Schwartz, L.; Richardson, S.; Rosa, E.; Drobnjak, M.; Cordon-Cordo, C.; Chiao, J.H.; Rifkind, R.; Marks, P.A.; Scher, H. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer Res., 2003, 9(10 Pt 1), 3578-3588.
[176]
Vansteenkiste, J.; Van Cutsem, E.; Dumez, H.; Chen, C.; Ricker, J.L.; Randolph, S.S.; Schoffski, P. Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Invest. New Drugs, 2008, 26(5), 483-488.
[177]
Reddy, J.P.; Dawood, S.; Mitchell, M.; Debeb, B.G.; Bloom, E.; Gonzalez-Angulo, A.M.; Sulman, E.P.; Buchholz, T.A.; Woodward, W.A. Antiepileptic drug use improves overall survival in breast cancer patients with brain metastases in the setting of whole brain radiotherapy. Radiother. Oncol., 2015, 117(2), 308-314.
[178]
Deming, D.A.; Ninan, J.; Bailey, H.H.; Kolesar, J.M.; Eickhoff, J.; Reid, J.M.; Ames, M.M.; McGovern, R.M.; Alberti, D.; Marnocha, R.; Espinoza-Delgado, I.; Wright, J.; Wilding, G.; Schelman, W.R. A Phase I study of intermittently dosed vorinostat in combination with bortezomib in patients with advanced solid tumors. Invest. New Drugs, 2014, 32(2), 323-329.
[179]
Fu, S.; Hou, M.M.; Naing, A.; Janku, F.; Hess, K.; Zinner, R.; Subbiah, V.; Hong, D.; Wheler, J.; Piha-Paul, S.; Tsimberidou, A.; Karp, D.; Araujo, D.; Kee, B.; Hwu, P.; Wolff, R.; Kurzrock, R.; Meric-Bernstam, F. Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation. Ann. Oncol., 2015, 26(5), 1012-1018.
[180]
Strickler, J.H.; Starodub, A.N.; Jia, J.; Meadows, K.L.; Nixon, A.B.; Dellinger, A.; Morse, M.A.; Uronis, H.E.; Marcom, P.K.; Zafar, S.Y.; Haley, S.T.; Hurwitz, H.I. Phase I study of bevacizumab, everolimus, and panobinostat (LBH-589) in advanced solid tumors. Cancer Chemother. Pharmacol., 2012, 70(2), 251-258.
[181]
Jones, S.F.; Infante, J.R.; Thompson, D.S.; Mohyuddin, A.; Bendell, J.C.; Yardley, D.A.; Burris, H.A., III A phase I trial of oral administration of panobinostat in combination with paclitaxel and carboplatin in patients with solid tumors. Cancer Chemother. Pharmacol., 2012, 70(3), 471-475.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy