[1]
Lam, S-M.; Sin, J-C.; Abdullah, A.Z.; Mohamed, A.R. Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: A review. Desalination Water Treat., 2012, 41(1), 131-169.
[2]
Zhang, W.; Wu, C.W. Dyeing of multiple types of fabrics with a single reactive azo disperse dye. Chem. Pap., 2014, 68(3), 330-335.
[3]
Mohamed, A.; El-Sayed, R.; Osman, T.A.; Toprak, M.S.; Muhammed, M.; Uheida, A. Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water. Environ. Res., 2016, 145, 18-25.
[4]
Padikkaparambil, S.; Narayanan, B.; Yaakob, Z.; Viswanathan, S.; Tasirin, S.M. Au/TiO2 reusable photocatalysts for dye degradation. Int. J. Photoenergy, 2013, 2013, Article ID 752605.
[5]
Giovannetti, R.; D’Amato, C.A.; Zannotti, M.; Rommozzi, E.; Gunnella, R.; Minicucci, M.; Di Cicco, A. Visible light photoactivity of polypropylene coated nano-TiO2 for dyes degradation in water. Sci. Rep., 2015, 5, 17801.
[6]
Thao, L.T.S.; Dang, T.T.T.; Khanitchaidecha, W.; Channei, D.; Nakaruk, A. Photocatalytic degradation of organic dye under UV-A irradiation using TiO2-vetiver multifunctional nano particles. Materials, 2017, 10(2), E122.
[7]
Julkapli, N.M.; Bagheri, S.; Hamid, S.B.A. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci. World J., 2014, 2014, Article ID 692307.
[8]
Kasinathan, K.; Kennedy, J.; Elayaperumal, M.; Henini, M.; Malik, M. Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Sci. Rep., 2016, 6, 38064.
[9]
Mohammad, A.; Kapoor, K.; Mobin, S.M. Improved photocatalytic degradation of organic dyes by ZnO-nanoflowers. ChemistrySelect, 2016, 1(13), 3483-3490.
[10]
Chen, X.; Wu, Z.; Liu, D.; Gao, Z. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett., 2017, 12(1), 143.
[11]
Candal, R.; Martínez-de la Cruz, A. New visible-light active semiconductors. InPhotocatalytic Semiconductors; Hernández-Ramírez, A.; Medina-Ramírez, I., Eds.; Springer: Cham, 2015, pp. 41-67.
[12]
Ola, O.; Maroto-Valer, M.M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. Photochem. Rev., 2015, 24, 16-42.
[13]
Sun, Q.; Sun, X.; Dong, H.; Zhang, Q.; Dong, L. Copper quantum dots on TiO2: A high-performance, low-cost, and nontoxic photovoltaic material. J. Renew. Sustain. Energy, 2013, 5(2), 021413.
[14]
Ye, M.; Lv, M.; Chen, C.; Iocozzia, J.; Lin, C.; Lin, Z. Design, fabrication, and modification of cost-effective nanostructured TiO2 for solar energy applications. InLow-cost Nanomaterials: Toward Greener and More Efficient Energy Applications; Wang, J.; Lin, Z., Eds.; Springer: England, 2014, pp. 9-54.
[15]
Nosaka, Y.; Nosaka, A.Y. Reconsideration of intrinsic band alignments within anatase and rutile TiO2. J. Phys. Chem. Lett., 2016, 7(3), 431-434.
[16]
Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys., 2014, 16(38), 20382-20386.
[17]
Tanaka, A.; Hashimoto, K.; Kominami, H. A very simple method for the preparation of Au/TiO2 plasmonic photocatalysts working under irradiation of visible light in the range of 600-700 nm. Chem. Commun., 2017, 53(35), 4759-4762.
[18]
Tan, L.L.; Chai, S.P.; Mohamed, A.R. Synthesis and applications of graphene-based TiO2 photocatalysts. ChemSusChem, 2012, 5(10), 1868-1882.
[19]
Dahl, M.; Liu, Y.; Yin, Y. Composite titanium dioxide nanomaterials. Chem. Rev., 2014, 114(19), 9853-9889.
[20]
Nguyen, B.H.; Nguyen, V.H.; Vu, D.L. Photocatalytic composites based on titania nanoparticles and carbon nanomaterials. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2015, 6(3), 033001.
[21]
Morales-Torres, S.; Pastrana-Martínez, L.M.; Figueiredo, J.L.; Faria, J.L.; Silva, A.M.T. Design of graphene-based TiO2 photocatalysts—a review. Environ. Sci. Pollut. Res., 2012, 19(9), 3676-3687.
[22]
Low, J.; Yu, J.; Ho, W. Graphene-based photocatalysts for CO2 reduction to solar fuel. J. Phys. Chem. Lett., 2015, 6(21), 4244-4251.
[23]
Mali, K.S.; Greenwood, J.; Adisoejoso, J.; Phillipson, R.; Feyter, S.D. Nanostructuring graphene for controlled and reproducible functionalization. Nanoscale, 2015, 7(5), 1566-1585.
[24]
Noroozi, M.; Zakaria, A.; Radiman, S.; Wahab, Z.A. Environmental synthesis of few layers graphene sheets using ultrasonic exfoliation with enhanced electrical and thermal properties. PLoS One, 2016, 11(4), e0152699.
[25]
Sur, U.K. Graphene: A rising star on the horizon of materials science. Int. J. Electrochem., 2012, 2012, Article ID 237689.
[26]
Park, J.; Jin, T.; Liu, C.; Li, G.; Yan, M. Three-dimensional graphene-TiO2 nanocomposite photocatalyst synthesized by covalent attachment. ACS Omega, 2016, 1(3), 351-356.
[27]
Gu, L.; Zhang, H.; Jiao, Z.; Li, M.; Wu, M.; Lei, Y. Glucosamine-induced growth of highly distributed TiO2 nanoparticles on graphene nanosheets as high-performance photocatalysts. RSC Advances, 2016, 6(71), 67039-67048.
[28]
Zhang, N.; Yang, M-Q.; Liu, S.; Sun, Y.; Xu, Y-J. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev., 2015, 115(18), 10307-10377.
[29]
Song, J.; Wang, X.; Chen, O-P.; Chen, C-K.; Chang, C-T. Photocatalytic degradation of reactive black-5 dye with novel graphene-titanium nanotube composite. Sep. Sci. Technol., 2015, 50(9), 1394-1402.
[30]
Gopalakrishnan, A.; Binitha, N.N.; Yaakob, Z.; Akbar, P.M.; Padikkaparambil, S. Excellent photocatalytic activity of titania-graphene nanocomposites prepared by a facile route. J. Sol-Gel Sci. Technol., 2016, 80(1), 189-200.
[31]
Posa, V.R.; Annavaram, V.; Koduru, J.R.; Bobbala, P.; Madhavi, V.; Somala, A.R. Preparation of graphene-TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation. J. Exp. Nanosci., 2016, 11(9), 722-736.
[32]
Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6), 1339-1339.
[33]
Liu, B.; Huang, Y.; Wen, Y.; Du, L.; Zeng, W.; Shi, Y.; Zhang, F.; Zhu, G.; Xu, X. Highly dispersive 001 facets-exposed nanocrystalline TiO2 on high quality graphene as a high performance photocatalyst. J. Mater. Chem., 2012, 22(15), 7484-7491.
[34]
Bai, J.; Li, Y.; Li, X.; Liu, L. Facile preparation of 2D Bi2MoO6 nanosheets-RGO composites with enhanced photocatalytic activity. New J. Chem., 2017, 41(15), 7783-7790.
[35]
Štengl, V.; Henych, J.; Vomáčka, P.V.; Slušná, M. Doping of TiO2-GO and TiO2-rGO with noble metals: Synthesis, characterization and photocatalytic performance for azo dye discoloration. Photochem. Photobiol., 2013, 89(5), 1038-1046.
[36]
Ruan, P.; Qian, J.; Xu, Y.; Xie, H.; Shao, C.; Zhou, X. Mixed-phase TiO2 nanorods assembled microsphere: Crystal phase control and photovoltaic application. CrystEngComm, 2013, 15(25), 5093-5099.
[37]
Lee, S.; Lee, Y.; Kim, D.H.; Moon, J.H. Carbon-deposited TiO2 3D inverse opal photocatalysts: Visible-light photocatalytic activity and enhanced activity in a viscous solution. ACS Appl. Mater. Interfaces, 2013, 5(23), 12526-12532.
[38]
Choudhury, B.; Choudhury, A. Local structure modification and phase transformation of TiO2 nanoparticles initiated by oxygen defects, grain size, and annealing temperature. Int. Nano Lett., 2013, 3(1), 55.
[39]
Zhang, L.; Zhang, J.; Jiu, H.; Ni, C.; Zhang, X.; Xu, M. Graphene-based hollow TiO2 composites with enhanced photocatalytic activity for removal of pollutants. J. Phys. Chem. Solids, 2015, 86, 82-89.
[40]
Gu, L.; Wang, J.; Cheng, H.; Zhao, Y.; Liu, L.; Han, X. One-step preparation of graphene-supported anatase TiO2 with exposed 001 facets and mechanism of enhanced photocatalytic properties. ACS Appl. Mater. Interfaces, 2013, 5(8), 3085-3093.
[41]
Ali, A.; Oh, W-C. Preparation of nanowire like WSe2-graphene nanocomposite for photocatalytic reduction of CO2 into CH3OH with the presence of sacrificial agents. Sci. Rep., 2017, 7(1), 1867.
[42]
Wang, J.; Kondrat, S.A.; Wang, Y.; Brett, G.L.; Giles, C.; Bartley, J.K.; Lu, L.; Liu, Q.; Kiely, C.J.; Hutchings, G.J. Au-Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catal., 2015, 5(6), 3575-3587.
[43]
Vasilaki, E.; Georgaki, I.; Vernardou, D.; Vamvakaki, M.; Katsarakis, N. Ag-loaded TiO2/reduced graphene oxide nanocomposites for enhanced visible-light photocatalytic activity. Appl. Surf. Sci., 2015, 353, 865-872.
[44]
Qiu, B.; Li, Q.; Shen, B.; Xing, M.; Zhang, J. Stöber-like method to synthesize ultradispersed Fe3O4 nanoparticles on graphene with excellent Photo-Fenton reaction and high-performance lithium storage. Appl. Catal. B Environ., 2016, 183, 216-223.
[45]
Li, H.; Cui, X. A hydrothermal route for constructing reduced graphene oxide/TiO2 nanocomposites: Enhanced photocatalytic activity for hydrogen evolution. Int. J. Hydrogen Energy, 2014, 39(35), 19877-19886.
[46]
Tse, M.Y.; Wei, X.; Hao, J. High-performance colossal permittivity materials of (Nb + Er) co-doped TiO2 for large capacitors and high-energy-density storage devices. Phys. Chem. Chem. Phys., 2016, 18(35), 24270-24277.
[47]
Chanda, A.; Rout, K.; Vasundhara, M.; Joshi, S.R.; Singh, J. Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles. RSC Advances, 2018, 8(20), 10939-10947.
[48]
Vásquez, G.C.; Peche-Herrero, M.A.; Maestre, D.; Gianoncelli, A. Laser-induced anatase-to-rutile transition in TiO2 nanoparticles: Promotion and inhibition effects by Fe and Al doping and achievement of micropatterning. J. Phys. Chem. C, 2015, 119(21), 11965-11974.
[49]
Ding, H.; Zhang, S.; Juan, P-C.; Liu, T-Y.; Du, Z-F.; Zhao, D-L. Enhancing the photovoltaic performance of dye-sensitized solar cells by modifying TiO2 photoanodes with exfoliated graphene sheets. RSC Advances, 2016, 6(47), 41092-41102.
[50]
Khalid, N.R.; Ahmed, E.; Hong, Z.; Sana, L.; Ahmed, M. Enhanced photocatalytic activity of graphene-TiO2 composite under visible light irradiation. Curr. Appl. Phys., 2013, 13(4), 659-663.
[51]
Žerjav, G.; Arshad, M.S.; Djinović, P.; Junkar, I.; Kovač, J.; Zavašnik, J.; Pintar, A. Improved electron-hole separation and migration in anatase TiO2 nanorod/reduced graphene oxide composites and their influence on photocatalytic performance. Nanoscale, 2017, 9(13), 4578-4592.
[52]
Minella, M.; Sordello, F.; Minero, C. Photocatalytic process in TiO2/graphene hybrid materials. Evidence of charge separation by electron transfer from reduced graphene oxide to TiO2. Catal. Today, 2017, 281, 29-37.
[53]
Cheng, Z.; Liao, J.; He, B.; Zhang, F.; Zhang, F.; Huang, X.; Zhou, L. One-step fabrication of graphene oxide enhanced magnetic composite gel for highly efficient dye adsorption and catalysis. ACS Sustain. Chem.& Eng., 2015, 3(7), 1677-1685.
[54]
Yu, Y.; Murthy, B.N.; Shapter, J.G.; Constantopoulos, K.T.; Voelcker, N.H.; Ellis, A.V. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal. J. Hazard. Mater., 2013, 260, 330-338.
[55]
Sharma, P.; Das, M.R. Removal of a cationic dye from aqueous solution using graphene oxide nanosheets: Investigation of adsorption parameters. J. Chem. Eng. Data, 2012, 58(1), 151-158.