[1]
Mellin JR, Cossart P. Unexpected versatility in bacterial riboswitches. Trends Genet 2015; 31(3): 150-6.
[2]
Breaker RR. Prospects for riboswitch discovery and analysis. Mol Cell 2011; 43(6): 867-79.
[3]
Breaker RR. Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 2012; 4(2): 441.
[4]
Bastet L, Dubé A, Massé E, Lafontaine DA. New insights into riboswitch regulation mechanisms. Mol Microbiol 2011; 80(5): 1148-54.
[5]
Serganov A, Nudler E. A decade of riboswitches. Cell 2013; 152(1-2): 17-24.
[6]
Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 2004; 428(6980): 281-6.
[7]
Lee ER, Baker JL, Weinberg Z, Sudarsan N, Breaker RR. An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 2010; 329(5993): 845-8.
[8]
Nou X, Kadner RJ. Coupled changes in translation and transcription during cobalamin-dependent regulation of btuB expression in Escherichia coli. J Bacteriol 1998; 180(24): 6719-28.
[9]
Miranda-Ríos J, Navarro M, Soberón M. A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. Proc Natl Acad Sci USA 2001; 98(17): 9736-41.
[10]
Stormo GD, Ji Y. Do mRNAs act as direct sensors of small molecules to control their expression? Proc Natl Acad Sci USA 2001; 98(17): 9465-7.
[11]
Mironov AS, Gusarov I, Rafikov R, et al. Sensing small molecules by nascent RNA: A mechanism to control transcription in bacteria. Cell 2002; 111(5): 747-56.
[12]
Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR. Genetic control by a metabolite binding mRNA. Chem Biol 2002; 9(9): 1043-9.
[13]
Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 2002; 419(6910): 952-6.
[14]
Barrick JE, Corbino KA, Winkler WC, et al. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control.. Proc Natl Acad Sci USA 2004; 101(17): 6421-6.
[15]
Mccown PJ, Roth A, Breaker RR. An expanded collection and refined consensus model of glmS ribozymes. RNA 2011; 17(4): 728-36.
[16]
Mandal M, Lee M, Barrick JE, et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 2004; 306(5694): 275-9.
[17]
Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 2013; 9(12): 834-9.
[18]
Nelson JW, Atilho RM, Sherlock ME, Stockbridge RB, Breaker RR. Metabolism of free guanidine in bacteria is regulated by a widespread riboswitch class. Mol Cell 2017; 65(2): 220-30.
[19]
Dann CE III, Wakeman CA, Sieling CL, Baker SC, Irnov I, Winkler WC. Structure and mechanism of a metal-sensing regulatory RNA. Cell 2007; 130(5): 878-92.
[20]
Price IR, Gaballa A, Ding F, Helmann JD, Ke A. Mn2+-sensing mechanisms of yybP-ykoY orphan riboswitches. Mol Cell 2015; 57(6): 1110-23.
[21]
Weinberg Z, Barrick JE, Yao Z, et al. Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res 2007; 35(14): 4809-19.
[22]
Tang Q, Yin K, Qian H, et al. Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein. Sci Rep 2016; 6: 28807.
[23]
Weinberg Z, Ruzzo WL. Sequence based heuristics for faster annotation of non-coding RNA families. Bioinformatics 2006; 22(1): 35-9.
[24]
Gardner PP. The use of covariance models to annotate RNAs in whole genomes. Brief Funct Genomics 2009; 8(6): 444-50.
[25]
Dong H, Liu YN, Zhang H, Wang G. A Method of RNA Secondary Structure Prediction Based on Hidden Markov Model. J Comp Res Dev 2012; 49(4): 812-7.
[26]
Nawrocki EP, Burge SW, Bateman A, et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 2015; 43(Database issue): D130-7.
[27]
Finn RD, Bateman A, Clements J, et al. Pfam: the protein families database. Nucleic Acids Res 2014; 42(Database issue): D222-30.
[28]
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013; 29(22): 2933-5.
[29]
Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 2006; 34(Database issue): D363-8.
[30]
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32(5): 1792-7.
[31]
Mandal M, Lee M, Barrick JE, et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 2004; 306(5694): 275-9.
[32]
Welz R, Breaker RR. Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis. RNA 2007; 13(4): 573-82.
[33]
Poiata E, Meyer MM, Ames TD, Breaker RR. A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria. RNA 2009; 15(11): 2046-56.
[34]
Nahvi A, Barrick JE, Breaker RR. Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 2004; 32(1): 143-50.
[35]
Zhou H, Zheng C, Su JM, et al. Characterization of a natural triple-tandem c-di-GMP riboswitch and application of the riboswitch-based dual-fluorescence reporter. Sci Rep 2016; 6: 20871.
[36]
Li XF, Chen F, Xiao JF, He J. Structure and function of c-di-GMP riboswitches. Sheng Wu Gong Cheng Xue Bao 2017; 33: 1357-68.
[37]
Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 2013; 9(12): 834.
[38]
Cai X, He J. Second messenger c-di-AMP regulates potassium ion transport. Wei Sheng Wu Xue Bao 2016; 57: 1434-42.