[1]
van Eijk E, Wittekoek B, Kuijper EJ, Smits WK. DNA replication proteins as potential targets for antimicrobials in drug-resistant bacterial pathogens. J Antimicrob Chemother 2017; 72(5): 1275-84.
[2]
Surivet JP, Lange R, Hubschwerlen C, et al. Structure-guided design, synthesis and biological evaluation of novel DNA ligase inhibitors with in vitro and in vivo anti-staphylococcal activity. Bioorg Med Chem Lett 2012; 22(21): 6705-11.
[3]
Mills SD, Eakin AE, Buurman ET, et al. Novel bacterial NAD+-dependent DNA ligase inhibitors with broad-spectrum activity and antibacterial efficacy in vivo. Antimicrob Agents Chemother 2011; 55(3): 1088-96.
[4]
Rose Y, Ciblat S, Reddy R, et al. Novel non-nucleobase inhibitors of Staphylococcus aureus DNA polymerase IIIC. Bioorg Med Chem Lett 2006; 16(4): 891-6.
[5]
Tarantino PM Jr, Zhi C, Wright GE, Brown NC. Inhibitors of DNA polymerase III as novel antimicrobial agents against gram-positive eubacteria. Antimicrob Agents Chemother 1999; 43(8): 1982-7.
[6]
Kling A, Lukat P, Almeida DV, et al. Antibiotics. Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 2015; 348(6239): 1106-12.
[7]
Kjelstrup S, Hansen PMP, Thomsen LE, Hansen PR, Løbner-Olesen A. Cyclic Peptide Inhibitors of the β-Sliding Clamp in Staphylococcus aureus. PLoS One 2013; 8(9)e72273
[8]
Marceau AH, Bernstein DA, Walsh BW, Shapiro W, Simmons LA, Keck JL. Protein interactions in genome maintenance as novel antibacterial targets. PLoS One 2013; 8(3)e58765
[9]
Fossum S, De Pascale G, Weigel C, Messer W, Donadio S, Skarstad K. A robust screen for novel antibiotics: Specific knockout of the initiator of bacterial DNA replication. FEMS Microbiol Lett 2008; 281(2): 210-4.
[10]
Johnsen L, Weigel C, von Kries J, Moller M, Skarstad K. A novel DNA gyrase inhibitor rescues Escherichia coli dnaAcos mutant cells from lethal hyperinitiation. J Antimicrob Chemother 2010; 65(5): 924-30.
[11]
Yamaichi Y, Duigou S, Shakhnovich EA, Waldor MK. Targeting the replication initiator of the second vibrio chromosome: Towards generation of vibrionaceae-specific antimicrobial agents. PLoS Pathog 2009; 5(11)e1000663
[12]
Erzberger JP, Mott ML, Berger JM. Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling. Nat Struct Mol Biol 2006; 13: 676.
[13]
Davey MJ, Fang L, McInerney P, Georgescu RE, O’Donnell M. The DnaC helicase loader is a dual ATP/ADP switch protein. The EMBO J 2002; 21(12): 3148-59.
[14]
Fang L, Davey MJ, O’Donnell M. Replisome Assembly at oriC, the Replication Origin of E. coli, Reveals an Explanation for Initiation Sites outside an Origin. Mol Cell 1999; 4(4): 541-53.
[15]
Messer W. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol Rev 2002; 26(4): 355-74.
[16]
Kogoma T, von Meyenburg K. The origin of replication, oriC, and the dnaA protein are dispensable in stable DNA replication (sdrA) mutants of Escherichia coli K-12. The EMBO J 1983; 2(3): 463-8.
[17]
Kogoma T. A novel Escherichia coli mutant capable of DNA replication in the absence of protein synthesis. J Mol Biol 1978; 121(1): 55-69.
[18]
de Massy B, Fayet O, Kogoma T. Multiple origin usage for DNA replication in sdrA(rnh) mutants of Escherichia coli K-12. Initiation in the absence of oriC. J Mol Biol 1984; 178(2): 227-36.
[19]
Martel M, Balleydier A, Sauriol A, Drolet M. Constitutive stable DNA replication in Escherichia coli cells lacking type 1A topoisomerase activity. DNA Repair 2015; 35: 37-47.
[20]
Kogoma T. Stable DNA replication: Interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 1997; 61(2): 212-38.
[21]
von Freiesleben U, Krekling MA, Hansen FG, Lobner-Olesen A. The eclipse period of Escherichia coli. The EMBO J 2000; 19(22): 6240-8.
[22]
Demarre G, Guérout A-M, Matsumoto-Mashimo C, Rowe-Magnus DA, Marlière P, Mazel D. A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPα) conjugative machineries and their cognate Escherichia coli host strains. Res Microbiol 2005; 156(2): 245-55.
[24]
Norregaard K, Andersson M, Sneppen K, Nielsen PE, Brown S, Oddershede LB. DNA supercoiling enhances cooperativity and efficiency of an epigenetic switch. Proc Natl Acad Sci USA 2013; 110(43): 17386-91.
[25]
Jensen MR, Lobner-Olesen A, Rasmussen KV. Escherichia coli minichromosomes: Random segregation and absence of copy number control. J Mol Biol 1990; 215(2): 257-65.
[26]
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000; 97(12): 6640-5.
[27]
Cormack BP, Valdivia RH, Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 1996; 173(1 Spec No): 33-8.
[28]
Atlung T, Nielsen A, Rasmussen LJ, Nellemann LJ, Holm F. A versatile method for integration of genes and gene fusions into the lambda attachment site of Escherichia coli. Gene 1991; 107(1): 11-7.
[29]
Skarstad K, Katayama T. Regulating DNA replication in bacteria. Cold Spring Harb Perspect Biol 2013; 5(4)a012922
[30]
Lobner-Olesen A, Atlung T, Rasmussen KV. Stability and replication control of Escherichia coli minichromosomes. J Bacteriol 1987; 169(6): 2835-42.
[31]
Bach T, Krekling MA, Skarstad K. Excess SeqA prolongs sequestration of oriC and delays nucleoid segregation and cell division. The EMBO J 2003; 22(2): 315-23.
[32]
Løbner-Olesen A, Boye E. Different effects of mioC transcription on initiation of chromosomal and minichromosomal replication in Escherichia coli. Nucleic Acids Res 1992; 20(12): 3029-36.
[33]
Erzberger JP, Pirruccello MM, Berger JM. The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. The EMBO J 2002; 21(18): 4763-73.
[34]
Seitz H, Weigel C, Messer W. The interaction domains of the DnaA and DnaB replication proteins of Escherichia coli. Mol Microbiol 2000; 37(5): 1270-9.
[35]
Ishida T, Akimitsu N, Kashioka T, et al. DiaA, a Novel DnaA-binding Protein, Ensures the Timely Initiation of Escherichia coli Chromosome Replication. J Biol Chem 2004; 279(44): 45546-55.
[36]
Katayama T, Takata M, Sekimizu K. The nucleoid protein H-NS facilitates chromosome DNA replication in Escherichia coli dnaA mutants. J Bacteriol 1996; 178(19): 5790-2.
[37]
Filutowicz M, Ross W, Wild J, Gourse RL. Involvement of Fis protein in replication of the Escherichia coli chromosome. J Bacteriol 1992; 174(2): 398-407.
[38]
Filutowicz M, Roll J. The requirement of IHF protein for extrachromosomal replication of the Escherichia coli oriC in a mutant deficient in DNA polymerase I activity. New Biol 1990; 2(9): 818-27.
[39]
Ogawa T, Wada M, Kano Y, Imamoto F, Okazaki T. DNA replication in Escherichia coli mutants that lack protein HU. J Bacteriol 1989; 171(10): 5672-9.
[40]
Gille H, Egan JB, Roth A, Messer W. The FIS protein binds and bends the origin of chromosomal DNA replication, oriC, of Escherichia coli. Nucleic Acids Res 1991; 19(15): 4167-72.
[41]
Langer U, Richter S, Roth A, Weigel C, Messer W. A comprehensive set of DnaA-box mutations in the replication origin, oriC, of Escherichia coli. Mol Microbiol 1996; 21(2): 301-11.