[1]
Peedicayil J. Pharmacoepigenetics and pharmacoepigenomics. Pharmacogenomics 2008; 9: 1785-6.
[2]
Gomez A, Ingelman-Sundberg M. Pharmacoepigenetics: Its role in interindividual differences in drug response. Clin Pharmacol Ther 2009; 85: 426-30.
[3]
Ingelman-Sundberg M, Gomez A. The past, present, and future of pharmacoepigenomics. Pharmacogenomics 2010; 11: 625-7.
[4]
Baer-Dubowska W, Majchrzak-Celińska A, Chichocki M. Pharmacoepigenetics: A new approach to predicting individual drug responses and targeting new drugs. Pharmacol Rep 2011; 63: 293-304.
[5]
Cressman AM, Piquette-Miller M. Epigenetics: A new link toward understanding human disease and drug response. Clin Pharmacol Ther 2012; 92: 669-73.
[6]
Szyf M. Toward a discipline of pharmacoepigenomics. Curr Pharmacogenom 2004; 2: 357-77.
[7]
Allis CD, Caparros M-L, Jenuwein T, Lachner M, Reinberg D. Overview and Concepts. In: Allis CD, Caparros M-L, Jenuwein T,
Reinberg D, Lachner M. (Eds.). Epigenetics. Cold Spring Harbor
Laboratory Press, New York, In: 2015; pp. pp. 47-115.
[8]
Peedicayil J. Epigenetic therapy – A new development in pharmacology. Indian J Med Res 2006; 123: 17-24.
[9]
Peedicayil J. Role of epigenetics in pharmacotherapy, psychotherapy and nutritional management of mental disorders. J Clin Pharm Ther 2012; 37: 499-501.
[10]
Peedicayil J, Kumar A. Epigenetic drugs for mood disorders. Prog Mol Biol Transl Sci 2018; 158 (In Press).
[11]
Sharma A, Gerbarg P, Bottiglieri T, et al. S-adenosylmethionine (SAMe) for neuropsychiatric disorders: A clinician-oriented review of research. J Clin Psychiatry 2017; 78: e656-67.
[12]
Peedicayil J. Epigenetic drugs in cognitive disorders. Curr Pharm Des 2014; 20: 1840-6.
[13]
Lu SC, Mato JM. S-adenosylmethionine in liver health, injury, and cancer. Physiol Rev 2012; 92: 1515-42.
[14]
Mato JM, Martinez-Chantar ML, Lu SC. S-adenosylmethionine metabolism and liver disease. Ann Hepatol 2013; 12: 183-9.
[15]
Remely M, Lovrecic L, de la Garza AL, et al. Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol 2015; 172: 2756-68.
[16]
Szyf M. DNA demethylation agents in clinical medicine. In: Tollefsbol TO, Ed. Handbook of Epigenetics. Elsevier, Waltham, MA 2017; pp. 595-603.
[17]
Kundakovic M. DNA methyltransferase inhibitors and psychiatric disorders. In: Peedicayil J, Grayson DR, Avramopoulos D, Eds. Epigenetics in Psychiatry. Elsevier, Waltham, MA 2014; pp. 497-514.
[18]
Peedicayil J. The role of DNA methylation in the pathogenesis and treatment of cancer. Curr Clin Pharmacol 2012; 7: 333-40.
[19]
Estey EH. Epigenetics in clinical practice: The examples of azacytidine and decitabine in myelodysplasia and acute myeloid leukemia. Leukemia 2013; 27: 1803-12.
[20]
Park J, Terranova-Barberio M, Zhong AY, et al. Clinical applications of histone deacetylase inhibitors. In: Tollefsbol TO (Ed) Handbook of Epigenetics Elsevier. Waltham, MA 2017; pp. 605-21.
[21]
Seto E, Yoshida M. Erasers of histone acetylation: The histone deacetylase enzymes. In: Allis CD, Caparros M-L, Jenuwein T, Reinberg D (Eds) Epigenetics Cold Spring Harbor Laboratory Press, New York. 2015; pp. 143-68.
[22]
Ptak C, Petronis A. Epigenetics and complex disease: From etiology to new therapeutics. Annu Rev Pharmacol Toxicol 2008; 48: 257-76.
[23]
Szyf M. Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 2009; 49: 243-63.
[24]
Eckschlager T, Plch J, Stiborova M, et al. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 2017; 18E1414
[25]
Zheng Y, Liu L, Shukla GC. A comprehensive review of web-based non-coding RNA resources for cancer research. Cancer Lett 2017; 407: 1-8.
[26]
Alural B, Genc S, Haggarty SJ. Diagnostic and therapeutic potential of miRNAs in neuropsychiatric disorders: Past, present, and future. Prog Neuropsychopharmacol Biol Psychiatry 2017; 73: 87-103.
[27]
Dong Y, Liu C, Zhou Y, et al. Role of noncoding RNAs in regulation of cardiac cell death and cardiovascular diseases. Cell Mol Life Sci 2018; 75: 291-300.
[28]
Wang Z, Lu Q, Wang Z. Epigenetic alterations in cellular immunity: New insights into autoimmune diseases. Cell Physiol Biochem 2017; 41: 645-60.
[29]
Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev 2015; 87: 3-14.
[30]
Müller S, Brown PJ. Epigenetic chemical probes. Clin Pharmacol Ther 2012; 92: 689-93.
[31]
Wapenaar H, Dekker FJ. Histone acetyltransferases: Challenges in targeting bi-substrate enzymes. Clin Epigenetics 2016; 8: 59.
[32]
Højfeldt JW, Agger K, Helin K. Histone lysine demethylases as targets for anticancer therapy. Nat Rev Drug Discov 2013; 12: 917-30.
[33]
Padmanabhan B, Mathur S, Manjula R, Tripathi S. Bromodomain and extra-terminal (BET) family proteins: New therapeutic targets in major diseases. J Biosci 2016; 41: 295-311.
[34]
Pérez-Salvia M, Esteller M. Bromodomain inhibitors and cancer therapy: From structures to applications. Epigenetics 2017; 12: 323-39.
[35]
Xu Y, Vakoc CR. Targeting cancer cells with BET bromodomain inhibitors. Cold Spring Harb Perspect Med 2017; 7(7)a026674
[36]
Magistri M, Velmesher D, Makhmutova M, et al. The BET-bromodomain inhibitor JQ1 reduces inflammation and tau phosphorylation at Ser396 in the brain of the 3xTg model of Alzheimer’s disease. Curr Alzheimer Res 2016; 13: 985-95.
[37]
Gomez A, Ingelman-Sundberg M. Pharmacoepigenetic aspects of gene polymorphism on drug therapies: Effects of DNA methylation on drug response. Expert Rev Clin Pharmacol 2009; 2: 55-65.
[38]
Kacevska M, Ivanov M, Ingelman-Sundberg M. Epigenetic-dependent regulation of drug transport and metabolism: An update. Pharmacogenomics 2012; 13: 1373-85.
[39]
Kacevska M, Ivanov M, Ingelman-Sundberg M. Perspectives on epigenetics and its relevance to adverse drug reactions. Clin Pharmacol Ther 2011; 89: 902-7.
[40]
Fisel P, Schaeffler E, Schwab M. DNA methylation of ADME genes. Clin Pharmacol Ther 2016; 99: 512-27.
[41]
He Y, Chevillet JR, Liu G, et al. The effects of microRNA on the absorption, distribution, metabolism, and excretion of drugs. Br J Pharmacol 2015; 172: 2733-47.
[42]
Giacomini KM, Sugiyama Y. Membrane transporters and drug response. In: Brunton LL, Chabner BA, Knollmann BC, (Eds) The Pharmacological Basis of Therapeutics, McGraw-Hill, New York. 2011; pp. 89-121.
[43]
Masereeuw R, Russell FG. Regulatory pathways for ATP-binding cassette transport proteins in kidney proximal tubules. AAPS J 2012; 14: 883-94.
[44]
Wu L-X, Wen C-J, Li Y, et al. Interindividual epigenetic variation in ABCB1 promoter and its relationship with ABCB1 expression and function in healthy Chinese subjects. Br J Clin Pharmacol 2015; 80: 1109-21.
[45]
Arrigoni E, Galimberti S, Petrini M, et al. ATP-binding cassette transmembrane transporters and their epigenetic control in cancer: An overview. Expert Opin Drug Metab Toxicol 2016; 12: 1419-32.
[46]
Li W, Zhang H, Assaraf YG, et al. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat 2016; 27: 14-29.
[47]
Wu W, Dnyanmote AV, Nigam SK. Remote communication through solute carriers and ATP binding cassette drug transporter pathways: An update on the remote sensing and signaling hypothesis. Mol Pharmacol 2011; 79: 795-805.
[48]
Hirota T, Tanaka T, Takesue H, et al. Epigenetic regulation of drug transporter expression in human tissues. Expert Opin Drug Metab Toxicol 2017; 13: 19-30.
[49]
Majchrzak-Celińska A, Baer-Dubowska W. Pharmacoepigenetics: An element of personalized therapy? Expert Opin Drug Metab Toxicol 2017; 13: 387-98.
[50]
Zhang N, Lei J, Lei H, et al. MicroRNA-101 overexpression by IL-6 and TNF-α inhibits cholesterol efflux by suppressing ATP-binding cassette transporter A1 expression. Exp Cell Res 2015; 336: 33-42.
[51]
Kim I-W, Han N, Burckart GJ, Oh JM. Epigenetic changes in gene expression for drug-metabolizing enzymes and transporters. Pharmacotherapy 2014; 34: 140-50.
[52]
Oberstadt MC, Bien-Moller S, Weitmann K, et al. Epigenetic modulation of the drug resistance genes MGMT, ABCB1 and ABCG2 in glioblastoma multiforme. BMC Cancer 2013; 13: 617.
[53]
Gonzalez FJ, Coughtrie M, Tukey RH. Drug metabolism. In: Brunton LL, Chabner BA, Knollman BC (Eds) The Pharmalogical Basis of Therapeutics McGraw-Hill, New York. 2011; pp. 123-43.
[54]
Ingelman-Sundberg M, Zhong X-B, Hankinson O, et al. Potential role of epigenetic mechanisms in the regulation of drug metabolism and transport. Drug Metab Dispos 2013; 41: 1725-31.
[55]
Cascorbi I. Overlapping effects of genetic variation and epigenetics on drug response: Challenges of pharmacoepigenomics. Pharmacogenomics 2013; 14: 1807-9.
[56]
Habano W, Kawamura K, Lizuka N, et al. Analysis of DNA methylation landscape reveals the roles of DNA methylation in the regulation of drug metabolizing enzymes. Clin Epigenetics 2015; 7: 105.
[57]
Vyhlidal CA, Bi C, Ye SQ, et al. Dynamics of cytosine methylation in the proximal promoters of CYP3A4 and CYP3A7 in pediatric and prenatal livers. Drug Metab Dispos 2016; 44: 1020-6.
[58]
Gomez A, Ingelman-Sundberg M. Epigenetic and microRNA-dependent control of cytochrome P450 expression: A gap between DNA and protein. Pharmacogenomics 2009; 10: 1067-76.
[59]
Yu A-M, Ingelman-Sundberg M, Cherrington NJ, et al. Regulation of drug metabolism and toxicity by multiple factors of genetics, epigenetics, lncRNAs, gut microbiota and diseases: A meeting report of the 21st International Symposium on Microsomes and Drug Oxidations (MDO). Acta Pharm Sin B 2017; 7: 241-8.
[60]
Jones SM, Boobis AR, Moore GE, et al. Expression of CYP2E1 during human fetal development: Methylation of the CYP2E1 gene in human fetal and adult liver samples. Biochem Pharmacol 1992; 43: 1876-9.
[61]
Gomez A, Karlgren M, Edler D, et al. Expression of CYP2W1 in colon tumours: Regulation by gene methylation. Pharmacogenomics 2007; 8: 1315-25.
[62]
Ivanov M, Kals M, Kacevska M, et al. Ontogeny, distribution and potential roles of 5-hydroxymethylcytosine in human liver function. Genome Biol 2013; 14: R83.
[63]
Ivanov M, Kals M, Lauschke V, et al. Single base resolution analysis of 5-hydroxymethylcytosine in 188 human genes: Implications for hepatic gene expression. Nucleic Acids Res 2016; 44: 6756-69.
[64]
Thomson JP, Hunter JM, Lempiäinen H, et al. Dynamic changes in 5-hydroxymethylation signatures underpin early and late events in drug exposed liver. Nucleic Acids Res 2013; 41: 5639-54.
[65]
Csoka AB, Szyf M. Epigenetic side-effects of common pharmaceuticals: A potential new field in medicine and pharmacology. Med Hypotheses 2009; 73: 770-80.
[66]
Rang HP, Ritter JM, Flower RJ, Henderson G. Rang & Dale’s Pharmacology. Elsevier, London 2016.
[67]
Fouse SD, Nagarajan RO, Costello JF. Genome-scale methylation analysis. Epigenomics 2010; 2: 105-17.
[68]
Bettscheider M, Kuczynska A, Almeida O, et al. Optimized analysis of DNA methylation and gene expression from small, anatomically-defined areas of the brain. J Vis Exp 2012; 65e3938
[69]
Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005; 102: 10604-9.
[70]
Ingelman-Sundberg M. Personalized medicine into the next generation. J Intern Med 2015; 277: 152-4.
[71]
Peedicayil J. Personalized pharmacoepigenomics. In: Tollefsbol TO (Ed) Personalized Epigenetics, Elsevier, Waltham, MA. 2015; pp. 351-67.
[72]
O’Brien CP. Drug addiction. In: Brunton LL, Chabner BA, Knollmann BC, (Eds) The Pharmacalogical Basis of Therapeutics, McGraw-Hill, New York. 2011; pp. 649-68.
[73]
Sadock BJ, Sadock VA, Ruiz P. Kaplan & Sadock’s Synopsis of Psychiatry. Lippincott Williams & Wilkins, New Delhi 2015.
[74]
Peedicayil J. The role of epigenetics in mental disorders. Indian J Med Res 2007; 126: 105-11.
[75]
Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 2011; 12: 623-37.
[76]
Nestler EJ. Epigenetic mechanisms of drug addiction. Neuropharmacology 2014; 76(B): 259-68.
[77]
Pandey SC, Ugale R, Zhang H, et al. Brain chromatin remodeling: A novel mechanism of alcoholism. J Neurosci 2008; 28: 3729-37.
[78]
Moonat S, Starkman BG, Sakharkar AJ, et al. Neuroscience of alcoholism: Molecular and cellular mechanisms. Cell Mol Life Sci 2010; 67: 73-88.
[79]
Welberg L. Addiction: From mechanisms to treatment. Nat Rev Neurosci 2011; 12: 621.
[80]
Motta SS, Cluzel P, Aldana M. Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps. PLoS One 2015; 10e0118464
[81]
Beaulaurier J, Zhang XS, Zhu S, et al. Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes. Nat Commun 2015; 6: 7438.
[82]
Sandoval-Motta S, Aldana M. Adaptive resistance to antibiotics in bacteria: A systems biology perspective. Wiley Interdiscip Rev Syst Biol Med 2016; 8: 253-67.
[83]
Cohen NR, Ross CA, Jain S, et al. A role for the bacterial GATC methylome in antibacterial stress survival. Nat Genet 2016; 48: 581-6.
[84]
Glasspool RM, Teodoridis JM, Brown R. Epigenetics as a mechanism driving polygenic clinical drug resistance. Br J Cancer 2006; 94: 1087-92.
[85]
Wilting RH, Dannenberg J-H. Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist Updat 2012; 15: 21-38.
[86]
Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med 2011; 17: 330-9.
[87]
Easwaran H, Tsai H-C, Baylin SB. Cancer epigenetics: Tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell 2014; 54: 716-27.
[88]
Lauschke VM, Barragan I, Ingelman-Sundberg M. Pharmacoepigenetics and Toxicoepigenetics: Novel mechanistic insights and therapeutic opportunities. Annu Rev Pharmacol Toxicol 2018; 58: 161-85.
[89]
Mulero-Navarro S, Esteller M. Epigenetic biomarkers in cancer: The time is now. Crit Rev Oncol Hematol 2008; 68: 1-11.
[90]
Costa-Pinheiro P, Montezuma D, Henrique R, et al. Diagnostic and prognostic epigenetic biomarkers in cancer. Epigenomics 2015; 7: 1003-15.
[91]
Lin C-C, Huang T-L. Epigenetic biomarkers in neuropsychiatric disorders. In: Yasui DH, Peedicayil J, Grayson DR (Eds), Neuropsychiatric disorders and epigenetics, Elsevier, Waltham, MA,. 2016; pp. 35-66.
[92]
Hampel H, O’Bryant SE, Castrillo JI, et al. Precision medicine: The golden gate for detection, treatment and prevention of Alzheimer’s disease. J Prev Alzheimers Dis 2016; 3: 243-59.