[1]
Xiong J. Essential bioinformatics Cambridge University Press:
Texas 2006; pp. 3-6.
[2]
Zhang X, Zhou X, Wang X. Basics for Bioinformatics. In: Basics
of Bioinformatics, Springer, Berlin, Heidelberg 2013; pp. 1-25.
[3]
Al Bataineh M, Al-qudah Z, Al-Zaben A. A novel Iterative Sequential Monte Carlo (ISMC) algorithm for motif discovery. IET Signal Process 2015; 10(5): 504-13.
[4]
Liu H, Han F, Zhou H, Yan X, Kosik KS. Fast motif discovery in short sequences.
[5]
Reddy US, Arock M, Reddy A. Planted (l, d)-motif finding using particle swarm optimization. IJCA Special Issue Evol Comput 2010; 2: 51-6.
[6]
Keith JM Bioinformatics: Volume I Data, Sequence Analysis and
Evolution (Methods in Molecular Biology) India: Humana Press
New Delhi, 2008; 562.
[7]
Zhang Y, Wang P, Yan M. An entropy-based position projection algorithm for motif discovery. BioMed Res Int 2016; 2016: 11.
[8]
Pavesi G, Mereghetti P, Mauri G, Pesole G. Weeder web: Discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res 2004; 32(Suppl. 2): W199-203.
[9]
Karaboga D, Aslan S. A discrete artificial bee colony algorithm for detecting transcription factor binding sites in DNA sequences. Genet Mol Res 2016; 15(2): 1-11.
[10]
Bailey TL. DREME: Motif discovery in transcription factor ChIP-seq data. Bioinformatics 2011; 27(12): 1653-9.
[11]
Sharov AA, Ko MS. Exhaustive search for over-represented DNA sequence motifs with CisFinder. DNA Res 2009; 16(5): 261-73.
[12]
Jia C, Carson MB, Wang Y, Lin Y, Lu H. A new exhaustive method and strategy for finding motifs in ChIP-enriched regions. PLoS One 2014; 9(1): e86044.
[13]
Yu Q, Huo H, Chen X, Guo H, Vitter JS, Huan J. An efficient algorithm for discovering motifs in large DNA data sets. IEEE Trans Nanobioscience 2015; 14(5): 535-44.
[14]
Jensen ST, Liu XS, Zhou Q, Liu JS. Computational discovery of gene regulatory binding motifs: A Bayesian perspective. Stat Sci 2004; 19(1): 188-204.
[15]
Bailey TL, Elkan C. The value of prior knowledge in discovering motifs with MEME. Proceedings of the ISMB Conference. 1995 July 16-19; Cambridge, United Kingdom. United States: Stanford Univ. 1996.
[16]
Reid JE, Wernisch L. STEME: Efficient EM to find motifs in large data sets. Nucleic Acids Res 2011; 39(18): e126.
[17]
Quang D, Xie X. EXTREME: An online EM algorithm for motif discovery. Bioinformatics 2014; 30(12): 1667-73.
[18]
Hughes JD, Estep PW, Tavazoie S, Church GM. Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 2000; 296(5): 1205-14.
[19]
Liu X, Brutlag DL, Liu JS. BioProspector: Discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput 2001; 2001: 127-38.
[20]
Zelinka I. A survey on evolutionary algorithms dynamics and its complexity–Mutual relations, past, present and future. Swarm Evol Comput 2015; 25: 2-14.
[21]
Machhi V, Patel MS, Degama J. Motif finding with application to the transcription factor binding sites problem. Int J Comput Appl 2015; 120(15): 7-10.
[22]
Wei Z, Jensen ST. GAME: Detecting cis-regulatory elements using a genetic algorithm. Bioinformatics 2006; 22(13): 1577-84.
[23]
Goldberg DE. Genetic algorithms in search, optimization and
machine learning 1st ed Boston: Addison-Wesley 1989 ISBN:
0201157675.
[24]
Koza JR. Genetic programming: On the programming of computers by means of natural selection. Stat Comput 1994; 4: 87.
[25]
Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 1997; 11(4): 341-59.
[26]
Beyer H-G, Schwefel H-P. Evolution strategies–A comprehensive introduction. Nat Comput 2002; 1(1): 3-52.
[27]
De Jong KA. Evolutionary computation A unified approach. Cambridge, USA: MIT Press 2006.
[28]
Civicioglu P, Besdok E. A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 2013; 39(4): 315-46.
[29]
Viswanathan GM, Afanasyev V, Buldyrev S, Murphy E. Lévy flight search patterns of wandering albatrosses. Nature 1996; 381(6581): 413-5.
[30]
Passino KM. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Sys 2002; 22(3): 52-67.
[31]
Shah-Hosseini H. The intelligent water drops algorithm: A nature-inspired swarm-based optimization algorithm. Int J Bio-inspired Comput 2009; 1(1-2): 71-9.
[32]
Lei C, Ruan J. A particle swarm optimization-based algorithm for finding gapped motifs. BioData Min 2010; 3(1): 9-10.
[33]
Karaboga D, Akay B, Ozturk C. Artificial Bee Colony (ABC) optimization algorithm for training feed-forward neural networks. Proceedings of the International Conference on Modeling Decsions for Artificial Intelligence. 2007 August 16-18; Springer 2007.
[34]
Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 1996; 26(1): 29-41.
[35]
Chauhan R, Agarwal P. A review: Applying genetic algorithms for motif discovery. Int. J Comput Technol Appl 2012; 3(4): 1510-5.
[36]
Sinha S, Tompa M. YMF: A program for discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res 2003; 31(13): 3586-8.
[37]
Thomas-Chollier M, Herrmann C, Defrance M, Sand O, Thieffry D, van Helden J. RSAT peak-motifs: Motif analysis in full-size ChIP-seq datasets. Nucleic Acids Res 2012; 40(4): e31.
[38]
Buhler J, Tompa M. Finding motifs using random projections. J Comput Biol 2002; 9(2): 225-42.
[39]
Raphael B, Liu L-T, Varghese G. A uniform projection method for motif discovery in DNA sequences IEEE/ACM Trans Comput Biol Bioinform 2004; 1(2): 91-4.
[40]
Wang X, Miao Y. Cheng. Finding motifs in DNA sequences using low-dispersion sequences. J Comput Biol 2014; 21(4): 320-9.
[41]
Pevzner PA, Sze S-H. Combinatorial approaches to finding subtle signals in DNA sequences. Proc Int Conf Intell Syst Mol Biol 2000; 8: 269-78.
[42]
Satya RV, Mukherjee A. New Algorithms for Finding Monad
Patterns in DNA Sequences In: Apostolico A, Melucci M eds
String Processing and Information Retrieval SPIRE 2004 Lecture
Notes in Computer Science, vol 3246 Springer, Berlin, Heidelberg
[43]
Liang S, Samanta MP, Biegel B. cWINNOWER algorithm for finding fuzzy DNA motifs. J Bioinform Comput Biol 2004; 2(01): 47-60.
[44]
Yu Q, Huo H, Zhao R, Feng D, Vitter JS, Huan J. RefSelect: A reference sequence selection algorithm for planted (l, d) motif search. BMC Bioinformatics 2016; 17(9): 266.
[45]
Lawrence CE, Reilly AA. An Expectation Maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences. Proteins 1990; 7(1): 41-51.
[46]
Lee MT. Motif finding Class notes for GCB 535 / CIS 535, Department of Computer and Information Science, University of Pennsylvania, 10 Oct 2004.
[47]
Das MK, Dai H-K. A survey of DNA motif finding algorithms. BMC Bioinformatics 2007; 8(7): S21.
[48]
Machanick P, Bailey TL. MEME-ChIP: Motif analysis of large DNA datasets. Bioinformatics 2011; 27(12): 1696-7.
[49]
Bailey TL, Williams N, Misleh C, Li WW. MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 2006; 34(Suppl. 2): W369-73.
[50]
Bailey TL, Bodén M, Whitington T, Machanick P. The value of position-specific priors in motif discovery using MEME. BMC Bioinformatics 2010; 11(1): 179.
[51]
Tanaka E, Bailey TL, Keich U. Improving MEME via a two-tiered significance analysis. Bioinformatics 2014; 30(14): 1965-73.
[52]
Ma W, Noble WS, Bailey TL. Motif-based analysis of large nucleotide data sets using MEME-ChIP. Nat Protoc 2014; 9(6): 1428-50.
[53]
Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC. Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment. Science 1993; 262(5131): 208.
[54]
Liu JS, Neuwald AF, Lawrence CE. Bayesian models for multiple local sequence alignment and Gibbs sampling strategies. J Am Stat Assoc 1995; 90(432): 1156-70.
[55]
Xing EP, Wu W, Jordan MI, Karp RM. LOGOS: A modular Bayesian model for de novo motif detection. J Bioinform Comput Biol 2004; 2(01): 127-54.
[56]
Siebert M, Söding J. Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences. Nucleic Acids Res 2016; 44(13): 6055-69.
[57]
Jääskinen V, Parkkinen V, Cheng L, Corander J. Bayesian clustering of DNA sequences using Markov chains and a stochastic partition model. Stat Appl Genet Mol Biol 2014; 13(1): 105-21.
[58]
Frith MC, Li MC, Weng Z. Cluster-Buster: Finding dense clusters of motifs in DNA sequences. Nucleic Acids Res 2003; 31(13): 3666-8.
[59]
Fister I Jr, Yang X-S, Fister I, Brest J, Fister D. A brief review of nature-inspired algorithms for optimization. Electrotech Rev 2013; 80(3): 116-22.
[60]
Malhotra R, Singh N, Singh Y. Genetic algorithms: Concepts, design for optimization of process controllers. Comput Inf Sci 2011; 4(2): 39-54.
[61]
Liu FF, Tsai JJ, Chen R-M, Chen S, Shih S. FMGA: Finding motifs
by genetic algorithm. Proceedings of the Fourth IEEE Symposium
on Bioinformatics and Bioengineering; 2004 May 21; Taiwan,
IEEE 2004, 459-66
[62]
Che D, Song Y, Rasheed K. MDGA: Motif discovery using a genetic
algorithm. Proceedings of the 7th annual conference on Genetic
and evolutionary computation; 2005 June 25-29; Washington DC,
USA. ACM 2005, 447-52
[63]
Gutierrez JB, Frith M, Nakai K. A genetic algorithm for motif
finding based on statistical significance. Proceedings of the International
Conference on Bioinformatics and Biomedical Engineering;
2015 Nov 2-4; Washington, USA; Granada: Springer 2015, 438-
449
[64]
Vijayvargiya S, Shukla P. A genetic algorithm with clustering for finding regulatory motifs in DNA sequences. Int J Comput Appl 2011; 1: 6-10.
[65]
Paul TK, Iba H. Identification of weak motifs in multiple biological sequences using genetic algorithm. Proceedings of the 8th annual conference on genetic and evolutionary computation 2006 July 8-12; Washington, USA. 271-8.
[67]
Huo H, Zhao Z, Stojkovic V, Liu L. Optimizing genetic algorithm for motif discovery. Math Comput Model 2010; 52(11): 2011-20.
[68]
Li L. GADEM: A genetic algorithm guided formation of spaced dyads coupled with an EM algorithm for motif discovery. J Comput Biol 2009; 16(2): 317-29.
[69]
Wang X, Miao Y. GAEM: A hybrid algorithm incorporating GA with EM for planted edited motif finding problem. Curr Bioinform 2014; 9(5): 463-9.
[70]
Le T, Altman T, Gardiner K. HIGEDA: A hierarchical gene-set genetics based algorithm for finding subtle motifs in biological sequences. Bioinformatics 2010; 26(3): 302-9.
[71]
Fan Y, Wu W, Liu R, Yang W. An iterative algorithm for motif discovery. Procedia Comput Sci 2013; 24: 25-9.
[72]
Thompson W, Rouchka EC, Lawrence CE. Gibbs recursive sampler: Finding transcription factor binding sites. Nucleic Acids Res 2003; 31(13): 3580-5.
[73]
Lo N, Changchien S, Chang Y, Lu T. Human promoter prediction based on sorted consensus sequence patterns by genetic algorithms. Proceedings of the International Congress on Biological and Medical Engineering 2002; 111-2.
[74]
Kennedy J. Particle swarm optimization. In: Encyclopedia of machine learning. 1st ed. US: Springer 2011; pp. 760-6.
[75]
Mokhtar N. DNA sequence design for DNA computation based on binary particle swarm optimization. Int J Innov Comput, Inf Control 2012; 8(5B): 3441-50.
[76]
Hardin CT, Rouchka EC. DNA motif detection using particle swarm optimization and expectation-maximization. Proc IEEE Swarm Intell Symp 2005 2005; 2005: 181-.
[77]
Chang BC, Ratnaweera A, Halgamuge SK, Watson HC. Particle swarm optimisation for protein motif discovery. Genet Prog Evolv Machines 2004; 5(2): 203-14.
[78]
Lei C, Ruan J. A particle swarm optimization algorithm for finding DNA sequence motifs. Proceedings of the IEEE International Conference on Bioinformatics and Biomeidcine Workshops; 2008 Nov 3-5; Philadelphia, USA. IEEE 2008, 166-73
[79]
Lei C, Ruan J. A novel swarm intelligence algorithm for finding DNA motifs. Int J Comput Biol Drug Des 2009; 2(4): 323-9.
[80]
Abdullah SLS, Harun H. Species motif extraction using LPBS. The Proceedings of the 4th International Conference on Computing and Informatics ICOCI; 2013 Aug 28-30; Sarawak, Malaysia. Universiti Utara Malaysia 2013.
[81]
Elewa ES, Abdelhalim MB, Mabrouk MS. An efficient system for finding functional motifs in genomic DNA sequences by using nature- inspired algorithms. In: Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016. Springer 2016; pp. 215-24
[82]
Karaboga D. An idea based on honey bee swarm for numerical optimization Technical report-tr06. Erciyes University, Engineering Faculty, Computer Engineering Department 2005.
[83]
González-Álvarez DL, Vega-Rodríguez MA, Gómez-Pulido JA, Sánchez-Pérez JM. Comparing multiobjective artificial bee colony adaptations for discovering DNA motifs. In: Proceedings of the European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics 2012; Springer 2012; pp. 110-21
[84]
González-Álvarez DL, Vega-Rodríguez MA. Hybrid multiobjective artificial bee colony with differential evolution applied to motif finding. In: Proceedings of the European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics 2013; Springer 2013; pp. 68-79
[85]
Blum C. Ant colony optimization: Introduction and recent trends. Phys Life Rev 2005; 2(4): 353-73.
[86]
Ochoa A, Hernández A, Cruz L, et al. Artificial societies and social simulation using ant colony, particle swarm optimization and cultural algorithms.In: New achievements in evolutionary computation. InTech 2010; pp. 267-9.
[87]
Yang X-S, Deb S. Cuckoo search via Lévy flights. Proceedings of the World Congress on Nature & Biologically Inspired Computing; 2009 Dec 9-11; Coimbatore, India. IEEE 2009, 210-4
[88]
Yang X-S, Deb S. Engineering optimisation by cuckoo search. Int J Math Modell NumOptimisat 2010; 1(4): 330-43.
[89]
Yang X-S, Deb S. Multiobjective cuckoo search for design optimization. Comput Oper Res 2013; 40(6): 1616-24.
[90]
Pavlyukevich I. Lévy flights, non-local search and simulated annealing. J Comput Phys 2007; 226(2): 1830-44.
[91]
Kaveh A, Bakhshpoori T, Ashoory M. An efficient optimization procedure based on cuckoo search algorithm for practical design of steel structures. Iran Univ Sci Technol 2012; 2(1): 1-14.
[92]
Roy S, Chaudhuri SS. Cuckoo search algorithm using Lévy flight: A review. Int J Modern Edu Comput Sci 2013; 5(12): 10-5.
[93]
Yang X-S, Deb S. Cuckoo search: Recent advances and applications. Neural Comput Appl 2014; 24(1): 169-74.
[94]
Elewa ES, Abdelhalim M, Mabrouk MS. Adaptation of cuckoo search algorithm for the motif finding problem. Proceedings of the 10th International Computer Engineering Conference (ICENCO); 2014 Dec 29-30; Giza, Egypt, IEEE 2014, 87-91
[95]
Hashim F, Mabrouk MS, Al-Atabany W. GWOMF: Grey Wolf Optimization for Motif Finding. Proceedings of the 13th International Computer Engineering Conference (ICENCO); 2017 Dec 27- 28; Cairo, Egypt, IEEE 2017, 141-6
[96]
van Helden J, André B, Collado-Vides J. Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol Biol 1998; 281(5): 827-42.
[97]
Ma X, Kulkarni A, Zhang Z, Xuan Z, Serfling R, Zhang MQ. A highly efficient and effective motif discovery method for ChIP-seq/ChIP-chip data using positional information. Nucleic Acids Res 2012; gkr1135.
[98]
Pavesi G, Mauri G, Pesole G. An algorithm for finding signals of unknown length in DNA sequences. Bioinformatics 2001; 17(Suppl. 1): S207-14.
[99]
Eskin E, Pevzner PA. Finding composite regulatory patterns in DNA sequences. Bioinformatics 2002; 18: S354-63.
[100]
Evans PA, Smith AD. Toward Optimal Motif Enumeration In:
Dehne F, Sack JR, Smid M eds Algorithms and Data Structures
WADS 2003 Lecture Notes in Computer Science, vol 2748, Springer,
Berlin, Heidelberg
[101]
Pisanti N, Carvalho AM, Marsan L, Sagot MF. RISOTTO: Fast
Extraction of Motifs with Mismatches. In: Correa JR, Hevia A,
Kiwi M. eds. LATIN 2006: Theoretical Informatics. LATIN 2006.
Lecture Notes in Computer Science, vol 3887. Springer, Berlin,
Heidelberg.
[102]
Cazaux B, Rivals E. Reverse engineering of compact suffix trees and links: A novel algorithm. J Discrete Algorithms 2014; 28: 9-22.
[103]
Leibovich L, Paz I, Yakhini Z, Mandel-Gutfreund Y. DRIMust: A web server for discovering rank imbalanced motifs using suffix trees. Nucleic Acids Res 2013; 41(W1): W174-9.
[104]
Sze S-H, Lu S, Chen J. Integrating sample-driven and patterndriven
approaches in motif finding. In: Proceedings of the International
Workshop on Algorithms in Bioinformatics; Springer 2004:
pp. 438-49
[105]
Sun HQ, Low MYH, Hsu WJ, Rajapakse JC. RecMotif: A novel fast algorithm for weak motif discovery. BMC Bioinformatics 2010; 11(11): S8.
[106]
Sun HQ, Low MYH, Hsu WJ, Rajapakse JC. ListMotif: A time and
memory efficient algorithm for weak motif discovery. Proceedings
of the 2010 International Conference on Intelligent Systems and
Knowledge Engineering (ISKE); 2010 Nov 15-16; Hangzhou, China,
IEEE 2010, 254-60
[107]
Sun HQ, Low MYH, Hsu WJ, Tan CW, Rajapakse JC. Tree-structured algorithm for long weak motif discovery. Bioinformatics 2011; 27(19): 2641-7.
[108]
Yang X, Rajapakse JC. Graphical approach to weak motif recognition. Genome Inf 2004; 15(2): 52-62.
[109]
Ho LS, Rajapakse JC. Graphical approach to weak motif recognition
in noisy data sets. In: Proceedings of the International Workshop
on Pattern Recognition in Bioinformatics; Springer 2006: pp.
23-31
[110]
Chin FYL, Leung HCM. Voting algorithms for discovering long
motifs. Proceedings of the 3rd Asia-Pacific Bioinformatics Conference;
2005 Jan 17-21; Singapore. Series on Advances in Bioinformatics
and Computational Biology 2005, pp. 261-71
[111]
Rajasekaran S, Balla S, Huang C-H. Exact algorithms for planted motif problems. J Comput Biol 2005; 12(8): 1117-28.
[112]
Sze S-H, Zhao X. Improved pattern-driven algorithms for motif finding in DNA sequences.In: Systems Biology and Regulatory Genomics. Springer 2007; pp. 198-211.
[113]
Davila J, Balla S, Rajasekaran S. Space and time efficient algorithms
for planted motif search. In: Proceedings of the International
Conference on Computational Science; Springer 2006; pp. 822-9.
[114]
Kuksa PP, Pavlovic V. Efficient motif finding algorithms for large-alphabet inputs. BMC Bioinformatics 2010; 11(8): S1.
[115]
Rajasekaran S, Dinh H. A speedup technique for (l, d)-motif finding algorithms. BMC Res Notes 2011; 4(1): 54.
[116]
Dinh H, Rajasekaran S, Kundeti VK. PMS5: An efficient exact algorithm for the (ℓ, d)-motif finding problem. BMC Bioinformatics 2011; 12(1): 410.
[117]
Bandyopadhyay S, Sahni S, Rajasekaran S. PMS6: A fast algorithm for motif discovery Int J Bioinf Res Appl 2 2014; 10(4-5): 369-83
[118]
Yu Q, Huo H, Zhang Y, Guo H. PairMotif: A new pattern-driven algorithm for planted (l, d) DNA motif search. PLoS One 2012; 7(10): e48442.
[119]
Ho ES, Jakubowski CD, Gunderson SI. iTriplet, a rule-based nucleic acid sequence motif finder. Algor Mol Biol 2009; 4(1): 14.
[120]
Davila J, Balla S, Rajasekaran S. Fast and practical algorithms for
planted (l, d) motif search. IEEE/ACM Trans Comput Biol Bioinf
(TCBB) 2007; 4(4): 544-52.
[121]
Davila J, Balla S, Rajasekaran S. Pampa: An improved branch and
bound algorithm for planted (l, d) motif search. In: Tech. rep, ed
2007.
[122]
Sharma D, Rajasekaran S. A simple algorithm for (l, d) motif
search1. CIBCB'09 Proceedings of the 6th Annual IEEE Conference
on Computational Intelligence in Bioinformatics and Computational
Biology; 2009 March 30-April 02; Tennessee, USA. Piscataway,
USA: IEEE 2009; pp. 148-54.
[123]
Chen Z-Z, Wang L. Fast exact algorithms for the closest string and
substring problems with application to the planted (l, d)-motif model.
IEEE/ACM Trans Comput Biol Bioinf 2011; 8(5): 1400-10.
[124]
Dinh H, Rajasekaran S, Davila J. qPMS7: A fast algorithm for finding (ℓ, d)-motifs in DNA and protein sequences. PLoS One 2012; 7(7): e41425.
[125]
Tanaka S. Improved exact enumerative algorithms for the planted (l, d)-motif search problem. IEEE/ACM Trans Comput Biol Bioinf 2014; 11(2): 361-74.
[126]
Keich U, Pevzner PA. Finding motifs in the twilight zone. Bioinformatics 2002; 18(10): 1374-81.
[127]
Price A, Ramabhadran S, Pevzner PA. Finding subtle motifs by branching from sample strings. Bioinformatics 2003; 19(Suppl. 2): ii149-55.
[128]
Sun C, Huo H, Yu Q, Guo H, Sun Z. An affinity propagation-based DNA motif discovery algorithm. BioMed Res Int 2015; 2015: 10.
[129]
Wu H, Wong PW, Caddick MX, Sibthorp C. Finding DNA regulatory motifs with position-dependent models. J Med Bioeng 2013; 2(2): 103-9.
[130]
Thijs G, Marchal K, Lescot M, et al. A Gibbs sampling method to detect overrepresented motifs in the upstream regions of coexpressed genes. J Comput Biol 2002; 9(2): 447-64.
[131]
Kilpatrick AM, Ward B, Aitken S. Stochastic EM-based TFBS motif discovery with MITSU. Bioinformatics 2014; 30(12): i310-8.
[132]
Bi C. A Monte Carlo EM algorithm for de novo motif discovery in biomolecular sequences. IEEE/ACM Trans Comput Biol Bioinf 2009; 6(3): 370-86.
[133]
Bi C. SEAM: A stochastic EM-type algorithm for motif-finding in biopolymer sequences. J Bioinform Comput Biol 2007; 5(01): 47-77.
[134]
Miller AK, Nielsen PM, Crampin EJ. A Bayesian search for transcriptional motifs. PLoS One 2010; 5(11): e13897.
[135]
Li SM, Wakefield J, Self S. A transdimensional Bayesian model for pattern recognition in DNA sequences. Biostatistics 2008; 9(4): 668-85.
[136]
Fratkin E, Naughton BT, Brutlag DL, Batzoglou S. MotifCut: Regulatory motifs finding with maximum density subgraphs. Bioinformatics 2006; 22(14): e150-7.
[137]
Boucher C, Brown DG, Church P. A graph clustering approach to
weak motif recognition. In: Proceedings of the International
Workshop on Algorithms in Bioinformatics; Springer 2007, 149-
160
[138]
Hertz GZ, Hartzell GW, Stormo GD. Identification of consensus patterns in unaligned DNA sequences known to be functionally related. Comput Appl Biosci 1990; 6(2): 81-92.
[139]
Huang C-W, Lee W-S, Hsieh S-Y. An improved heuristic algorithm for finding motif signals in DNA sequences IEEE/ACM Trans Comput Biol Bioinform 2011; 8(4): 959-75
[140]
Stine M, Dasgupta D, Mukatira S. Motif discovery in upstream
sequences of coordinately expressed genes. Proceedings of the
Evolutionary Computation, 2003. CEC'03. The 2003 Congress on;
2003 Dec 8-12; Canberra, Australia. IEEE 2003, 1596-603
[141]
Congdon CB, Fizer CW, Smith NW, et al. Preliminary results for
GAMI: A genetic algorithms approach to motif inference. Proceedings
of the 2005 IEEE Symposium on Computational Intelligence
in Bioinformatics and Computational Biology; 2005 Nov 15; La
Jolla, USA. IEEE 2005, 1-8
[142]
Liu Y, Liu XS, Wei L, Altman RB, Batzoglou S. Eukaryotic regulatory element conservation analysis and identification using comparative genomics. Genome Res 2004; 14(3): 451-8.
[143]
Zare-Mirakabad F, Ahrabian H, Sadeghi M, Hashemifar S, Nowzari-Dalini A, Goliaei B. Genetic algorithm for dyad pattern finding in DNA sequences. Genes Genet Syst 2009; 84(1): 81-93.
[144]
Bi C. A genetic-based EM motif-finding algorithm for biological
sequence analysis. Proceedings of the CIBCB'07. IEEE Symposium
on Computational Intelligence and Bioinformatics and
Computational Biology; 2007 April 1-5; Honolulu, USA. IEEE
2007, pp. 275-82
[145]
Wang X, Song T, Wang Z, Su Y, Liu X. MRPGA: Motif detecting by modified random projection strategy and genetic algorithm. J Comput Theor Nanosci 2013; 10(5): 1209-14.
[146]
Sheng X, Wang K. Motif identification method based on Gibbs sampling and genetic algorithm. Cluster Comput 2016; 20(1): 1-9.
[147]
Li X, Wang D. An improved genetic algorithm for DNA motif discovery with public domain information. Adv Neuro-Inf Process 2009; pp. 521-8.
[148]
Kaya M. MOGAMOD: Multi-objective genetic algorithm for motif discovery. Expert Syst Appl 2009; 36(2): 1039-47.
[149]
Zare-Mirakabad F, Ahrabian H, Sadeghi M, et al. PSOMF: An
algorithm for pattern discovery using PSO. Proceedings of the
Third IAPR International Conferences on Pattern Recognition in
Bioinformatics; 2008 Oct 15-17; Melbourne, Australia. Springer
2008, 61-72
[151]
Karabulut M, Ibrikci T. A Bayesian Scoring Scheme based Particle Swarm Optimization algorithm to identify transcription factor binding sites. Appl Soft Comput 2012; 12(9): 2846-55.
[152]
Akbari R, Zeighami V, Ziarati K, Akbari I. Development of an efficient hybrid method for motif discovery in DNA sequences. AUT J Elect Eng 2012; 44(1): 63-75.
[153]
Bouamama S, Boukerram A, Al-Badarneh AF. Motif finding using
ant colony optimization. In: Proceedings of the ANTS Conference;
Springer 2010; pp. 464-71
[154]
Yang C-H, Liu Y-T, Chuang L-Y. DNA motif discovery based on
ant colony optimization and expectation maximization. Proceedings
of the International Multi Conference of Engineers and Computer
Scientists; 2011 March 14-16; Hong Kong. Citeseer 2011,
169-74
[155]
Makolo A, Osofisan A, Adebiyi E. Comparative analysis of similarity check mechanism for motif extraction. African J Comput Sci 2012; 5(1): 53-8.
[156]
Liu XS, Brutlag DL, Liu JS. An algorithm for finding protein–DNA binding sites with applications to chromatin-immuno-precipitation microarray experiments. Nat Biotechnol 2002; 20(8): 835-9.
[157]
Mendes ND, Casimiro AC, Santos PM, Sá-Correia I, Oliveira AL, Freitas AT. MUSA: A parameter free algorithm for the identification of biologically significant motifs. Bioinformatics 2006; 22(24): 2996-3002.
[158]
Hu J, Yang YD, Kihara D. EMD: An ensemble algorithm for discovering regulatory motifs in DNA sequences. BMC Bioinf 2006; 7(1): 7: 342.
[159]
Bussemaker HJ, Li H, Siggia ED. Building a dictionary for genomes: identification of presumptive regulatory sites by statistical analysis. Proc Natl Acad Sci USA 2000; 97(18): 10096-100.
[160]
Wang G, Yu T, Zhang W. WordSpy: Identifying transcription factor binding motifs by building a dictionary and learning a grammar. Nucleic Acids Res 2005; 33(Suppl. 2): W412-6.
[161]
Rouchka EC, Hardin CT. rMotifGen: Random motif generator for DNA and protein sequences. BMC Bioinformatics 2007; 8(1): 292-10.
[162]
Ponty Y, Termier M, Denise A. GenRGenS: Software for generating random genomic sequences and structures. Bioinformatics 2006; 22(12): 1534-5.
[163]
Pavesi G, Zambelli F, Pesole G, Weeder H. An algorithm for finding conserved regulatory motifs and regions in homologous sequences. BMC Bioinformatics 2007; 8(1): 46.
[164]
Li L. Graphic network based methods in discovering TFBS motifs
PhD dissertation The Ohio State University, 2012.
[165]
Boucher C. Combinatorial and probabilistic approaches to motif
recognition PhD dissertation University of Waterloo, 2010.
[166]
Lones M, Tyrrell A. Regulatory motif discovery using a population
clustering evolutionary algorithm IEEE/ACM Trans Computl Biol
Bioinf 2007 4(3): 403-14.
[167]
Stormo GD, Hartzell GW. Identifying protein-binding sites from unaligned DNA fragments. Proc Natl Acad Sci USA 1989; 86(4): 1183-7.
[168]
Zhu J, Zhang MQ. SCPD: A promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 1999; 15(7): 607-11.
[169]
Martínez-Arellano G, Brizuela CA. Comparison of simple encoding
schemes in GA’s for the motif finding problem: Preliminary
results. In: Proceedings of the Brazilian Symposium on Bioinformatics;
Springer 2007: 22-33
[170]
Tompa M, Li N, Bailey TL, et al. Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 2005; 23(1): 137-44.
[171]
Chan T-M, Leung K-S, Lee K-H. TFBS identification by positionand
consensus-led genetic algorithm with local filtering. Proceedings
of the 9th annual conference on genetic and evolutionary
computation; 2007 July 7-11; London, England. ACM 2007, 377-
84.
[172]
Kumar B, Kumar D. A review on Artificial Bee Colony algorithm. Int J Eng Technol 2013; 2(3): 175-86.
[173]
González-Álvarez DL, Vega-Rodríguez MA, Gómez-Pulido JA, Sánchez-Pérez JM. Solving the motif discovery problem by using
differential evolution with pareto tournaments. Proceedings of the
2010 IEEE Congress on Evolutionary Computation (CEC); 2010
July 1-8; Barcelona, Spain. IEEE 2010
[174]
González-Álvarez DL, Vega-Rodríguez MA, Pulido JAG, Sánchez-Pérez JM. Finding motifs in DNA sequences applying a Multiobjective
Artificial Bee Colony (MOABC) algorithm In: Evolutionary
Computation, Machine Learning and Data Mining in Bioinformatics
Springer, Berlin 2011; pp 89-100
[175]
Trelea IC. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Inf Process Lett 2003; 85(6): 317-25.
[176]
Hassan R, Cohanim B, De Weck O, Venter G. A comparison of
particle swarm optimization and the genetic algorithm. Proceedings
of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference; 2005 Apr 18-21; Austin,
USA: AIAA 2005
[177]
Li M, Du W, Nian F. An adaptive particle swarm optimization algorithm based on directed weighted complex network. Math Probl Eng 2014; 2014: 1-6.