[1]
Ngelayang, T.B.; Fen, L.Y.; Latif, R.; Majlis, B.Y. The evolution of research and development on cochlear biomodel. J. Teknol., 2015, 78(6-8), 83-92.
[2]
Bachman, M.; Zeng, F.G.; Xu, T.; Li, G.P. Micromechanical resonator array for an implantable bionic ear. Audiol. Neurotol., 2005, 11(2), 95-103.
[3]
Haronian, D. MacDonald. N.C. A Microelectromechanics based
artificial cochlea (membac). Proc. Int. Solid-State Sensors
Actuators Conf., 1995, 95(2), 0-3.
[4]
Ngelayang, T.B.A.; Latif, R.; Ramli, M.F.; Junoh, A.K.; Roslan, N.; Masnan, M.J.; Kharuddin, M.H. Development of Micro-
Electromechanical System (MEMS) cochlear biomodel. In: AIP
Conference Proceedings,, 2015, vol. 1660, no. 1, p. 70090.
[5]
Dai, C.; Gan, R.Z. Change in cochlear response in an animal model of otitis media with effusion. Neurotol. Audiol., 2010, 15(3), 155-167.
[6]
Ngelayang, T.B.A.; Majlis, B.Y.; Azam, M.A.; Arith, F.; Latif, R. Platinum and aluminium microresonator bridges for artificial basilar membrane. Appl. Mech. Mater., 2015, 761, 462-467.
[7]
White, R.D.; Grosh, K. Design and characterization of a MEMS
piezoresistive cochlear-like acoustic sensor. In: ASME
IMECE, , 2002, pp. 201-210.
[8]
Haronian, D.; MacDonald, N.C. A Microelectromechanics Based
Artificial Cochlea (MEMBAC). In: Solid-State Sensors and
Actuators, 1995 and Eurosensors IX. Transducers' 95. The 8th
International Conference, , 1995, Vol. 2, pp. 708-711, IEEE.
[9]
Bachman, M.; Zeng, F.G.; Xu, T.; Li, G.P. Micromechanical resonator array for an implantable bionic ear. Audiol. Neurotol., 2005, 11(2), 95-103.
[10]
Latif, R.; Mastropaolo, E.; Bunting, A.; Cheung, R.; Koickal, T.; Hamilton, A.; Newton, M.; Smith, L. Microelectromechanical
systems for biomimetical applications. J. Vacuum Sci. Technol. B
Nanotechnol. Microelectron,, 2010, 28(6), C6N1-C6N6.
[11]
Ngelayang, T.B.; Majlis, B.Y.; Latif, R. Straight Bridge Beams
with Centered Diaphragm ( SBBCD ) Design for MEMS Cochlear
Biomodel,” In: Semiconductor Electronics (ICSE), 2016 IEEE
International Conference,, , 2016, pp. 13-16.
[12]
Latif, R.; Majlis, B.Y.; Cheung, R. MEMS design and modelling based on resonant gate transistor for cochlear biomimetical application. Microsyst. Technol., 2017, 23(7), 2329-2342.
[13]
Latif, R. bin Jaafar, M.F.; Majlis, B.Y.; Aqil, M.M.; Estimation of
thin film stress in buckled MEMS bridge from pull-in voltage. In Micro and Nanoelectronics (RSM), 2017 IEEE Regional
Symposium, , on (pp. 1-4). IEEE.
[14]
Sinha, S.K.; Chaudhury, S. In: Advantage of CNTFET
characteristics over MOSFET to reduce leakage power, 2nd
International Conference on Devices, Circuits and Systems
(ICDCS), Combiatore, India, 6-8 March 2014; IEEE, New Jersey,
US,. 2014, pp. 1-5.
[15]
Belin, T.; Epron, F. Characterization methods of carbon nanotubes: A review. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2005, 119, 105-118.
[16]
Sinha, S.K.; Chaudhury, S. Comparative study of leakage power in CNTFET over MOSFET device. J. Semicond., 2014, 35(11), 114002.
[17]
Ohno, Y.; Iwatsuki, S.; Hiraoka, T.; Okazaki, T.; Kishimoto, S.; Maezawa, K.; Shinohara, H.; Mizutani, T. Position-controlled carbon nanotube field-effect transistors fabricated by chemical vapor deposition using patterned metal catalyst. Jpn. J. Appl. Phys., 2003, 42(1), 4116-4119.
[18]
Franklin, N.R.; Wang, Q.; Tombler, T.W.; Javey, A.; Shim, M.; Dai, H. Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. Appl. Phys. Lett., 2002, 81(5), 913-915.
[19]
Mohamed, M.A.; Azam, M.A.; Shikoh, E.; Fujiwara, A. Fabrication and characterization of carbon nanotube field-effect transistors using ferromagnetic electrodes with different coercivities. Jpn. J. Appl. Phys., 2010, 49(2), 02BD08.
[21]
Aqil, M.M.; Azam, M.A.; Latif, R.; Salehuddin, F. Time influence
on thickness and grains for molybdenum thin film. JTEC, 2017, 9(2-13), 69-73.
[22]
Azam, M.A.; Mohamed, M.A.; Shikoh, E.; Fujiwara, A. Thermal degradation of single-walled carbon nanotubes during alcohol catalytic chemical vapor deposition process. Jpn. J. Appl. Phys., 2010, 49(2), 2-7.
[23]
Azam, M.A.; Fujiwara, A.; Shimoda, T. Direct growth of vertically-aligned single-walled carbon nanotubes on conducting substrates using ethanol for electrochemical capacitor. J. New Mater. Electrochem. Syst., 2011, 14(3), 173-178.
[24]
Azam, M.A.; Manaf, N.S.A.; Talib, E.; Bistamam, M.S.A. Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: A review. Ionics (Kiel), 2013, 19(11), 1455-1476.
[25]
Kim, H.; Kang, J.; Kim, Y.; Hong, B.H.; Choi, J.; Iijima, S. Synthesis of ultra-long super-aligned double-walled carbon nanotube forests. J. Nanosci. Nanotechnol., 2011, 11(1), 4.
[26]
Barzegar, H.R.; Nitze, F.; Sharifi, T.; Ramstedt, M.; Tai, C.W.; Malolepszy, A.; Stobinski, L.; Wågberg, T. Simple dip-coating process for the synthesis of small diameter single-walled carbon nanotubes-effect of catalyst composition and catalyst particle size on chirality and diameter. J. Phys. Chem. C, 2012, 116(22), 12232-12239.
[27]
Mahmoodi, A.; Ghoranneviss, M.; Mojtahedzadeh, M.; Hosseini, S.H.H.; Eshghabadi, M. Various temperature effects on the growth of Carbon Nanotubes (CNTs) by Thermal Chemical Vapor Deposition (TCVD) method. Int. J. Phys. Sci., 2012, 7(6), 949-952.
[28]
Borisenko, V.E.; Gaponenko, S.V.; Gurin, V.S. Physics, chemistry
and application of nanostructures., world Scientific,. 1999.
[29]
Suriani, A.B.; Muhamad, S.; Saad, M.; Sarah, P.; Md. Nor, R.;
Mohd Siran, Y.; Rejab, S.A.M.; Asis, A.J.; Tahiruddin, S.;
Abdullah, S.; Rusop, M.M. Effect of temperature on the growth of
vertically aligned carbon nanotubes from palm oil. In: Defect and
Diffusion Forum., , Trans Tech Publications, 2011, Vol. 312, pp.
900-905.
[30]
Suriani, A.B.; Azmina, M.S.; Salina, M.; Dalila, A.R.; Falina, A.N.; Rosly, J.; Rusop, M. In:. Effect of synthesis time on carbon
nanotubes growth from palm oil as carbon source by thermal
chemical vapor deposition method., , Electronics Design, Systems
and Applications (ICEDSA), November 2012; IEEE, New Jersey,
US, 2012, pp. 18-21.