[1]
Yao, H.F.; Ye, L.; Zhang, H.; Li, S.S.; Zhang, S.Q.; Hou, J.H. Molecular design of benzodithiophene-based organic photovoltaic materials. Chem. Rev., 2016, 116, 7397-7457.
[2]
Marta, M.T.; Concepcio, R. Novel small molecules for organic field-effect transistors: Towards processability and high performance. Chem. Soc. Rev., 2008, 37, 827-838.
[3]
Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev., 2012, 112, 2208-2267.
[4]
Zhao, G.Y.; Liu, J.; Meng, Q.; Ji, D.Y.; Zhang, X.T.; Zou, Y.; Zhen, Y.G.; Dong, H.L.; Hu, W.P. High-performance UV-Sensitive organic phototransistors based on benzo[1,2- b:4,5- b′ ]dithiophene dimers linked with unsaturated bonds. Adv. Electron. Mater., 2015, 1, 1500071.
[5]
Si, P.; Liu, J.L.; Zhen, Z.; Liu, X.H.; Lakshminarayana, G.; Kityk, I.V. Synthesis and characterization of NLO chromophore with benzo[1,2-b:4,5-b0]dithiophene unit as π-electron bridge. Tetrahedron Lett., 2012, 53, 3393-3396.
[6]
Si, P.; Liu, J.L.; Deng, G.W.; Huang, H.Y.; Xu, H.J.; Bo, S.H.; Qiu, L.; Zhen, Z.; Liu, X.H. Novel electro-optic chromophores based on substituted benzo[1,2-b:4,5-b0]dithiophene π-conjugated bridges. RSC Advances, 2014, 4, 25532-25539.
[7]
Roncali, J.; Thobie-Gautier, C. An efficient strategy towards small bandgap polymers: The rigidification of the π-conjugated system. Adv. Mater., 1994, 6, 846-848.
[8]
Brisset, H.; Thobie-Gautier, C.; Gorgues, A.; Jubault, M.; Roncali, J. Novel narrow bandgap polymers from sp3 carbon-bridged bithienyls: Poly(4,4-ethylenedioxy-4H-cyclopenta[2,1-b;3,4-b′] dithiophene). J. Chem. Soc. Chem. Commun., 1994, 11, 1305-1306.
[9]
Kitamura, C.; Tanaka, S.; Yamashita, Y. Design of narrow-bandgap polymers. Syntheses and properties of monomers and polymers containing aromatic-donor and o-quinoid-acceptor units. Chem. Mater., 1996, 8, 570-578.
[10]
Brocks, G.; Tol, A. Small band gap semiconducting polymers made from dye molecules: Polysquaraines. J. Phys. Chem., 1996, 100, 1838-1846.
[11]
Yamamoto, T.; Zhou, Z.; Kanbara, T.; Shimura, M.; Kizu, K.; Maruyama, T. Nakamura, Y.; Fukuda, T.; Bang-Lin, L.; Ooba, N.; Tomaru, S.; Kurihara, T.; Kaino, T.; Kubota, K.; Sasaki, S. π-Conjugated donor-acceptor copolymers constituted of π-excessive and π-deficient arylene units. Optical and electrochemical properties in relation to CT structure of the polymer. J. Am. Chem. Soc., 1996, 118, 10389-10399.
[12]
Lee, D.; Stone, S.W.; Ferraris, J.P. Novel dialkylthio benzo[1,2-b:4,5-b′]dithiophene derivative for high open-circuit voltage in polymer solar cells. Chem. Commun., 2011, 47, 10987.
[13]
Wen, S. Liu, Jie.; Qiu, M.; Li, Y.H.; Zhu, D.Q.; Gu, C.T.; Han, L.L.; Yang, R.Q. Synthesis and photophysical properties of amino-substituted benzodithiophene-based fluorophores. RSC Advances, 2015, 5, 5875-5878.
[14]
Jun, K.; Koji, H.; Tetsuya, S.; Shu, S.; Masahiro, M. Effect of the substitution pattern of alkyl side chain in a benzodithiophene core π-system on intra and inter-molecular charge carrier mobility. J. Phys. Chem. B, 2011, 115, 8446-8452.
[15]
Liu, Y.; Wan, X.; Wang, F.; Zhou, J.; Long, G.; Tian, J.; Chen, Y. High-performance solar cells using a solution-processed small molecule containing benzodithiophene unit. Adv. Mater., 2011, 23, 5387-5391.
[16]
Lim, N.; Cho, N.; Paek, S.; Kim, C.; Lee, J.K.; Ko, J. High-performance organic solar cells with efficient semiconducting small molecules containing an electron-rich benzodithiophene derivative. Chem. Mater., 2014, 26, 2283-2288.
[17]
Ni, W.; Li, M.; Wan, X.; Feng, H.; Kan, B.; Zuo, Y.; Chen, Y. A high-performance photovoltaic small molecule developed by modifying the chemical structure and optimizing the morphology of the active layer. RSC Advances, 2014, 4, 31977-31980.
[18]
Zhou, J.Y.; Wan, X.J.; Liu, Y.S.; Zuo, Y.; Li, Z.; He, G.R.; Long, G.K.; Ni, W.; Li, C.; Su, X.C.; Chen, Y.S. Small molecules based on benzo[1,2-b:4,5-b′]dithiophene unit for high-performance solution-processed organic solar cells. J. Am. Chem. Soc., 2012, 134, 16345-16351.
[19]
Kan, B.; Zhang, Q.; Li, M.; Wan, X.; Ni, W.; Long, G.; Wang, Y.; Yang, X.; Feng, H.; Chen, Y. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J. Am. Chem. Soc., 2014, 136, 15529-15532.
[20]
Shen, S.; Jiang, P.; He, C.; Zhang, J.; Shen, P.; Zhang, Y.; Yi, Y.; Zhang, Z.; Li, Z.; Li, Y. Solution-processable organic molecule photovoltaic materials with bithienyl-benzodithiophene central unit and indenedione end groups. Chem. Mater., 2013, 25, 2274-2281.
[21]
Cui, C.; Min, J.; Ho, C.L.; Ameri, T.; Yang, P.; Zhao, J.; Brabec, C.J.; Wong, W.Y. A new two-dimensional oligothiophene end-capped with alkyl cyanoacetate groups for highly efficient solution-processed organic solar cells. Chem. Commun., 2013, 49, 4409-4411.
[22]
Kim, Y.J.; Park, K.H.; Ha, J.J.; Chung, D.S.; Kim, Y.H.; Park, C.E. The effect of branched versus linear alkyl side chains on the bulk heterojunction photovoltaic performance of small molecules containing both benzodithiophene and thienopyrroledione. Phys. Chem. Chem. Phys., 2014, 16, 19874-19883.
[23]
Dutta, P.; Kim, J.; Eom, S.H.; Lee, W.H.; Kang, I.N.; Lee, S.H. An easily accessible donor-pi-acceptor-conjugated small molecule from a 4,8-dialkoxybenzo[1,2-b:4,5-b′]dithiophene unit for efficient solution processed organic solar cells. ACS Appl. Mater. Interfaces, 2012, 4, 6669-6675.
[24]
Liang, L.; Wang, J.T.; Xiang, X.; Ling, J.; Zhao, F.G.; Li, W.S. Influence of moiety sequence on the performance of small molecular photovoltaic materials. J. Mater. Chem. A, 2014, 2, 15396-15405.
[25]
Guerrero, A.; Loser, S.; Garcia-Belmonte, G.; Bruns, C.J.; Smith, J.; Miyauchi, H.; Stupp, S.I.; Bisquert, J.; Marks, T.J. Solution-processed small molecule: Fullerene bulk-heterojunction solar cells: Impedance spectroscopy deduced bulk and interfacial limits to fill-factors. Phys. Chem. Chem. Phys., 2013, 15, 16456-16462.
[26]
Li, C.; Chen, Y.; Zhao, Y.; Wang, H.; Zhang, W.; Li, Y.; Yang, X.; Ma, C.; Chen, L.; Zhu, X.; Tu, Y. Acceptor-donor-acceptor-based small molecules with varied crystallinity: Processing additive-induced nanofibril in blend film for photovoltaic applications. Nanoscale, 2013, 5, 9536-9540.
[27]
Walker, B.; Liu, J.; Kim, C.; Welch, G.C.; Park, J.K.; Lin, J.; Zalar, P.; Proctor, C.M.; Seo, J.H.; Bazan, G.C.; Nguyen, T.Q. Optimization of energy levels by molecular design: Evaluation of bisdiketopyrrolopyrrole molecular donor materials for bulk heterojunction solar cells. Energy Environ. Sci., 2013, 6, 952-962.
[28]
Kumar, C.V.; Cabau, L.; Viterisi, A.; Biswas, S.; Sharma, G.D.; Palomares, E. Solvent annealing control of bulk heterojunction organic solar cells with 6.6% efficiency based on a benzodithiophene donor core and dicyano acceptor units. J. Phys. Chem. C, 2015, 119, 20871-20879.
[29]
Du, Z.; Chen, W.; Qiu, M.; Chen, Y.; Wang, N.; Wang, T.; Sun, M.; Yu, D.; Yang, R. Utilizing alkoxyphenyl substituents for side-chain engineering of efficient benzo[1,2-b:4,5-b′]dithiophene-based small molecule organic solar cells. Phys. Chem. Chem. Phys., 2015, 17, 17391-17398.
[30]
Qiu, B.; Yuan, J.; Xiao, X.; He, D.; Qiu, L.; Zou, Y.; Zhang, Z.G.; Li, Y. Effect of fluorine substitution on photovoltaic properties ofalkoxyphenyl substituted benzo[1,2-b:4,5-b′]dithiophene-based small molecules. ACS Appl. Mater. Interfaces, 2015, 7, 25237-25246.
[31]
Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Z.; He, G.; Li, C.; Kan, B.; Li, M.; Chen, Y. Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J. Am. Chem. Soc., 2013, 135, 8484-8487.
[32]
Kan, B.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Yang, X.; Zhang, M.; Zhang, H.; Russell, T.P.; Chen, Y. Small molecules based on alkyl/alkylthio-thieno[3,2-b]thiophene-substituted benzo[1,2-b:4,5-b′]dithiophene for solution-processed solar cells with high performance. Chem. Mater., 2015, 27, 8414-8423.
[33]
Liu, Y.; Chen, C.C.; Hong, Z.; Gao, J.; Yang, Y.M.; Zhou, H.; Dou, L.; Li, G.; Yang, Y. Solution-processed small-molecule solar cells: Breaking the 10% power conversion efficiency. Sci. Rep., 2013, 3, 3356.
[34]
Cui, C.; Xia, G.; Jie, M. Bing, Guo, X.C.; Maojie, Z.; Christoph, J.; Brabec, Li, Y. High-performance organic solar cells based on a small molecule with alkylthio-thienyl-conjugated side chains without extra treatments. Adv. Mater., 2015, 27, 7469-7475.
[35]
Ha, J.J.; Kim, Y.J.; Park, J.G.; An, T.K.; Kwon, S.K.; Park, C.E.; Kim, Y.H. Thieno[3,4-c]pyrrole-4,6-dione-based small molecules for highly efficient solution-processed organic solar cells. Chem. Asian J., 2014, 9, 1045-1053.
[36]
Kim, Y.J.; Baek, J.Y.; Ha, J.J.; Chung, D.S.; Kwon, S.K.; Park, C.E.; Kim, Y.H. A high-performance solution-processed small molecule: Alkylselenophene-substituted benzodithiophene organic solar cell. J. Mater. Chem. C, 2014, 2, 4937-4946.
[37]
Deng, D.; Zhang, Y.J.; Yuan, L.; He, C.; Lu, K.; Wei, Z.X. Effects of shortened alkyl chains on solution-processable small molecules with oxo-alkylated nitrile end-capped acceptors for high-performance organic solar cells. Adv. Energy Mater., 2014, 4, 1400538.
[38]
Du, Z.; Chen, W.; Chen, Y.; Qiao, S.; Bao, X.; Wen, S.; Sun, M.; Han, L.; Yang, R. High efficiency solution-processed two-dimensional small molecule organic solar cells obtained via low-temperature thermal annealing. J. Mater. Chem. A, 2014, 2, 15904-15911.
[39]
Lin, Y.Z.; Ma, L.C.; Li, Y.F.; Liu, Y.Q.; Zhu, D.B.; Zhan, X.W. Small-molecule solar cells with fill factors up to 0.75 via a layer-by-layer solution process. Adv. Energy Mater., 2014, 4, 1300626.
[40]
Sun, K.; Xiao, Z.; Lu, S.; Zajaczkowski, W.; Pisula, W.; Hanssen, E.; White, J.M.; Williamson, R.M.; Subbiah, J.; Ouyang, J.; Holmes, A.B.; Wong, W.W.; Jones, D.J. A molecular nematic liquid crystallinematerial for high-performance organic photovoltaics. Nat. Commun., 2015, 6, 6013.
[41]
Patra, D.; Huang, T.Y.; Chiang, C.C.; Maturana, R.O.; Pao, C.W.; Ho, K.C.; Wei, K.H.; Chu, C.W. 2-Alkyl-5-thienyl-substituted benzo[1,2-b:4,5-b′]dithiophene-based donor molecules for solutionprocessed organic solar cells. ACS Appl. Mater. Interfaces, 2013, 5, 9494-9500.
[42]
Deng, D.; Zhang, Y.; Zhu, L.; Zhang, J.; Lu, K.; Wei, Z. Effects of end-capped acceptors subject to subtle structural changes on solution processable small molecules for organic solar cells. Phys. Chem. Chem. Phys., 2015, 17, 8894-8900.
[43]
Chen, Y.; Yan, Y.; Du, Z.; Bao, X.; Liu, Q.; Roy, V.A.L.; Sun, M.; Yang, R.; Lee, C.S. Two-dimensional benzodithiophene and benzothiadiazole based solution-processed small molecular organic field-effect transistors & solar cells. J. Mater. Chem. C, 2014, 2, 3921-3927.
[44]
Wang, K.; Guo, B.; Xu, Z.; Guo, X.; Zhang, M.; Li, Y. Solution-processable organic molecule for high-performance organic solar cells with low acceptor content. ACS Appl. Mater. Interfaces, 2015, 7, 24686-24693.
[45]
Yuan, L.; Zhao, Y.; Zhang, J.; Zhang, Y.; Zhu, L.; Lu, K.; Yan, W.; Wei, Z. Oligomeric donor material for high-efficiency organic solar cells: Breaking down a polymer. Adv. Mater., 2015, 27, 4229-4233.
[46]
Lin, Y.; Ma, L.; Li, Y.; Liu, Y.; Zhu, D.; Zhan, X. A solution-processable small molecule based on benzodithiophene and diketopyrrolopyrrole for high-performance organic solar cells. Adv. Energy Mater., 2013, 3, 1166-1170.
[47]
Shin, W.; Yasuda, T.; Hidaka, Y.; Watanabe, G.; Arai, R.; Nasu, K.; Yamaguchi, T.; Murakami, W.; Makita, K.; Adachi, C. pi-Extended narrow-bandgap diketopyrrolopyrrole-based oligomers for solution-processed inverted organic solar cells. Adv. Energy Mater., 2014, 4, 1400879.
[48]
Tang, A.L.; Zhan, C.L.; Yao, J.N. Comparative study of effects of terminal non-alkyl aromatic and alkyl groups on small-molecule solar cell performance. Adv. Energy Mater., 2015, 5, 1500059.
[49]
Tang, Z.; Liu, B.; Melianas, A.; Bergqvist, J.; Tress, W.; Bao, Q.; Qian, D.; Inganäs, O.; Zhang, F. A new fullerene-free bulk heterojunction system for efficient high-voltage and high-fill factor solution-processed organic photovoltaics. Adv. Mater., 2015, 27, 1900-1907.
[50]
Tang, A.; Lu, Z.; Bai, S.; Huang, J.; Chen, Y.; Shi, Q.; Zhan, C.; Yao, J. Photocurrent enhancement in diketopyrrolopyrrole solar cells by manipulating dipolar anchoring terminals on alkyl-chain spacers. Chem. Asian J., 2014, 9, 883-892.
[51]
Zhang, S.; Wang, X.; Tang, A.; Huang, J.; Zhan, C.; Yao, J. Tuning morphology and photovoltaic properties of diketopyrrolopyrrole-based small-molecule solar cells by taloring end-capped aromatic groups. Phys. Chem. Chem. Phys., 2014, 16, 4664-4671.
[52]
Wei, H.; Chen, W.; Han, L.; Wang, T.; Bao, X.; Li, X.; Liu, J.; Zhou, Y.; Yang, R. A Solution-processable molecule using thieno[3,2-b]thiophene as building block for efficient organic solar cells. Chem. Asian J., 2015, 10, 1791-1798.
[53]
Huang, J.; Wang, X.; Zhang, X.; Niu, Z.; Lu, Z.; Jiang, B.; Sun, Y.; Zhan, C.; Yao, J. Additive-assisted control over phase-separated nanostructures by manipulating alkylthienyl position at donor backbone for solution-processed, non-fullerene, all-small-molecule solar cells. ACS Appl. Mater. Interfaces, 2014, 6, 3853-3862.
[54]
Yi, Z.; Ni, W.; Zhang, Q.; Li, M.; Kan, B.; Wan, X.; Chen, Y. Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells. J. Mater. Chem. C, 2014, 2, 7247.
[55]
Sheng, R.Y. Liu, Qian.; Qiu, M.; Gu, C.T.; Zhou, Y.H.; Ren, J.Z.; Sun, M.L.; Yang, R.Q. Synthesis and optical-electronic properties of a novel star-shaped benzodithiophene molecule. Chem. Lett., 2015, 44, 291-293.
[56]
Taybet, B.; Kerstin, S.; Tatjana, E.B.; Katrin, F.; Silvia, J. Solution processable TIPS-benzodithiophene small molecules with improved semiconducting properties in organic field effect transistors. Org. Electron., 2013, 14, 344-353.
[57]
Payne, A.J.; McCahill, J.S.J.; Welch, G.C. Indoloquinoxaline as a terminal building block for the construction of π-conjugated small molecules relevant to organic electronics. Dyes Pigments, 2015, 123, 139-146.
[58]
Kurokawa, A.; Matsumoto, Y.; Shibamoto, K.; Kajimoto, K.; Osuga, H.; Hideo, Y.K. Uno.; Tanakaa, I. Contact and channel resistances of organic field-effect transistors based on benzodithiophene-dimer films deposited on pentacene crystallinity control layers. Appl. Phys. Lett., 2009, 95, 263307.
[59]
Yamaguchi, K.; Takamiya, S.; Minami, M.; Doge, Y.; Nishide, Y. Crystallinity improvement of benzodithiophene-dimer films for organic field-effect transistors. Appl. Phys. Lett., 2008, 93, 043302-043303.
[60]
Mark, A.M.L.; Fabio, C.; Lucas, V.; Alexey, M.; Wojciech, P.; Johannes, G.; Jerome, C.; Anna, P.S.; Heiko, T.; Klaus, M.; Luisa, D.C. Electronic properties and supramolecular organization of terminal bis(alkylethynyl)-substituted benzodithiophenes. J. Phys. Chem. B, 2010, 114, 14614-14620.
[61]
Kumagai, J.; Hirano, K.; Satoh, T.; Seki, S.; Miura, M. Effect of the substitution pattern of alkyl side chain in a benzodithiophene core π-system on intra and inter-molecular charge carrier mobility. J. Phys. Chem. B, 2011, 115, 8446-8452.
[62]
Wang, C.H.; Hu, R.R.; Liang, S.; Chen, J.H.; Yang, Z. Pei. J. Linear C2-symmetric polycyclic benzodithiophene: Efficient, highly diversified approaches and the optical properties. Tetrahedron Lett., 2005, 46, 8153-8157.