[1]
Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, A.M.; Winblad, B.; Jönsson, L.; Liu, Z.; Prince, M. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement., 2017, 13(1), 1-7. [http://dx.doi.org/10.1016/j.jalz.2016.07.150]. [PMID: 27583652].
[2]
Armstrong, R.A. What causes alzheimer’s disease? Folia Neuropathol., 2013, 51(3), 169-188. [http://dx.doi.org/10.5114/fn.2013.37702]. [PMID: 24114635].
[3]
Francis, P.T. The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr., 2005, 10(11)(Suppl. 18), 6-9. [http://dx.doi. org/10.1017/S1092852900014164]. [PMID: 16273023].
[4]
Rogers, S.L.; Friedhoff, L.T. The efficacy and safety of donepezil in patients with Alzheimer’s disease: results of a US Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial. Dementia, 1996, 7(6), 293-303. [PMID: 8915035].
[5]
Tariot, P.N.; Solomon, P.R.; Morris, J.C.; Kershaw, P.; Lilienfeld, S.; Ding, C. A 5-month, randomized, placebo-controlled trial of galantamine in AD. The Galantamine USA-10 Study Group. Neurology, 2000, 54(12), 2269-2276. [http://dx.doi.org/10.1212/WNL. 54.12.2269]. [PMID: 10881251].
[6]
Ogura, H.; Kosasa, T.; Kuriya, Y.; Yamanishi, Y. Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro. Methods Find. Exp. Clin. Pharmacol., 2000, 22(8), 609-613. [http://dx.doi. org/10.1358/mf.2000.22.8.701373]. [PMID: 11256231].
[7]
Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res., 2013, 36(4), 375-399. [http://dx.doi.org/10.1007/s12272-013-0036-3]. [PMID: 23435942].
[8]
Bansal, Y.; Silakari, O. Multifunctional compounds: smart molecules for multifactorial diseases. Eur. J. Med. Chem., 2014, 76, 31-42. [http://dx.doi.org/10.1016/j.ejmech.2014.01.060]. [PMID: 24565571].
[9]
Morphy, R.; Kay, C.; Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discov. Today, 2004, 9(15), 641-651. [http:// dx.doi.org/10.1016/S1359-6446(04)03163-0]. [PMID: 15279847].
[10]
Reddy, A.S.; Zhang, S. Polypharmacology: drug discovery for the future. Expert Rev. Clin. Pharmacol., 2013, 6(1), 41-47. [http://dx. doi.org/10.1586/ecp.12.74]. [PMID: 23272792].
[11]
Buccafusco, J.J. Multifunctional receptor-directed drugs for disorders of the central nervous system. Neurotherapeutics, 2009, 6(1), 4-13. [http://dx.doi.org/10.1016/j.nurt.2008.10.031]. [PMID: 19110195].
[12]
Picciotto, M.R.; Higley, M.J.; Mineur, Y.S. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron, 2012, 76(1), 116-129. [http://dx.doi. org/10.1016/j.neuron.2012.08.036]. [PMID: 23040810].
[13]
Calabresi, P.; Centonze, D.; Gubellini, P.; Pisani, A.; Bernardi, G. Acetylcholine-mediated modulation of striatal function. Trends Neurosci., 2000, 23(3), 120-126. [http://dx.doi.org/10.1016/S0166-2236(99)01501-5]. [PMID: 10675916].
[14]
Perry, E.; Walker, M.; Grace, J.; Perry, R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci., 1999, 22(6), 273-280. [http://dx.doi.org/10.1016/S0166-2236(98) 01361-7]. [PMID: 10354606].
[15]
Callen, D.J.; Black, S.E.; Caldwell, C.B. Limbic system perfusion in Alzheimer’s disease measured by MRI-coregistered HMPAO SPET. Eur. J. Nucl. Med. Mol. Imaging, 2002, 29(7), 899-906. [http://dx.doi.org/10.1007/s00259-002-0816-3]. [PMID: 12111130].
[16]
Mesulam, M. The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn. Mem., 2004, 11(1), 43-49. [http:// dx.doi.org/10.1101/lm.69204]. [PMID: 14747516].
[17]
Mesulam, M.M.; Geula, C. Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J. Comp. Neurol., 1988, 275(2), 216-240. [http://dx.doi.org/ 10.1002/cne.902750205]. [PMID: 3220975].
[18]
Mesulam, M.M.; Mufson, E.J.; Wainer, B.H.; Levey, A.I. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience, 1983, 10(4), 1185-1201. [http://dx.doi.org/10.1016/0306-4522(83)90108-2]. [PMID: 6320048].
[19]
Pinto, T.; Lanctôt, K.L.; Herrmann, N. Revisiting the cholinergic hypothesis of behavioral and psychological symptoms in dementia of the Alzheimer’s type. Ageing Res. Rev., 2011, 10(4), 404-412. [PMID: 21292041].
[20]
Zoli, M.; Pistillo, F.; Gotti, C. Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology,, 2015, 96 (Pt B), 302-311. [http://dx.doi.org/10.1016/j.neuropharm.2014.11.003] [PMID: 25460185]
[21]
Kruse, A.C.; Kobilka, B.K.; Gautam, D.; Sexton, P.M.; Christopoulos, A.; Wess, J. Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat. Rev. Drug Discov., 2014, 13(7), 549-560. [http://dx.doi.org/10.1038/nrd4295]. [PMID: 24903776].
[22]
Higley, M.J.; Soler-Llavina, G.J.; Sabatini, B.L. Cholinergic modulation of multivesicular release regulates striatal synaptic potency and integration. Nat. Neurosci., 2009, 12(9), 1121-1128. [http://dx.doi.org/10.1038/nn.2368]. [PMID: 19668198].
[23]
Douglas, C.L.; Baghdoyan, H.A.; Lydic, R. M2 muscarinic autoreceptors modulate acetylcholine release in prefrontal cortex of C57BL/6J mouse. J. Pharmacol. Exp. Ther., 2001, 299(3), 960-966. [PMID: 11714883].
[24]
Raiteri, M.; Leardi, R.; Marchi, M. Heterogeneity of presynaptic muscarinic receptors regulating neurotransmitter release in the rat brain. J. Pharmacol. Exp. Ther., 1984, 228(1), 209-214. [PMID: 6141277].
[25]
McCormick, D.A.; Prince, D.A. Two types of muscarinic response to acetylcholine in mammalian cortical neurons. Proc. Natl. Acad. Sci. USA, 1985, 82(18), 6344-6348. [http://dx.doi.org/10.1073/ pnas.82.18.6344]. [PMID: 3862134].
[26]
Chen, S.R.; Wess, J.; Pan, H.L. Functional activity of the M2 and M4 receptor subtypes in the spinal cord studied with muscarinic acetylcholine receptor knockout mice. J. Pharmacol. Exp. Ther., 2005, 313(2), 765-770. [http://dx.doi.org/10.1124/jpet.104.082537]. [PMID: 15665136].
[27]
Gautam, D.; Jeon, J.; Li, J.H.; Han, S.J.; Hamdan, F.F.; Cui, Y.; Lu, H.; Deng, C.; Gavrilova, O.; Wess, J. Metabolic roles of the M3 muscarinic acetylcholine receptor studied with M3 receptor mutant mice: a review. J. Recept. Signal Transduct. Res., 2008, 28(1-2), 93-108. [http://dx.doi.org/10.1080/10799890801942002]. [PMID: 18437633].
[28]
Fink-Jensen, A.; Fedorova, I.; Wörtwein, G.; Woldbye, D.P.D.; Rasmussen, T.; Thomsen, M.; Bolwig, T.G.; Knitowski, K.M.; McKinzie, D.L.; Yamada, M.; Wess, J.; Basile, A. Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J. Neurosci. Res., 2003, 74(1), 91-96. [http://dx.doi.org/10.1002/jnr.10728]. [PMID: 13130510].
[29]
Gotti, C.; Moretti, M.; Gaimarri, A.; Zanardi, A.; Clementi, F.; Zoli, M. Heterogeneity and complexity of native brain nicotinic receptors. Biochem. Pharmacol., 2007, 74(8), 1102-1111. [http://dx. doi.org/10.1016/j.bcp.2007.05.023]. [PMID: 17597586].
[30]
Dineley, K.T.; Pandya, A.A.; Yakel, J.L. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol. Sci., 2015, 36(2), 96-108. [http://dx.doi.org/10.1016/j.tips.2014.12.002]. [PMID: 25639674].
[31]
Sudweeks, S.N.; Yakel, J.L. Functional and molecular characterization of neuronal nicotinic ACh receptors in rat CA1 hippocampal neurons. J. Physiol., 2000, 527(Pt 3), 515-528. [http://dx.doi.org/ 10.1111/j.1469-7793.2000.00515.x]. [PMID: 10990538].
[32]
Levin, E.D.; Bradley, A.; Addy, N.; Sigurani, N. Hippocampal α 7 and α 4 β 2 nicotinic receptors and working memory. Neuroscience, 2002, 109(4), 757-765. [http://dx.doi.org/10.1016/S0306-4522(01)00538-3]. [PMID: 11927157].
[33]
Davis, J.A.; Gould, T.J. The effects of DHBE and MLA on nicotine-induced enhancement of contextual fear conditioning in C57BL/6 mice. Psychopharmacology (Berl.), 2006, 184(3-4), 345-352. [http://dx.doi.org/10.1007/s00213-005-0047-y]. [PMID: 15988571].
[34]
McGehee, D.S.; Heath, M.J.S.; Gelber, S.; Devay, P.; Role, L.W. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science, 1995, 269(5231), 1692-1696. [http://dx.doi.org/10.1126/science.7569895]. [PMID: 7569895].
[35]
Mansvelder, H.D.; Keath, J.R.; McGehee, D.S. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron, 2002, 33(6), 905-919. [http://dx.doi.org/10.1016/S0896-6273(02)00625-6]. [PMID: 11906697].
[36]
Bowen, D.M.; Smith, C.B.; White, P.; Davison, A.N. Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain, 1976, 99(3), 459-496. [http://dx. doi.org/10.1093/brain/99.3.459]. [PMID: 11871].
[37]
Davies, P.; Maloney, A.J.F. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet, 1976, 2(8000), 1403-1403. [http://dx.doi.org/10.1016/S0140-6736(76)91936-X]. [PMID: 63862].
[38]
Bartus, R.T. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol., 2000, 163(2), 495-529. [http://dx.doi.org/10.1006/exnr.2000.7397]. [PMID: 10833325].
[39]
Spires-Jones, T.L.; Hyman, B.T. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron, 2014, 82(4), 756-771. [http://dx.doi.org/10.1016/j.neuron.2014.05.004]. [PMID: 24853936].
[40]
Mesulam, M. The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn. Mem., 2004, 11(1), 43-49. [http://dx.doi.org/10.1101/lm.69204]. [PMID: 14747516].
[41]
Belleville, S.; Peretz, I.; Malenfant, D. Examination of the working memory components in normal aging and in dementia of the Alzheimer type. Neuropsychologia, 1996, 34(3), 195-207. [http://dx. doi.org/10.1016/0028-3932(95)00097-6]. [PMID: 8868277].
[42]
Lanctôt, K.L.; Herrmann, N.; Yau, K.K.; Khan, L.R.; Liu, B.A. LouLou, M.M.; Einarson, T.R. Efficacy and safety of cholinesterase inhibitors in Alzheimer’s disease: a meta-analysis. CMAJ, 2003, 169(6), 557-564. [PMID: 12975222].
[43]
Lockridge, O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol. Ther., 2015, 148, 34-46. [http://dx. doi.org/10.1016/j.pharmthera.2014.11.011]. [PMID: 25448037].
[44]
Darvesh, S. Butyrylcholinesterase as a diagnostic and therapeutic target for Alzheimer’s disease. Curr. Alzheimer Res., 2016, 13(10), 1173-1177. [http://dx.doi.org/10.2174/1567205013666160404120542]. [PMID: 27040140].
[45]
Jiang, S.; Li, Y.; Zhang, C.; Zhao, Y.; Bu, G.; Xu, H.; Zhang, Y.W. M1 muscarinic acetylcholine receptor in Alzheimer’s disease. Neurosci. Bull., 2014, 30(2), 295-307. [http://dx.doi.org/10.1007/ s12264-013-1406-z]. [PMID: 24590577].
[46]
Zheng, H.; Koo, E.H. Biology and pathophysiology of the amyloid precursor protein. Mol. Neurodegener., 2011, 6(1), 27. [http://dx.doi.org/10.1186/1750-1326-6-27]. [PMID: 21527012].
[47]
Zhang, Y.W.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimer’s disease. Mol. Brain, 2011, 4, 3. [http://dx.doi.org/ 10.1186/1756-6606-4-3]. [PMID: 21214928].
[48]
Haring, R.; Gurwitz, D.; Barg, J.; Pinkas-Kramarski, R.; Heldman, E.; Pittel, Z.; Wengier, A.; Meshulam, H.; Marciano, D.; Karton, Y.; Fisher, A. Amyloid precursor protein secretion via muscarinic receptors: reduced desensitization using the M1-selective agonist AF102B. Biochem. Biophys. Res. Commun., 1994, 203(1), 652-658. [http://dx.doi.org/10.1006/bbrc.1994.2232]. [PMID: 8074717].
[49]
Eckols, K.; Bymaster, F.P.; Mitch, C.H.; Shannon, H.E.; Ward, J.S.; DeLapp, N.W. The muscarinic M1 agonist xanomeline increases soluble amyloid precursor protein release from Chinese hamster ovary-m1 cells. Life Sci., 1995, 57(12), 1183-1190. [http://dx.doi.org/10.1016/0024-3205(95)02064-P]. [PMID: 7674807].
[50]
Müller, D.M.; Mendla, K.; Farber, S.A.; Nitsch, R.M. Muscarinic M1 receptor agonists increase the secretion of the amyloid precursor protein ectodomain. Life Sci., 1997, 60(13-14), 985-991. [http:// dx.doi.org/10.1016/S0024-3205(97)00038-6]. [PMID: 9121365].
[51]
Haring, R.; Fisher, A.; Marciano, D.; Pittel, Z.; Kloog, Y.; Zuckerman, A.; Eshhar, N.; Heldman, E. Mitogen-activated protein kinase-dependent and protein kinase C-dependent pathways link the m1 muscarinic receptor to β-amyloid precursor protein secretion. J. Neurochem., 1998, 71(5), 2094-2103. [http://dx.doi.org/10. 1046/j.1471-4159.1998.71052094.x]. [PMID: 9798935].
[52]
Xu, H.; Greengard, P.; Gandy, S. Regulated formation of Golgi secretory vesicles containing Alzheimer β-amyloid precursor protein. J. Biol. Chem., 1995, 270(40), 23243-23245. [http://dx.doi. org/10.1074/jbc.270.40.23243]. [PMID: 7559474].
[53]
Bigl, V.; Rossner, S. Amyloid precursor protein processing in vivo--insights from a chemically-induced constitutive overactivation of protein kinase C in Guinea pig brain. Curr. Med. Chem., 2003, 10(10), 871-882. [http://dx.doi.org/10.2174/0929867033457692]. [PMID: 12678689].
[54]
Farías, G.G.; Godoy, J.A.; Hernández, F.; Avila, J.; Fisher, A.; Inestrosa, N.C. M1 muscarinic receptor activation protects neurons from β-amyloid toxicity. A role for Wnt signaling pathway. Neurobiol. Dis., 2004, 17(2), 337-348. [http://dx.doi.org/10.1016/ j.nbd.2004.07.016]. [PMID: 15474371].
[55]
De Sarno, P.; Shestopal, S.A.; King, T.D.; Zmijewska, A.; Song, L.; Jope, R.S. Muscarinic receptor activation protects cells from apoptotic effects of DNA damage, oxidative stress, and mitochondrial inhibition. J. Biol. Chem., 2003, 278(13), 11086-11093. [http://dx.doi.org/10.1074/jbc.M212157200]. [PMID: 12538580].
[56]
Tsang, S.W.Y.; Lai, M.K.P.; Kirvell, S.; Francis, P.T.; Esiri, M.M.; Hope, T.; Chen, C.P.L-H.; Wong, P.T-H. Impaired coupling of muscarinic M1 receptors to G-proteins in the neocortex is associated with severity of dementia in Alzheimer’s disease. Neurobiol. Aging, 2006, 27(9), 1216-1223. [http://dx.doi.org/10.1016/j. neurobiolaging.2005.07.010]. [PMID: 16129514].
[57]
Echeverria, V.; Yarkov, A.; Aliev, G. Positive modulators of the α7 nicotinic receptor against neuroinflammation and cognitive impairment in Alzheimer’s disease. Prog. Neurobiol., 2016, 144, 142-157. [http://dx.doi.org/10.1016/j.pneurobio.2016.01.002]. [PMID: 26797042].
[58]
Fisher, A. Therapeutic strategies in Alzheimer’s disease: M1 muscarinic agonists. Jpn. J. Pharmacol., 2000, 84(2), 101-112. [http://dx.doi.org/10.1254/jjp.84.101]. [PMID: 11128032].
[59]
Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res., 2013, 36(4), 375-399. [http://dx.doi.org/10.1007/s12272-013-0036-3]. [PMID: 23435942].
[60]
Godyń, J.; Jończyk, J.; Panek, D.; Malawska, B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol. Rep., 2016, 68(1), 127-138. [http://dx.doi.org/10.1016/j.pharep. 2015.07.006]. [PMID: 26721364].
[61]
Buée, L.; Bussière, T.; Buée-Scherrer, V.; Delacourte, A.; Hof, P.R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Brain Res. Rev., 2000, 33(1), 95-130. [http://dx.doi.org/10.1016/S0165-0173(00)00019-9]. [PMID: 10967355].
[62]
Kumar, A.; Singh, A. Ekavali, A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep., 2015, 67(2), 195-203. [http://dx.doi.org/10.1016/j.pharep.2014.09. 004]. [PMID: 25712639].
[63]
Lovestone, S.; Boada, M.; Dubois, B.; Hüll, M.; Rinne, J.O.; Huppertz, H.J.; Calero, M.; Andrés, M.V.; Gómez-Carrillo, B.; León, T.; del Ser, T. A phase II trial of tideglusib in Alzheimer’s disease. J. Alzheimers Dis., 2015, 45(1), 75-88. [PMID: 25537011].
[64]
Engel, T.; Goñi-Oliver, P.; Lucas, J.J.; Avila, J.; Hernández, F. Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J. Neurochem., 2006, 99(6), 1445-1455. [http://dx.doi.org/ 10.1111/j.1471-4159.2006.04139.x]. [PMID: 17059563].
[65]
Rojo, L.E.; Alzate-Morales, J.; Saavedra, I.N.; Davies, P.; Maccioni, R.B. Selective interaction of lansoprazole and astemizole with tau polymers: potential new clinical use in diagnosis of Alzheimer’s disease. J. Alzheimers Dis., 2010, 19(2), 573-589. [http://dx.doi.org/10.3233/JAD-2010-1262]. [PMID: 20110603].
[66]
Salminen, A.; Ojala, J.; Kaarniranta, K.; Hiltunen, M.; Soininen, H. Hsp90 regulates tau pathology through co-chaperone complexes in Alzheimer’s disease. Prog. Neurobiol., 2011, 93(1), 99-110. [http:// dx.doi.org/10.1016/j.pneurobio.2010.10.006]. [PMID: 21056617].
[67]
Giommarelli, C.; Zuco, V.; Favini, E.; Pisano, C.; Dal Piaz, F.; De Tommasi, N.; Zunino, F. The enhancement of antiproliferative and proapoptotic activity of HDAC inhibitors by curcumin is mediated by Hsp90 inhibition. Cell. Mol. Life Sci., 2010, 67(6), 995-1004. [http://dx.doi.org/10.1007/s00018-009-0233-x]. [PMID: 20039095].
[68]
Ma, Q.L.; Zuo, X.; Yang, F.; Ubeda, O.J.; Gant, D.J.; Alaverdyan, M.; Teng, E.; Hu, S.; Chen, P.P.; Maiti, P.; Teter, B.; Cole, G.M.; Frautschy, S.A. Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J. Biol. Chem., 2013, 288(6), 4056-4065. [http://dx.doi.org/10.1074/jbc.M112.393751]. [PMID: 23264626].
[69]
Zhang, B.; Maiti, A.; Shively, S.; Lakhani, F.; McDonald-Jones, G.; Bruce, J.; Lee, E.B.; Xie, S.X.; Joyce, S.; Li, C.; Toleikis, P.M.; Lee, V.M-Y.; Trojanowski, J.Q. Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc. Natl. Acad. Sci. USA, 2005, 102(1), 227-231. [http://dx.doi.org/10.1073/pnas. 0406361102]. [PMID: 15615853].
[70]
Ohno, M.; Sametsky, E.A.; Younkin, L.H.; Oakley, H.; Younkin, S.G.; Citron, M.; Vassar, R.; Disterhoft, J.F. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron, 2004, 41(1), 27-33. [http:// dx.doi.org/10.1016/S0896-6273(03)00810-9]. [PMID: 14715132].
[71]
Kobayashi, D.; Zeller, M.; Cole, T.; Buttini, M.; McConlogue, L.; Sinha, S.; Freedman, S.; Morris, R.G.; Chen, K.S. BACE1 gene deletion: impact on behavioral function in a model of Alzheimer’s disease. Neurobiol. Aging, 2008, 29(6), 861-873. [http://dx.doi.org/ 10.1016/j.neurobiolaging.2007.01.002]. [PMID: 17331621].
[72]
Willem, M.; Garratt, A.N.; Novak, B.; Citron, M.; Kaufmann, S.; Rittger, A.; DeStrooper, B.; Saftig, P.; Birchmeier, C.; Haass, C. Control of peripheral nerve myelination by the β-secretase BACE1. Science, 2006, 314(5799), 664-666. [http://dx.doi.org/10.1126/ science.1132341]. [PMID: 16990514].
[73]
Imbimbo, B.P. Therapeutic potential of γ-secretase inhibitors and modulators. Curr. Top. Med. Chem., 2008, 8(1), 54-61. [http://dx. doi.org/10.2174/156802608783334015]. [PMID: 18220933].
[74]
Maillard, I.; Adler, S.H.; Pear, W.S. Notch and the immune system. Immunity, 2003, 19(6), 781-791. [http://dx.doi.org/10.1016/S1074-7613(03)00325-X]. [PMID: 14670296].
[75]
Stanger, B.Z.; Datar, R.; Murtaugh, L.C.; Melton, D.A. Direct regulation of intestinal fate by Notch. Proc. Natl. Acad. Sci. USA, 2005, 102(35), 12443-12448. [http://dx.doi.org/10.1073/pnas. 0505690102]. [PMID: 16107537].
[76]
Nicolas, M.; Wolfer, A.; Raj, K.; Kummer, J.A.; Mill, P.; van Noort, M.; Hui, C.C.; Clevers, H.; Dotto, G.P.; Radtke, F. Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet., 2003, 33(3), 416-421. [http://dx.doi.org/10.1038/ng1099]. [PMID: 12590261].
[77]
Fleisher, A.S.; Raman, R.; Siemers, E.R.; Becerra, L.; Clark, C.M.; Dean, R.A.; Farlow, M.R.; Galvin, J.E.; Peskind, E.R.; Quinn, J.F.; Sherzai, A.; Sowell, B.B.; Aisen, P.S.; Thal, L.J. Phase 2 safety trial targeting amyloid β production with a γ-secretase inhibitor in Alzheimer disease. Arch. Neurol., 2008, 65(8), 1031-1038. [http:// dx.doi.org/10.1001/archneur.65.8.1031]. [PMID: 18695053].
[78]
Han, J.Y.; Han, S.H. Primary prevention of Alzheimer’s disease: is it an attainable goal? J. Korean Med. Sci., 2014, 29(7), 886-892. [http://dx.doi.org/10.3346/jkms.2014.29.7.886]. [PMID: 25045219].
[79]
van Marum, R.J. Current and future therapy in Alzheimer’s disease. Fundam. Clin. Pharmacol., 2008, 22(3), 265-274. [http://dx. doi.org/10.1111/j.1472-8206.2008.00578.x]. [PMID: 18485144].
[80]
Calamai, M.; Chiti, F.; Dobson, C.M. Amyloid fibril formation can proceed from different conformations of a partially unfolded protein. Biophys. J., 2005, 89(6), 4201-4210. [http://dx.doi.org/10. 1529/biophysj.105.068726]. [PMID: 16169975].
[81]
McLaurin, J.; Golomb, R.; Jurewicz, A.; Antel, J.P.; Fraser, P.E. Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid beta peptide and inhibit abeta -induced toxicity. J. Biol. Chem., 2000, 275(24), 18495-18502. [http://dx.doi.org/10. 1074/jbc.M906994199]. [PMID: 10764800].
[82]
Bush, A.I.; Pettingell, W.H.; Multhaup, G. d Paradis, M.; Vonsattel, J.P.; Gusella, J.F.; Beyreuther, K.; Masters, C.L.; Tanzi, R.E. Rapid induction of Alzheimer A β amyloid formation by zinc. Science, 1994, 265(5177), 1464-1467. [http://dx.doi.org/10.1126/science.8073293]. [PMID: 8073293].
[83]
Cherny, R.A.; Atwood, C.S.; Xilinas, M.E.; Gray, D.N.; Jones, W.D.; McLean, C.A.; Barnham, K.J.; Volitakis, I.; Fraser, F.W.; Kim, Y.; Huang, X.; Goldstein, L.E.; Moir, R.D.; Lim, J.T.; Beyreuther, K.; Zheng, H.; Tanzi, R.E.; Masters, C.L.; Bush, A.I. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron, 2001, 30(3), 665-676. [http://dx.doi.org/10.1016/S0896-6273(01)00317-8]. [PMID: 11430801].
[84]
Donahue, J.E.; Flaherty, S.L.; Johanson, C.E.; Duncan, J.A., III; Silverberg, G.D.; Miller, M.C.; Tavares, R.; Yang, W.; Wu, Q.; Sabo, E.; Hovanesian, V.; Stopa, E.G. RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol., 2006, 112(4), 405-415. [http://dx.doi.org/10.1007/s00401-006-0115-3]. [PMID: 16865397].
[85]
Barnham, K.J.; Bush, A.I. Metals in Alzheimer’s and Parkinson’s diseases. Curr. Opin. Chem. Biol., 2008, 12(2), 222-228. [http://dx. doi.org/10.1016/j.cbpa.2008.02.019]. [PMID: 18342639].
[86]
Han, S.H.; Park, J.C.; Mook-Jung, I. Amyloid β-interacting partners in Alzheimer’s disease: From accomplices to possible therapeutic targets. Prog. Neurobiol., 2016, 137, 17-38. [http://dx.doi. org/10.1016/j.pneurobio.2015.12.004]. [PMID: 26721621].
[87]
Francis, P.T. Glutamatergic systems in Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 2003, 18(Suppl. 1), S15-S21. [http://dx.doi. org/10.1002/gps.934]. [PMID: 12973746].
[88]
Reisberg, B.; Doody, R.; Stöffler, A.; Schmitt, F.; Ferris, S.; Möbius, H.J. Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med., 2003, 348(14), 1333-1341. [http://dx.doi. org/10.1056/NEJMoa013128]. [PMID: 12672860].
[89]
Jaffrey, S.R.; Erdjument-Bromage, H.; Ferris, C.D.; Tempst, P.; Snyder, S.H. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat. Cell Biol., 2001, 3(2), 193-197. [http://dx.doi.org/10.1038/35055104]. [PMID: 11175752].
[90]
Murphy, T.H.; Miyamoto, M.; Sastre, A.; Schnaar, R.L.; Coyle, J.T. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron, 1989, 2(6), 1547-1558. [http://dx.doi.org/10.1016/0896-6273(89)90043-3]. [PMID: 2576375].
[91]
Selkoe, D.J. Alzheimer’s disease is a synaptic failure. Science, 2002, 298(5594), 789-791. [http://dx.doi.org/10.1126/science.1074069]. [PMID: 12399581].
[92]
Moreira, P.I.; Carvalho, C.; Zhu, X.; Smith, M.A.; Perry, G. Mitochondrial
dysfunction is a trigger of Alzheimer's disease pathophysiology Biochim. Biophys. Acta - Molecular Basis of Disease, 2010, 1802 (1), 2-10.
[93]
Moreira, P.I.; Cardoso, S.M.; Santos, M.S.; Oliveira, C.R. The key role of mitochondria in Alzheimer’s disease. J. Alzheimers Dis., 2006, 9(2), 101-110. [http://dx.doi.org/10.3233/JAD-2006-9202]. [PMID: 16873957].
[94]
Moreira, P.I.; Santos, M.S.; Oliveira, C.R. Alzheimer’s disease: a lesson from mitochondrial dysfunction. Antioxid. Redox Signal., 2007, 9(10), 1621-1630. [http://dx.doi.org/10.1089/ars.2007.1703]. [PMID: 17678440].
[95]
Moreira, P.I.; Duarte, A.I.; Santos, M.S.; Rego, A.C.; Oliveira, C.R. An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J. Alzheimers Dis., 2009, 16(4), 741-761. [http://dx.doi.org/10.3233/JAD-2009-0972]. [PMID: 19387110].
[96]
Su, B.; Wang, X.; Nunomura, A.; Moreira, P.I.; Lee, H.G.; Perry, G.; Smith, M.A.; Zhu, X. Oxidative stress signaling in Alzheimer’s disease. Curr. Alzheimer Res., 2008, 5(6), 525-532. [http://dx.doi. org/10.2174/156720508786898451]. [PMID: 19075578].
[97]
Monteiro-Cardoso, V.F.; Oliveira, M.M.; Melo, T.; Domingues, M.R.; Moreira, P.I.; Ferreiro, E.; Peixoto, F.; Videira, R.A. Cardiolipin profile changes are associated to the early synaptic mitochondrial dysfunction in Alzheimer’s disease. J. Alzheimers Dis., 2015, 43(4), 1375-1392. [PMID: 25182746].
[98]
Hirai, K.; Aliev, G.; Nunomura, A.; Fujioka, H.; Russell, R.L.; Atwood, C.S.; Johnson, A.B.; Kress, Y.; Vinters, H.V.; Tabaton, M.; Shimohama, S.; Cash, A.D.; Siedlak, S.L.; Harris, P.L.; Jones, P.K.; Petersen, R.B.; Perry, G.; Smith, M.A. Mitochondrial abnormalities in Alzheimer’s disease. J. Neurosci., 2001, 21(9), 3017-3023. [http://dx.doi.org/10.1523/JNEUROSCI.21-09-03017.2001]. [PMID: 11312286].
[99]
Castellani, R.; Hirai, K.; Aliev, G.; Drew, K.L.; Nunomura, A.; Takeda, A.; Cash, A.D.; Obrenovich, M.E.; Perry, G.; Smith, M.A. Role of mitochondrial dysfunction in Alzheimer’s disease. J. Neurosci. Res., 2002, 70(3), 357-360. [http://dx.doi.org/10.1002/jnr. 10389]. [PMID: 12391597].
[100]
Devi, L.; Prabhu, B.M.; Galati, D.F.; Avadhani, N.G.; Anandatheerthavarada, H.K. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J. Neurosci., 2006, 26(35), 9057-9068. [http://dx.doi.org/10.1523/JNEUROSCI.1469-06.2006]. [PMID: 16943564].
[101]
Anandatheerthavarada, H.K.; Biswas, G.; Robin, M.A.; Avadhani, N.G. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J. Cell Biol., 2003, 161(1), 41-54. [http://dx. doi.org/10.1083/jcb.200207030]. [PMID: 12695498].
[102]
Farina, N.; Isaac, M.G.; Clark, A.R.; Rusted, J.; Tabet, N. Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst. Rev., 2012, 11, CD002854. [PMID: 23152215].
[103]
Dysken, M.W.; Guarino, P.D.; Vertrees, J.E.; Asthana, S.; Sano, M.; Llorente, M.; Pallaki, M.; Love, S.; Schellenberg, G.D.; McCarten, J.R.; Malphurs, J.; Prieto, S.; Chen, P.; Loreck, D.J.; Carney, S.; Trapp, G.; Bakshi, R.S.; Mintzer, J.E.; Heidebrink, J.L.; Vidal-Cardona, A.; Arroyo, L.M.; Cruz, A.R.; Kowall, N.W.; Chopra, M.P.; Craft, S.; Thielke, S.; Turvey, C.L.; Woodman, C.; Monnell, K.A.; Gordon, K.; Tomaska, J.; Vatassery, G. Vitamin E and memantine in Alzheimer’s disease: clinical trial methods and baseline data. Alzheimers Dement., 2014, 10(1), 36-44. [http://dx. doi.org/10.1016/j.jalz.2013.01.014]. [PMID: 23583234].
[104]
Lee, J.; Boo, J.H.; Ryu, H. The failure of mitochondria leads to neurodegeneration: Do mitochondria need a jump start? Adv. Drug Deliv. Rev., 2009, 61(14), 1316-1323. [http://dx.doi.org/10.1016/ j.addr.2009.07.016]. [PMID: 19716395].
[105]
Manczak, M.; Mao, P.; Calkins, M.J.; Cornea, A.; Reddy, A.P.; Murphy, M.P.; Szeto, H.H.; Park, B.; Reddy, P.H. Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer’s disease neurons. J. Alzheimers Dis., 2010, 20(Suppl. 2), S609-S631. [http://dx.doi.org/10.3233/JAD-2010-100564]. [PMID: 20463406].
[106]
Rodríguez, J.J.; Noristani, H.N.; Verkhratsky, A. The serotonergic system in ageing and Alzheimer’s disease. Prog. Neurobiol., 2012, 99(1), 15-41. [http://dx.doi.org/10.1016/j.pneurobio.2012.06.010]. [PMID: 22766041].
[107]
Wilkinson, D.; Windfeld, K.; Colding-Jørgensen, E. Safety and efficacy of idalopirdine, a 5-HT6 receptor antagonist, in patients with moderate Alzheimer’s disease (LADDER): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol., 2014, 13(11), 1092-1099. [http://dx.doi.org/10.1016/S1474-4422(14)70198-X]. [PMID: 25297016].
[108]
Maher-Edwards, G.; Zvartau-Hind, M.; Hunter, A.J.; Gold, M.; Hopton, G.; Jacobs, G.; Davy, M.; Williams, P. Double-blind, controlled phase II study of a 5-HT6 receptor antagonist, SB-742457, in Alzheimer’s disease. Curr. Alzheimer Res., 2010, 7(5), 374-385. [http://dx.doi.org/10.2174/156720510791383831]. [PMID: 20043816].
[109]
Marazziti, D.; Rutigliano, G.; Catena-DelL’Osso, M.; Baroni, S.; Dell’Osso, L. The 5- HT6 receptor antagonism approach in Alzheimer’s disease. Drugs Future, 2014, 39, 133-140. [http://dx. doi.org/10.1358/dof.2014.039.02.2103730].
[110]
Cho, S.; Hu, Y. Activation of 5-HT4 receptors inhibits secretion of β-amyloid peptides and increases neuronal survival. Exp. Neurol., 2007, 203(1), 274-278. [http://dx.doi.org/10.1016/j.expneurol. 2006.07.021]. [PMID: 16978609].
[111]
Esbenshade, T.A.; Browman, K.E.; Bitner, R.S.; Strakhova, M.; Cowart, M.D.; Brioni, J.D. The histamine H3 receptor: an attractive target for the treatment of cognitive disorders. Br. J. Pharmacol., 2008, 154(6), 1166-1181. [http://dx.doi.org/10.1038/bjp.2008.147]. [PMID: 18469850].
[112]
Othman, A.A.; Haig, G.; Florian, H.; Locke, C.; Gertsik, L.; Dutta, S. The H3 antagonist ABT-288 is tolerated at significantly higher exposures in subjects with schizophrenia than in healthy volunteers. Br. J. Clin. Pharmacol., 2014, 77(6), 965-974. [http://dx.doi. org/10.1111/bcp.12281]. [PMID: 24215171].
[113]
Limon, A.; Reyes-Ruiz, J.M.; Miledi, R. GABAergic drugs and Alzheimer’s disease. Future Med. Chem., 2011, 3(2), 149-153. [http://dx.doi.org/10.4155/fmc.10.291]. [PMID: 21428809].
[114]
Wilcock, D.M.; Colton, C.A. Anti-amyloid-beta immunotherapy in Alzheimer’s disease: relevance of transgenic mouse studies to clinical trials. J. Alzheimers Dis., 2008, 15(4), 555-569. [http://dx. doi.org/10.3233/JAD-2008-15404]. [PMID: 19096156].
[115]
Panza, F.; Solfrizzi, V.; Imbimbo, B.P.; Tortelli, R.; Santamato, A.; Logroscino, G. Amyloid-based immunotherapy for Alzheimer’s disease in the time of prevention trials: the way forward. Expert Rev. Clin. Immunol., 2014, 10(3), 405-419. [http://dx.doi.org/10. 1586/1744666X.2014.883921]. [PMID: 24490853].
[116]
Awasthi, M.; Singh, S.; Pandey, V.P.; Dwivedi, U.N. Alzheimer’s disease: An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. J. Neurol. Sci., 2016, 361, 256-271. [http://dx.doi.org/10.1016/j.jns.2016.01.008]. [PMID: 26810552].
[117]
Eagger, S.A.; Levy, R.; Sahakian, B.J. Tacrine in Alzheimer’s disease. Lancet, 1991, 337(8748), 989-992. [http://dx.doi.org/ 10.1016/0140-6736(91)92656-M]. [PMID: 1673209].
[118]
Dogterom, P.; Nagelkerke, J.F.; Mulder, G.J. Hepatotoxicity of tetrahydroaminoacridine in isolated rat hepatocytes: effect of glutathione and vitamin E. Biochem. Pharmacol., 1988, 37(12), 2311-2313. [http://dx.doi.org/10.1016/0006-2952(88)90356-5]. [PMID: 3390201].
[119]
Lou, G.; Montgomery, P.R.; Sitar, D.S. Bioavailability and pharmacokinetic disposition of tacrine in elderly patients with Alzheimer’s disease. J. Psychiatry Neurosci., 1996, 21(5), 334-339. [PMID: 8973053].
[120]
Melo, T.; Videira, R.A.; André, S.; Maciel, E.; Francisco, C.S.; Oliveira-Campos, A.M.; Rodrigues, L.M.; Domingues, M.R.M.; Peixoto, F.; Manuel, O.M. Tacrine and its analogues impair mitochondrial function and bioenergetics: a lipidomic analysis in rat brain. J. Neurochem., 2012, 120(6), 998-1013. [PMID: 22192081].
[121]
Praticò, D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol. Sci., 2008, 29(12), 609-615. [http://dx.doi.org/10.1016/j.tips.2008.09.001]. [PMID: 18838179].
[122]
Tumiatti, V.; Minarini, A.; Bolognesi, M.L.; Milelli, A.; Rosini, M.; Melchiorre, C. Tacrine derivatives and Alzheimer’s disease. Curr. Med. Chem., 2010, 17(17), 1825-1838. [http://dx.doi.org/10. 2174/092986710791111206]. [PMID: 20345341].
[123]
Kuca, K.K.; Soukup, O.; Maresova, P.; Korabecny, J.; Nepovimova, E.; Klimova, B.; Honegr, J.; Teodorico, C.; Ramalho, T.C.; França, T.C.C. Current approaches against Alzheimer’s disease in clinical trials. J. Braz. Chem. Soc., 2016, 27, 641-649.
[124]
Thomae, D.; Kirsch, G.; Seck, P. Synthesis of thiophene analogues of the tacrine series. Synthesis, 2007, 7, 1027-1032.
[125]
Thomae, D.; Perspicace, E.; Hesse, S.; Kirsch, G.; Seck, P. Synthesis of substituted [1,3]thiazolo[4,5-b]pyridines and [1,3]thiazolo-[4,5-d][1,2,3]triazines. Tetrahedron, 2008, 64, 9309-9314. [http://dx.doi.org/10.1016/j.tet.2008.07.017].
[126]
Bekolo, H.; Kirsch, G. Synthesis of substituted 4-azaisoindoles - New tacrine analogues. Can. J. Chem., 2007, 85, 1-6. [http://dx. doi.org/10.1139/v06-180].
[127]
Thomae, D.; Kirsch, G.; Seck, P. Synthesis of selenophene analogues of the tacrine series: Comparison of classical route and microwave irradiation. Synthesis-Stuttgart, 2008, 10, 1600-1606.
[128]
Hamulakova, S.; Imrich, J.; Janovec, L.; Kristian, P.; Danihel, I.; Holas, O.; Pohanka, M.; Böhm, S.; Kozurkova, M.; Kuca, K. Novel tacrine/acridine anticholinesterase inhibitors with piperazine and thiourea linkers. Int. J. Biol. Macromol., 2014, 70, 435-439. [http:// dx.doi.org/10.1016/j.ijbiomac.2014.06.064]. [PMID: 25036600].
[129]
Janočková, J.; Plšíková, J.; Kašpárková, J.; Brabec, V.; Jendželovský, R.; Mikeš, J.; Kovaľ, J.; Hamuľaková, S.; Fedoročko, P.; Kuča, K.; Kožurková, M. Inhibition of DNA topoisomerases I and II and growth inhibition of HL-60 cells by novel acridine-based compounds. Eur. J. Pharm. Sci., 2015, 76, 192-202. [http://dx.doi.org/10.1016/j.ejps.2015.04.023]. [PMID: 25960253].
[130]
Khoobi, M.; Ghanoni, F.; Nadri, H.; Moradi, A.; Pirali Hamedani, M.; Homayouni Moghadam, F.; Emami, S.; Vosooghi, M.; Zadmard, R.; Foroumadi, A.; Shafiee, A. New tetracyclic tacrine analogs containing pyrano[2,3-c]pyrazole: efficient synthesis, biological assessment and docking simulation study. Eur. J. Med. Chem., 2015, 89, 296-303. [http://dx.doi.org/10.1016/j.ejmech.2014.10. 049]. [PMID: 25462245].
[131]
Chioua, M.; Pérez-Peña, J.; García-Font, N.; Moraleda, I.; Iriepa, I.; Soriano, E.; Marco-Contelles, J.; Oset-Gasque, M.J. Pyranopyrazolotacrines as nonneurotoxic, Aβ-anti-aggregating and neuroprotective agents for Alzheimer’s disease. Future Med. Chem., 2015, 7(7), 845-855. [http://dx.doi.org/10.4155/fmc.15.41]. [PMID: 26061104].
[132]
Digiacomo, M.; Chen, Z.; Wang, S.; Lapucci, A.; Macchia, M.; Yang, X.; Chu, J.; Han, Y.; Pi, R.; Rapposelli, S. Synthesis and pharmacological evaluation of multifunctional tacrine derivatives against several disease pathways of AD. Bioorg. Med. Chem. Lett., 2015, 25(4), 807-810. [http://dx.doi.org/10.1016/j.bmcl.2014.12. 084]. [PMID: 25597007].
[133]
Bajda, M.; Jończyk, J.; Malawska, B.; Czarnecka, K.; Girek, M.; Olszewska, P.; Sikora, J.; Mikiciuk-Olasik, E.; Skibiński, R.; Gumieniczek, A.; Szymański, P. Synthesis, biological evaluation and molecular modeling of new tetrahydroacridine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2015, 23(17), 5610-5618. [http://dx.doi.org/ 10.1016/j.bmc.2015.07.029]. [PMID: 26242241].
[134]
Eckroat, T.J.; Green, K.D.; Reed, R.A.; Bornstein, J.J.; Garneau-Tsodikova, S. Investigation of the role of linker moieties in bifunctional tacrine hybrids. Bioorg. Med. Chem., 2013, 21(12), 3614-3623. [http://dx.doi.org/10.1016/j.bmc.2013.02.047]. [PMID: 23535563].
[135]
Luo, W.; Li, Y.P.; He, Y.; Huang, S.L.; Li, D.; Gu, L.Q.; Huang, Z.S. Synthesis and evaluation of heterobivalent tacrine derivatives as potential multi-functional anti-Alzheimer agents. Eur. J. Med. Chem., 2011, 46(6), 2609-2616. [http://dx.doi.org/10.1016/j. ejmech.2011.03.058]. [PMID: 21497959].
[136]
Ragab, H.M.; Ashour, H.M.A.; Galal, A.; Ghoneim, A.I.; Haidar, H.R. Synthesis and biological evaluation of some tacrine analogs: study of the effect of the chloro substituent on the acetylcholinesterase inhibitory activity. Monatsh. Chem., 2016, 147, 539-552. [http://dx.doi.org/10.1007/s00706-015-1641-2].
[137]
Eslami, M.; Hashemianzadeh, S.M.; Bagherzadeh, K.; Sajadi, S.A.S. Molecular perception of interactions between bis(7)tacrine and cystamine-tacrine dimer with cholinesterases as the promising proposed agents for the treatment of Alzheimer’s disease. J. Biomol. Struct. Dyn., 2016, 34(4), 855-869.
[138]
García-Font, N.; Hayour, H.; Belfaitah, A.; Pedraz, J.; Moraleda, I.; Iriepa, I.; Bouraiou, A.; Chioua, M.; Marco-Contelles, J.; Oset-Gasque, M.J. Potent anticholinesterasic and neuroprotective pyranotacrines as inhibitors of beta-amyloid aggregation, oxidative stress and tau-phosphorylation for Alzheimer’s disease. Eur. J. Med. Chem., 2016, 118, 178-192. [http://dx.doi.org/10.1016/ j.ejmech.2016.04.023]. [PMID: 27128182].
[139]
Głąbski, T.; Mikołajczyk, J.; Rusek, D. Hybrid compounds as potential drugs multifunctional. Farm. Pol., 2013, 69, 422-433.
[140]
Singh, M.; Kaur, M.; Chadha, N.; Silakari, O. Hybrids: a new paradigm to treat Alzheimer’s disease. Mol. Divers., 2016, 20(1), 271-297. [http://dx.doi.org/10.1007/s11030-015-9628-9]. [PMID: 26328942].
[141]
Fernández-Bachiller, M.I.; Pérez, C.; Monjas, L.; Rademann, J.; Rodríguez-Franco, M.I. New tacrine-4-oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with cholinergic, antioxidant, and β-amyloid-reducing properties. J. Med. Chem., 2012, 55, 1303-1317.
[142]
Rodríguez-Franco, M.I.; Fernández-Bachiller, M.I.; Pérez, C.; Hernández-Ledesma, B.; Bartolomé, B. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J. Med. Chem., 2006, 49(2), 459-462. [http://dx.doi.org/10.1021/ jm050746d]. [PMID: 16420031].
[143]
Fernández-Bachiller, M.I.; Pérez, C.; Campillo, N.E.; Páez, J.A.; González-Muñoz, G.C.; Usán, P.; García-Palomero, E.; López, M.G.; Villarroya, M.; García, A.G.; Martínez, A.; Rodríguez-Franco, M.I. Tacrine-melatonin hybrids as multifunctional agents for Alzheimer’s disease, with cholinergic, antioxidant, and neuroprotective properties. ChemMedChem, 2009, 4(5), 828-841. [http://dx.doi.org/10.1002/cmdc.200800414]. [PMID: 19308922].
[144]
Lange, J.H.; Coolen, H.K.; van Stuivenberg, H.H.; Dijksman, J.A.; Herremans, A.H.; Ronken, E.; Keizer, H.G.; Tipker, K.; McCreary, A.C.; Veerman, W.; Wals, H.C.; Stork, B.; Verveer, P.C.; den Hartog, A.P.; de Jong, N.M.; Adolfs, T.J.; Hoogendoorn, J.; Kruse, C.G. Synthesis, biological properties, and molecular modeling investigations of novel 3,4-diarylpyrazolines as potent and selective CB(1) cannabinoid receptor antagonists. J. Med. Chem., 2004, 47(3), 627-643. [http://dx.doi.org/10.1021/jm031019q]. [PMID: 14736243].
[145]
Lange, J.H.; van Stuivenberg, H.H.; Coolen, H.K.; Adolfs, T.J.; McCreary, A.C.; Keizer, H.G.; Wals, H.C.; Veerman, W.; Borst, A.J.; de Looff, W.; Verveer, P.C.; Kruse, C.G. Bioisosteric replacements of the pyrazole moiety of rimonabant: synthesis, biological properties, and molecular modeling investigations of thiazoles, triazoles, and imidazoles as potent and selective CB1 cannabinoid receptor antagonists. J. Med. Chem., 2005, 48(6), 1823-1838. [http://dx.doi.org/10.1021/jm040843r]. [PMID: 15771428].
[146]
Fang, L.; Jumpertz, S.; Zhang, Y.; Appenroth, D.; Fleck, C.; Mohr, K.; Tränkle, C.; Decker, M. Hybrid molecules from xanomeline and tacrine: enhanced tacrine actions on cholinesterases and muscarinic M1 receptors. J. Med. Chem., 2010, 53(5), 2094-2103. [http://dx.doi.org/10.1021/jm901616h]. [PMID: 20158205].
[147]
Camps, P.; Formosa, X.; Galdeano, C.; Gómez, T.; Muñoz-Torrero, D.; Scarpellini, M.; Viayna, E.; Badia, A.; Clos, M.V.; Camins, A.; Pallàs, M.; Bartolini, M.; Mancini, F.; Andrisano, V.; Estelrich, J.; Lizondo, M.; Bidon-Chanal, A.; Luque, F.J. Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. J. Med. Chem., 2008, 51(12), 3588-3598. [http://dx.doi.org/10.1021/jm8001313]. [PMID: 18517184].
[148]
Tang, H.; Zhao, L.Z.; Zhao, H.T.; Huang, S.L.; Zhong, S.M.; Qin, J.K.; Chen, Z.F.; Huang, Z.S.; Liang, H. Hybrids of oxoisoaporphine-tacrine congeners: novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors. Eur. J. Med. Chem., 2011, 46(10), 4970-4979. [http://dx.doi.org/10.1016/ j.ejmech.2011.08.002]. [PMID: 21871694].
[149]
Carlier, P.R.; Du, D.M.; Han, Y.; Liu, J.; Pang, Y.P. Potent, easily synthesized huperzine A-tacrine hybrid acetylcholinesterase inhibitors. Bioorg. Med. Chem. Lett., 1999, 9(16), 2335-2338. [http://dx. doi.org/10.1016/S0960-894X(99)00396-0]. [PMID: 10476864].
[150]
Mao, F.; Chen, J.; Zhou, Q.; Luo, Z.; Huang, L.; Li, X. Novel tacrine-ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity. Bioorg. Med. Chem. Lett., 2013, 23(24), 6737-6742. [http://dx.doi.org/10. 1016/j.bmcl.2013.10.034]. [PMID: 24220172].
[151]
Van der Zee, E.A.; Platt, B.; Riedel, G. Acetylcholine: future research and perspectives. Behav. Brain Res., 2011, 221(2), 583-586. [http://dx.doi.org/10.1016/j.bbr.2011.01.050]. [PMID: 21295616].
[152]
Holmquist, L.; Stuchbury, G.; Berbaum, K.; Muscat, S.; Young, S.; Hager, K.; Engel, J.; Münch, G. Lipoic acid as a novel treatment for Alzheimer’s disease and related dementias. Pharmacol. Ther., 2007, 113(1), 154-164. [http://dx.doi.org/10.1016/j.pharmthera. 2006.07.001]. [PMID: 16989905].
[153]
Fang, L.; Kraus, B.; Lehmann, J.; Heilmann, J.; Zhang, Y.; Decker, M. Design and synthesis of tacrine-ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg. Med. Chem. Lett., 2008, 18(9), 2905-2909. [http://dx.doi.org/10.1016/j.bmcl.2008. 03.073]. [PMID: 18406135].
[154]
Xie, S.S.; Lan, J.S.; Wang, X.B.; Jiang, N.; Dong, G.; Li, Z.R.; Wang, K.D.G.; Guo, P.P.; Kong, L.Y. Multifunctional tacrine-trolox hybrids for the treatment of Alzheimer’s disease with cholinergic, antioxidant, neuroprotective and hepatoprotective properties. Eur. J. Med. Chem., 2015, 93, 42-50. [http://dx.doi.org/ 10.1016/j.ejmech.2015.01.058]. [PMID: 25656088].
[155]
Doucet-Personeni, C.; Bentley, P.D.; Fletcher, R.J.; Kinkaid, A.; Kryger, G.; Pirard, B.; Taylor, A.; Taylor, R.; Taylor, J.; Viner, R.; Silman, I.; Sussman, J.L.; Greenblatt, H.M.; Lewis, T. A structure-based design approach to the development of novel, reversible AChE inhibitors. J. Med. Chem., 2001, 44(20), 3203-3215. [http://dx.doi.org/10.1021/jm010826r]. [PMID: 11563919].
[156]
Szymański, P.; Markowicz, M.; Mikiciuk-Olasik, E. Synthesis and biological activity of derivatives of tetrahydroacridine as acetylcholinesterase inhibitors. Bioorg. Chem., 2011, 39(4), 138-142. [http:// dx.doi.org/10.1016/j.bioorg.2011.05.001]. [PMID: 21621811].
[157]
Fernández-Bachiller, M.I.; Pérez, C.; González-Muñoz, G.C.; Conde, S.; López, M.G.; Villarroya, M.; García, A.G.; Rodríguez-Franco, M.I. Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. J. Med. Chem., 2010, 53(13), 4927-4937. [http://dx.doi. org/10.1021/jm100329q]. [PMID: 20545360].
[158]
Hiremathad, A.; Chand, K.; Esteves, A.R.; Cardoso, S.M.
Ramsay, R.R.; Chaves, S.; Keri, R.S.; Santos, M.A. Tacrine-allyl/ propargylcysteine-benzothiazole trihybrids as potential anti-Alzheimer’s drug candidates. RSC Advances, 2016, 6, 53519-53532. [http://dx.doi.org/10.1039/C6RA03455A].
[159]
Thiratmatrakul, S.; Yenjai, C.; Waiwut, P.; Vajragupta, O.; Reubroycharoen, P.; Tohda, M.; Boonyarat, C. Synthesis, biological evaluation and molecular modeling study of novel tacrine-carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2014, 75, 21-30. [http://dx.doi.org/10.1016/j.ejmech.2014.01.020]. [PMID: 24508831].
[160]
Liao, S.; Deng, H.; Huang, S.; Yang, J.; Wang, S.; Yin, B.; Zheng, T.; Zhang, D.; Liu, J.; Gao, G.; Ma, J.; Deng, Z. Design, synthesis and evaluation of novel 5,6,7-trimethoxyflavone-6-chlorotacrine hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2015, 25(7), 1541-1545. [http://dx.doi.org/10.1016/j.bmcl.2015.02.015]. [PMID: 25724825].
[161]
Quintanova, C.; Keri, R.S.; Chaves, S.; Santos, M.A. Copper(II) complexation of tacrine hybrids with potential anti-neurodegenerative roles. J. Inorg. Biochem., 2015, 151, 58-66. [http://dx.doi.org/10. 1016/j.jinorgbio.2015.06.008]. [PMID: 26119099].
[162]
Quintanova, C.; Keri, R.S.; Chaves, S.; Santos, M.A. ISMEC Acta, 2014, 4, 74-75.
[163]
Keri, R.S.; Quintanova, C.; Chaves, S.; Silva, D.F.; Cardoso, S.M.; Santos, M.A. New tacrine hybrids with natural-based cysteine derivatives as multitargeted drugs for potential treatment of Alzheimer’s disease. Chem. Biol. Drug Des., 2016, 87(1), 101-111. [http://dx.doi.org/10.1111/cbdd.12633]. [PMID: 26256122].
[164]
Zha, X.; Lamba, D.; Zhang, L.; Lou, Y.; Xu, C.; Kang, D.; Chen, L.; Xu, Y.; Zhang, L.; De Simone, A.; Samez, S.; Pesaresi, A.; Stojan, J.; Lopez, M.G.; Egea, J.; Andrisano, V.; Bartolini, M. Novel tacrine-benzofuran hybrids as potent multitarget-directed ligands for the treatment of Alzheimer’s disease: design, synthesis, biological evaluation, and X-ray crystallography. J. Med. Chem., 2016, 59(1), 114-131. [http://dx.doi.org/10.1021/acs.jmedchem.5b01119]. [PMID: 26632651].
[165]
Nepovimova, E.; Korabecny, J.; Dolezal, R.; Nguyen, T.D.; Jun, D.; Soukup, O.; Pasdiorova, M.; Jost, P.; Muckova, L.; Malinak, D.; Gorecki, L.; Musilek, K.; Kuca, K. A 7-methoxytacrine-4 pyridinealdoxime hybrid as a novel prophylactic agent with reactivation properties in organophosphate intoxication. Toxicol. Res., 2016, 5, 1012-1016. [http://dx.doi.org/10.1039/C6TX00130K].
[166]
Misik, J.; Korabecny, J.; Nepovimova, E.; Kracmarova, A.; Kassa, J. Effects of novel tacrine-related cholinesterase inhibitors in the reversal of 3-quinuclidinyl benzilate-induced cognitive deficit in rats--Is there a potential for Alzheimer’s disease treatment? Neurosci. Lett., 2016, 612, 261-268. [http://dx.doi.org/10.1016/j.neulet. 2015.12.021]. [PMID: 26708634].
[167]
Eslami, M.; Nikkhah, S.J.; Hashemianzadeh, S.M.; Sajadi, S.A.S. The compatibility of Tacrine molecule with poly(n-butylcyanoacrylate) and Chitosan as efficient carriers for drug delivery: A molecular dynamics study. Eur. J. Pharm. Sci., 2016, 82, 79-85. [http://dx.doi.org/10.1016/j.ejps.2015.11.014]. [PMID: 26598087].
[168]
Chen, Y.; Lin, H.; Zhu, J.; Gu, K.; Li, Q.; He, S.; Lu, X.; Tan, R.; Pei, Y.; Wu, L.; Bian, Y.; Sun, H. Design, synthesis, in vitro and in vivo evaluation of tacrine–cinnamic acid hybrids as multi-target acetyl- and butyrylcholinesterase inhibitors against Alzheimer’s disease. RSC Advances, 2017, 7, 33851-33867. [http://dx.doi.org/ 10.1039/C7RA04385F].
[169]
Li, X.; Wang, H.; Xu, Y.; Liu, W.; Qiu, X.; Zhu, J.; Mao, F.; Zhang, H.; Li, J. Novel vilazodone-tacrine hybrids as potential multitarget-directed ligands for the treatment of Alzheimer’s disease accompanied with depression: design, synthesis, and biological evaluation. ACS Chem. Neurosci., 2017, 8(12), 2708-2721.
[170]
Mahdavi, M.; Saeedi, M.; Gholamnia, L.; Jeddi, S.A.B.; Sabourian, R.; Shafiee, A.; Foroumad, A.; Akbarzadeh, T. Synthesis of novel tacrine analogs as acetylcholinesterase inhibitors. J. Heterocycl. Chem., 2017, 54, 384-390. [http://dx.doi.org/10.1002/jhet.2594].
[171]
Jeřábek, J.; Uliassi, E.; Guidotti, L.; Korábečný, J.; Soukup, O.; Sepsova, V.; Hrabinova, M.; Kuča, K.; Bartolini, M.; Peña-Altamira, L.E.; Petralla, S.; Monti, B.; Roberti, M.; Bolognesi, M.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur. J. Med. Chem., 2017, 127, 250-262. [http://dx.doi.org/10.1016/j.ejmech.2016.12.048]. [PMID: 28064079].
[172]
Eghtedari, M.; Sarrafi, Y.; Nadri, H.; Mahdavi, M.; Moradi, A.; Homayouni Moghadam, F.; Emami, S.; Firoozpour, L.; Asadipour, A.; Sabzevari, O.; Foroumadi, A. New tacrine-derived AChE/BuChE inhibitors: Synthesis and biological evaluation of 5-amino-2-phenyl-4H-pyrano[2,3-b]quinoline-3-carboxylates. Eur. J. Med. Chem., 2017, 128, 237-246. [http://dx.doi.org/10.1016/ j.ejmech.2017.01.042]. [PMID: 28189905].
[173]
Jalili-Baleh, L.; Nadri, H.; Moradi, A.; Bukhari, S.N.A.; Shakibaie, M.; Jafari, M.; Golshani, M.; Homayouni Moghadam, F.; Firoozpour, L.; Asadipour, A.; Emami, S.; Khoobi, M.; Foroumadi, A. New racemic annulated pyrazolo[1,2-b]phthalazines as tacrine-like AChE inhibitors with potential use in Alzheimer’s disease. Eur. J. Med. Chem., 2017, 139, 280-289. [http://dx.doi.org/10.1016/ j.ejmech.2017.07.072]. [PMID: 28803044].
[174]
Ulus, R.; Zengin Kurt, B.; Gazioğlu, I.; Kaya, M. Microwave assisted synthesis of novel hybrid tacrine-sulfonamide derivatives and investigation of their antioxidant and anticholinesterase activities. Bioorg. Chem., 2017, 70, 245-255. [http://dx.doi.org/10.1016/ j.bioorg.2017.01.005]. [PMID: 28153340].
[175]
Reddy, E.K.; Remya, C.; Mantosh, K.; Sajith, A.M.; Omkumar, R.V.; Sadasivan, C.; Anwar, S. Novel tacrine derivatives exhibiting improved acetylcholinesterase inhibition: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2017, 139, 367-377. [http:// dx.doi.org/10.1016/j.ejmech.2017.08.013]. [PMID: 28810188].
[176]
Liu, Z.; Fang, L.; Zhang, H.; Gou, S.; Chen, L. Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property. Bioorg. Med. Chem., 2017, 25(8), 2387-2398. [http://dx.doi.org/10.1016/j.bmc.2017.02.049]. [PMID: 28302511].
[177]
Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Asatouri, R.; Vafadarnejad, F.; Moghadam, F.H.; Khanavi, M.; Sharifzadeh, M.; Akbarzadeh, T. Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur. J. Med. Chem., 2017, 125, 1200-1212. [http://dx.doi.org/10.1016/j.ejmech.2016.11.008]. [PMID: 27863370].
[178]
Roldán-Peña, J.M.; Alejandre-Ramos, D.; López, Ó.; Maya, I.; Lagunes, I.; Padrón, J.M.; Peña-Altamira, L.E.; Bartolini, M.; Monti, B.; Bolognesi, M.L.; Fernández-Bolaños, J.G. New tacrine dimers with antioxidant linkers as dual drugs: Anti-Alzheimer’s and antiproliferative agents. Eur. J. Med. Chem., 2017, 138, 761-773. [http://dx.doi.org/10.1016/j.ejmech.2017.06.048]. [PMID: 28728108].
[179]
Teponnou, G.A.K.; Joubert, J.; Malan, S.F. Tacrine, trolox and tryptoline as lead compounds for the design and synthesis of multi-target agents for Alzheimer’s disease therapy. Open Med. Chem. J., 2017, 11, 24-37. [http://dx.doi.org/10.2174/1874104501711010024]. [PMID: 28567126].
[180]
Spilovska, K.; Korabecny, J.; Sepsova, V.; Jun, D.; Hrabinova, M.; Jost, P.; Muckova, L.; Soukup, O.; Janockova, J.; Kucera, T.; Dolezal, R.; Mezeiova, E.; Kaping, D.; Kuca, K. Novel tacrine-scutellarin hybrids as multipotent anti-Alzheimer’s agents: design, synthesis and biological evaluation. Molecules, 2017, 22(6), 1006. [http://dx.doi.org/10.3390/molecules22061006]. [PMID: 28621747].
[181]
Boulebd, H.; Ismaili, L.; Martin, H.; Bonet, A.; Chioua, M.; Marco Contelles, J.; Belfaitah, A. New (benz)imidazolopyridino tacrines as nonhepatotoxic, cholinesterase inhibitors for Alzheimer disease. Future Med. Chem., 2017, 9(8), 723-729. [http://dx.doi.org/ 10.4155/fmc-2017-0019]. [PMID: 28485637].
[182]
Wang, L.; Moraleda, I.; Iriepa, I.; Romero, A.; Lopez-Munoz, F.; Chioua, M.; Inokuchi, T.; Bartolini, M.; Marco-Contelles, J. 5-Methyl-N-(8-(5,6,7,8-tetrahydroacridin-9-ylamino)octyl)-5H-indolo[2,3-b]quinolin-11-amine: a highly potent human cholinesterase inhibitor. MedChemComm, 2017, 8, 1307-1317. [http://dx.doi.org/ 10.1039/C7MD00143F].
[183]
Cen, J.; Guo, H.; Hong, C.; Lv, J.; Yang, Y.; Wang, T.; Fang, D.; Luo, W.; Wang, C. Development of tacrine-bifendate conjugates with improved cholinesterase inhibitory and pro-cognitive efficacy and reduced hepatotoxicity. Eur. J. Med. Chem., 2018, 144, 128-136. [http://dx.doi.org/10.1016/j.ejmech.2017.12.005]. [PMID: 29268129].