General Review Article

NAChRα4β2亚型及其与尼古丁成瘾,认知,抑郁和多动障碍的关系

卷 26, 期 20, 2019

页: [3792 - 3811] 页: 20

弟呕挨: 10.2174/0929867325666180410105135

价格: $65

摘要

背景:神经元α4β2nAChRs是参与神经递质调节和释放的受体,该离子通道参与记忆,学习和注意力的生物学过程。这项工作旨在审查α4β2_nAChR的结构和功能,强调其在治疗相关疾病(如尼古丁成瘾)和潜在病理(例如认知,抑郁和注意力不足过动症)中的作用。 方法:作者通过对“尼古丁受体α4β2”和“认知”,“抑郁”,“注意力缺陷多动障碍”等描述符进行了广泛的书目研究,此外还对所选文章进行了交叉参考,并对具体文献中的参考文献进行了分析。 。 结果:结果发现有179条相关文章,提出了与所引用疾病相关的主要分子与nAChRα4β2亲和力。 α4β2nAChR亚型是一个显着的治疗靶标,因为它是中枢神经系统中最丰富的受体。 结论:总而言之,本综述提供了α4β2nAChRs在认知和诸如尼古丁依赖,抑郁症和注意力缺陷多动障碍等疾病中的药理学和靶向治疗的观点。

关键词: nAChR,α4β2,尼古丁成瘾,抑郁,多动障碍,认知。

[1]
Dani, J.A.; Bertrand, D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol., 2007, 47, 699-729.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105214] [PMID: 17009926]
[2]
Iturriaga-Vásquez, P.; Alzate-Morales, J.; Bermudez, I.; Varas, R.; Reyes-Parada, M. Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy. Pharmacol. Res., 2015, 101, 9-17.
[http://dx.doi.org/10.1016/j.phrs.2015.08.018] [PMID: 26318763]
[3]
Lindstrom, J. The Structure of nAChRs Neuronal Nicotinic Receptors. Handbook of Experimental Pharmacology; Springer: Verlag, Berlin, 2000.
[4]
Gotti, C.; Zoli, M.; Clementi, F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol. Sci., 2006, 27(9), 482-491.
[http://dx.doi.org/10.1016/j.tips.2006.07.004] [PMID: 16876883]
[5]
Jensen, A.A.; Frølund, B.; Liljefors, T.; Krogsgaard-Larsen, P. Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J. Med. Chem., 2005, 48(15), 4705-4745.
[http://dx.doi.org/10.1021/jm040219e] [PMID: 16033252]
[6]
Hamouda, A.K.; Wang, Z.J.; Stewart, D.S.; Jain, A.D.; Glennon, R.A.; Cohen, J.B. Desformylflustrabromine(dFBr) and [3H]dFBr- Labeled binding sites in a nicotinic acetylcholine receptor. Mol. Pharmacol., 2015, 88(1), 1-11.
[http://dx.doi.org/10.1124/mol.115.098913] [PMID: 25870334]
[7]
Lange-Asschenfeldt, C.; Schäble, S.; Suvorava, T.; Fahimi, E.G.; Bisha, M.; Stermann, T. Effects of varenicline on alpha4-containing nicotinic acetylcholine receptor expression and cognitive performance in mice. Neuropharmacology, 2016, 107100.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.025]
[8]
Zambrano, C.A.; Short, C.A.; Salamander, R.M.; Grady, S.R.; Marks, M.J. Density of α4β2* nAChR on the surface of neurons is modulated by chronic antagonist exposure. Pharmacol. Res. Perspect., 2015, 3(2), e00111.
[http://dx.doi.org/10.1002/prp2.111] [PMID: 25729578]
[9]
Morales-Perez, C.L.; Noviello, C.M.; Hibbs, R.E. X-ray structure of the human α4β2 nicotinic receptor. Nature, 2016, 538(7625), 411-415.
[http://dx.doi.org/10.1038/nature19785] [PMID: 27698419]
[10]
Pontieri, F.E.; Tanda, G.; Orzi, F.; Di Chiara, G. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature, 1996, 382(6588), 255-257.
[http://dx.doi.org/10.1038/382255a0] [PMID: 8717040]
[11]
Corrigall, W.A.; Coen, K.M.; Adamson, K.L. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res., 1994, 653(1-2), 278-284.
[http://dx.doi.org/10.1016/0006-8993(94)90401-4] [PMID: 7982062]
[12]
Benwell, M.E.; Balfour, D.J.; Anderson, J.M. Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J. Neurochem., 1988, 50(4), 1243-1247.
[http://dx.doi.org/10.1111/j.1471-4159.1988.tb10600.x] [PMID: 3346676]
[13]
Flores, C.M.; Rogers, S.W.; Pabreza, L.A.; Wolfe, B.B.; Kellar, K.J. A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol. Pharmacol., 1992, 41(1), 31-37.
[PMID: 1732720]
[14]
Rose, J.E.; Behm, F.M.; Westman, E.C.; Coleman, R.E. Arterial nicotine kinetics during cigarette smoking and intravenous nicotine administration: implications for addiction. Drug Alcohol Depend., 1999, 56(2), 99-107.
[http://dx.doi.org/10.1016/S0376-8716(99)00025-3] [PMID: 10482401]
[15]
Sabey, K.; Paradiso, K.; Zhang, J.; Steinbach, J.H. Ligand binding and activation of rat nicotinic alpha4beta2 receptors stably expressed in HEK293 cells. Mol. Pharmacol., 1999, 55(1), 58-66.
[http://dx.doi.org/10.1124/mol.55.1.58] [PMID: 9882698]
[16]
Laviolette, S.R.; van der Kooy, D. The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat. Rev. Neurosci., 2004, 5(1), 55-65.
[http://dx.doi.org/10.1038/nrn1298] [PMID: 14708004]
[17]
Dani, J.A.; Harris, R.A. Nicotine addiction and comorbidity with alcohol abuse and mental illness. Nat. Neurosci., 2005, 8(11), 1465-1470.
[http://dx.doi.org/10.1038/nn1580] [PMID: 16251989]
[18]
Everitt, B.J.; Robbins, T.W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci., 2005, 8(11), 1481-1489.
[http://dx.doi.org/10.1038/nn1579] [PMID: 16251991]
[19]
Marubio, L.M.; Gardier, A.M.; Durier, S.; David, D.; Klink, R. Arroyo- Jimenez, M.M.; McIntosh, J.M.; Rossi, F.; Champtiaux, N.; Zoli, M.; Changeux, J.-P. Effects of nicotine in the dopaminergic system of mice lacking the alpha 4 subunit of neuronal nicotinic acetylcholine receptors. Eur. J. Neurosci., 2003, 17, 1327-1337.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02564.x]
[20]
Picciotto, M.R.; Zoli, M.; Rimondini, R.; Léna, C.; Marubio, L.M.; Pich, E.M.; Fuxe, K.; Changeux, J.P. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature, 1998, 391(6663), 173-177.
[http://dx.doi.org/10.1038/34413] [PMID: 9428762]
[21]
Maskos, U.; Molles, B.E.; Pons, S.; Besson, M.; Guiard, B.P.; Guilloux, J.P.; Evrard, A.; Cazala, P.; Cormier, A.; Mameli-Engvall, M.; Dufour, N.; Cloëz-Tayarani, I.; Bemelmans, A.P.; Mallet, J.; Gardier, A.M.; David, V.; Faure, P.; Granon, S.; Changeux, J.P. Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature, 2005, 436(7047), 103-107.
[http://dx.doi.org/10.1038/nature03694] [PMID: 16001069]
[22]
Rose, J.E.; Levin, E.D. Concurrent agonist-antagonist administration for the analysis and treatment of drug dependence. Pharmacol. Biochem. Behav., 1992, 41(1), 219-226.
[http://dx.doi.org/10.1016/0091-3057(92)90086-U] [PMID: 1539072]
[23]
Cohen, C.; Bergis, O.E.; Galli, F.; Lochead, A.W.; Jegham, S.; Biton, B.; Leonardon, J.; Avenet, P.; Sgard, F.; Besnard, F.; Graham, D.; Coste, A.; Oblin, A.; Curet, O.; Voltz, C.; Gardes, A.; Caille, D.; Perrault, G.; George, P.; Soubrie´, P.; Scatton, B. SSR591813, a novel selective and partial alpha4beta2 nicotinic receptor agonist with potential as an aid to smoking cessation. J. Pharmacol. Exp. Ther., 2003, 306(1), 407-420.
[http://dx.doi.org/10.1124/jpet.103.049262] [PMID: 12682217]
[24]
Prochaska, J.J.; Das, S.; Benowitz, N.L. Cytisine, the world’s oldest smoking cessation aid. BMJ, 2013, 347, f5198.
[http://dx.doi.org/10.1136/bmj.f5198] [PMID: 23974638]
[25]
Rollema, H.; Chambers, L.K.; Coe, J.W.; Glowa, J.; Hurst, R.S.; Lebel, L.A.; Lu, Y.; Mansbach, R.S.; Mather, R.J.; Rovetti, C.C.; Sands, S.B.; Schaeffer, E.; Schulz, D.W.; Tingley, F.D., III; Williams, K.E. Pharmacological profile of the alpha4beta2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology, 2007, 52(3), 985-994.
[http://dx.doi.org/10.1016/j.neuropharm.2006.10.016] [PMID: 17157884]
[26]
Etter, J.F. Cytisine for smoking cessation: a literature review and a meta-analysis. Arch. Intern. Med., 2006, 166(15), 1553-1559.
[http://dx.doi.org/10.1001/archinte.166.15.1553] [PMID: 16908787]
[27]
West, R.; Zatonski, W.; Cedzynska, M.; Lewandowska, D.; Pazik, J.; Aveyard, P.; Stapleton, J. Placebo-controlled trial of cytisine for smoking cessation. N. Engl. J. Med., 2011, 365(13), 1193-1200.
[http://dx.doi.org/10.1056/NEJMoa1102035] [PMID: 21991893]
[28]
Leaviss, J.; Sullivan, W.; Ren, S.; Everson-Hock, E.; Stevenson, M.; Stevens, J.W.; Strong, M.; Cantrell, A. What is the clinical effectiveness and cost-effectiveness of cytisine compared with varenicline for smoking cessation? A systematic review and economic evaluation. Health Technol. Assess., 2014, 18(33), 1-120.
[http://dx.doi.org/10.3310/hta18330] [PMID: 24831822]
[29]
Coe, J.W.; Brooks, P.R.; Wirtz, M.C.; Bashore, C.G.; Bianco, K.E.; Vetelino, M.G.; Arnold, E.P.; Lebel, L.A.; Fox, C.B.; Tingley, F.D., III; Schulz, D.W.; Davis, T.I.; Sands, S.B.; Mansbach, R.S.; Rollema, H.; O’Neill, B.T. 3,5-Bicyclic aryl piperidines: a novel class of alpha4beta2 neuronal nicotinic receptor partial agonists for smoking cessation. Bioorg. Med. Chem. Lett., 2005, 15(22), 4889-4897.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.035] [PMID: 16171993]
[30]
Rollema, H.; Coe, J.W.; Chambers, L.K.; Hurst, R.S.; Stahl, S.M.; Williams, K.E. Rationale, pharmacology and clinical efficacy of partial agonists of α4β2 nACh receptors for smoking cessation. Trends Pharmacol. Sci., 2007, 28(7), 316-325.
[http://dx.doi.org/10.1016/j.tips.2007.05.003] [PMID: 17573127]
[31]
Coe, J.W.; Brooks, P.R.; Vetelino, M.G.; Wirtz, M.C.; Arnold, E.P.; Huang, J.; Sands, S.B.; Davis, T.I.; Lebel, L.A.; Fox, C.B.; Shrikhande, A.; Heym, J.H.; Schaeffer, E.; Rollema, H.; Lu, Y.; Mansbach, R.S.; Chambers, L.K.; Rovetti, C.C.; Schulz, D.W.; Tingley, F.D., III; O’Neill, B.T. Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. J. Med. Chem., 2005, 48(10), 3474-3477.
[http://dx.doi.org/10.1021/jm050069n] [PMID: 15887955]
[32]
Rollema, H.; Chambers, L.K.; Coe, J.W.; Glowa, J.; Hurst, R.S.; Lebel, L.A.; Lu, Y.; Mansbach, R.S.; Mather, R.J.; Rovetti, C.C.; Sands, S.B.; Schaeffer, E.; Schulz, D.W.; Tingley, F.D., III; Williams, K.E. Pharmacological profile of the alpha4beta2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology, 2007, 52(3), 985-994.
[http://dx.doi.org/10.1016/j.neuropharm.2006.10.016] [PMID: 17157884]
[33]
Mihalak, K.B.; Carroll, F.I.; Luetje, C.W. Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Mol. Pharmacol., 2006, 70(3), 801-805.
[http://dx.doi.org/10.1124/mol.106.025130] [PMID: 16766716]
[34]
Lummis, S.C.; Thompson, A.J.; Bencherif, M.; Lester, H.A. Varenicline is a potent agonist of the human 5-hydroxytryptamine3 receptor. J. Pharmacol. Exp. Ther., 2011, 339(1), 125-131.
[http://dx.doi.org/10.1124/jpet.111.185306] [PMID: 21775477]
[35]
Reperant, C.; Pons, S.; Dufour, E.; Rollema, H.; Gardier, A.M.; Maskos, U. Effect of the a4b2 on dopamine release in b2 knock-out mice with selective re-expression of the b2 subunit in the ventral tegmental area. Neuropharmacology, 2010, 58, 346-350.
[http://dx.doi.org/10.1016/j.neuropharm.2009.10.007] [PMID: 19887076]
[36]
Mohamed, T.S.; Jayakar, S.S.; Hamouda, A.K. Orthosteric and allosteric ligands of nicotinic acetylcholine receptors for smoking cessation. Front. Mol. Neurosci., 2015, 8, 71.
[http://dx.doi.org/10.3389/fnmol.2015.00071] [PMID: 26635524]
[37]
Cohen, C.; Bergis, O.E.; Galli, F.; Lochead, A.W.; Jegham, S.; Biton, B.; Leonardon, J.; Avenet, P.; Sgard, F.; Besnard, F.; Graham, D.; Coste, A.; Oblin, A.; Curet, O.; Voltz, C.; Gardes, A.; Caille, D.; Perrault, G.; George, P.; Soubrie, P.; Scatton, B. SSR591813, a novel selective and partial α4beta2 nicotinic receptor agonist with potential as an aid to smoking cessation. J. Pharmacol. Exp. Ther., 2003, 306(1), 407-420.
[http://dx.doi.org/10.1124/jpet.103.049262] [PMID: 12682217]
[38]
Coe, J.W.; Vetelino, M.G.; Bashore, C.G.; Wirtz, M.C.; Brooks, P.R.; Arnold, E.P.; Lebel, L.A.; Fox, C.B.; Sands, S.B.; Davis, T.I.; Schulz, D.W.; Rollema, H.; Tingley, F.D., III; O’Neill, B.T. In pursuit of alpha4beta2 nicotinic receptor partial agonists for smoking cessation: carbon analogs of (-)-cytisine. Bioorg. Med. Chem. Lett., 2005, 15(12), 2974-2979.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.036] [PMID: 15908213]
[39]
Rose, J.E.; Behm, F.M.; Westman, E.C.; Coleman, R.E. Arterial nicotine kinetics during cigarette smoking and intravenous nicotine administration: implications for addiction. Drug Alcohol Depend., 1999, 56(2), 99-107.
[http://dx.doi.org/10.1016/S0376-8716(99)00025-3] [PMID: 10482401]
[40]
Faessel, H.M.; Gibbs, M.A.; Clark, D.J.; Rohrbacher, K.; Stolar, M.; Burstein, A.H. Multiple-dose pharmacokinetics of the selective nicotinic receptor partial agonist, varenicline, in healthy smokers. J. Clin. Pharmacol., 2006, 46(12), 1439-1448.
[http://dx.doi.org/10.1177/0091270006292624] [PMID: 17101743]
[41]
Slemmer, J.E.; Martin, B.R.; Damaj, M.I. Bupropion is a nicotinic antagonist. J. Pharmacol. Exp. Ther., 2000, 295(1), 321-327.
[PMID: 10991997]
[42]
Damaj, M.I.; Carroll, F.I.; Eaton, J.B.; Navarro, H.A.; Blough, B.E.; Mirza, S.; Lukas, R.J.; Martin, B.R. Enantioselective effects of hydroxy metabolites of bupropion on behavior and on function of monoamine transporters and nicotinic receptors. Mol. Pharmacol., 2004, 66(3), 675-682.
[http://dx.doi.org/10.1124/mol.104.001313] [PMID: 15322260]
[43]
Fiore, M.C. Treating Tobacco Use and Dependence: Clinical Practice Guideline; US Department of Health and Human Services, Public Health Service, 2000.
[44]
Dwoskin, L.P.; Rauhut, A.S.; King-Pospisil, K.A.; Bardo, M.T. Review of the pharmacology and clinical profile of bupropion, an antidepressant and tobacco use cessation agent. CNS Drug Rev., 2006, 12(3-4), 178-207.
[http://dx.doi.org/10.1111/j.1527-3458.2006.00178.x] [PMID: 17227286]
[45]
Lerman, C.; LeSage, M.G.; Perkins, K.A.; O’Malley, S.S.; Siegel, S.J.; Benowitz, N.L.; Corrigall, W.A. Translational research in medication development for nicotine dependence. Nat. Rev. Drug Discov., 2007, 6(9), 746-762.
[http://dx.doi.org/10.1038/nrd2361] [PMID: 17690709]
[46]
Igari, M.; Alexander, J.C.; Ji, Y.; Qi, X.; Papke, R.L.; Bruijnzeel, A.W. Varenicline and cytisine diminish the dysphoric-like state associated with spontaneous nicotine withdrawal in rats. Neuropsychopharmacology, 2014, 39(2), 455-465.
[http://dx.doi.org/10.1038/npp.2013.216] [PMID: 23966067]
[47]
Williams, D.K.; Wang, J.; Papke, R.L. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations. Biochem. Pharmacol., 2011, 82(8), 915-930.
[http://dx.doi.org/10.1016/j.bcp.2011.05.001] [PMID: 21575610]
[48]
Taly, A.; Corringer, P.J.; Guedin, D.; Lestage, P.; Changeux, J.P. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat. Rev. Drug Discov., 2009, 8(9), 733-750.
[http://dx.doi.org/10.1038/nrd2927] [PMID: 19721446]
[49]
Uteshev, V.V. The therapeutic promise of positive allosteric modulation of nicotinic receptors. Eur. J. Pharmacol., 2014, 727, 181-185.
[http://dx.doi.org/10.1016/j.ejphar.2014.01.072] [PMID: 24530419]
[50]
Liu, X. Positive allosteric modulation of α4β2 nicotinic acetylcholine receptors as a new approach to smoking reduction: evidence from a rat model of nicotine self-administration. Psychopharmacology (Berl.), 2013, 230(2), 203-213.
[http://dx.doi.org/10.1007/s00213-013-3145-2] [PMID: 23712602]
[51]
Maelicke, A.; Samochocki, M.; Jostock, R.; Fehrenbacher, A.; Ludwig, J.; Albuquerque, E.X.; Zerlin, M. Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer’s disease. Biol. Psychiatry, 2001, 49(3), 279-288.
[http://dx.doi.org/10.1016/S0006-3223(00)01109-4] [PMID: 11230879]
[52]
Sala, F.; Mulet, J.; Reddy, K.P.; Bernal, J.A.; Wikman, P.; Valor, L.M.; Peters, L.; König, G.M.; Criado, M.; Sala, S. Potentiation of human alpha4beta2 neuronal nicotinic receptors by a Flustra foliacea metabolite. Neurosci. Lett., 2005, 373(2), 144-149.
[http://dx.doi.org/10.1016/j.neulet.2004.10.002] [PMID: 15567570]
[53]
Kim, J.S.; Padnya, A.; Weltzin, M.; Edmonds, B.W.; Schulte, M.K.; Glennon, R.A. Synthesis of desformylflustrabromine and its evaluation as an alpha4beta2 and alpha7 nACh receptor modulator. Bioorg. Med. Chem. Lett., 2007, 17(17), 4855-4860.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.047] [PMID: 17604168]
[54]
Pandya, A.; Yakel, J.L. Allosteric modulator Desformylflustrabromine relieves the inhibition of α2β2 and α4β2 nicotinic acetylcholine receptors by β-amyloid(1-42) peptide. J. Mol. Neurosci., 2011, 45(1), 42-47.
[http://dx.doi.org/10.1007/s12031-011-9509-3] [PMID: 21424792]
[55]
Weltzin, M.M.; Schulte, M.K. Desformylflustrabromine Modulates α4β2 Neuronal Nicotinic Acetylcholine Receptor High- and Low-Sensitivity Isoforms at Allosteric Clefts Containing the β2 Subunit. J. Pharmacol. Exp. Ther., 2015, 354(2), 184-194.
[http://dx.doi.org/10.1124/jpet.115.223933] [PMID: 26025967]
[56]
Albrecht, B.K.; Berry, V.; Boezio, A.A.; Cao, L.; Clarkin, K.; Guo, W.; Harmange, J.C.; Hierl, M.; Huang, L.; Janosky, B.; Knop, J.; Malmberg, A.; McDermott, J.S.; Nguyen, H.Q.; Springer, S.K.; Waldon, D.; Woodin, K.; McDonough, S.I. Discovery and optimization of substituted piperidines as potent, selective, CNS-penetrant alpha4beta2 nicotinic acetylcholine receptor potentiators. Bioorg. Med. Chem. Lett., 2008, 18(19), 5209-5212.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.080] [PMID: 18789861]
[57]
Springer, S.K.; Woodin, K.S.; Berry, V.; Boezio, A.A.; Cao, L.; Clarkin, K.; Harmange, J.C.; Hierl, M.; Knop, J.; Malmberg, A.B.; McDermott, J.S.; Nguyen, H.Q.; Waldon, D.; Albrecht, B.K.; McDonough, S.I. Synthesis and activity of substituted carbamates as potentiators of the alpha4beta2 nicotinic acetylcholine receptor. Bioorg. Med. Chem. Lett., 2008, 18(20), 5643-5647.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.092] [PMID: 18805006]
[58]
Timmermann, D.B.; Sandager-Nielsen, K.; Dyhring, T.; Smith, M.; Jacobsen, A.M.; Nielsen, E.Ø.; Grunnet, M.; Christensen, J.K.; Peters, D.; Kohlhaas, K.; Olsen, G.M.; Ahring, P.K. Augmentation of cognitive function by NS9283, a stoichiometry-dependent positive allosteric modulator of α2- and α4-containing nicotinic acetylcholine receptors. Br. J. Pharmacol., 2012, 167(1), 164-182.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01989.x] [PMID: 22506660]
[59]
Olsen, J.A.; Ahring, P.K.; Kastrup, J.S.; Gajhede, M.; Balle, T. Structural and functional studies of the modulator NS9283 reveal agonist-like mechanism of action at α4β2 nicotinic acetylcholine receptors. J. Biol. Chem., 2014, 289(36), 24911-24921.
[http://dx.doi.org/10.1074/jbc.M114.568097] [PMID: 24982426]
[60]
Maurer, J.J.; Sandager-Nielsen, K.; Schmidt, H.D. Attenuation of nicotine taking and seeking in rats by the stoichiometry-selective alpha4beta2 nicotinic acetylcholine receptor positive allosteric modulator NS9283. Psychopharmacology (Berl.), 2017, 234(3), 475-484.
[http://dx.doi.org/10.1007/s00213-016-4475-7] [PMID: 27844094]
[61]
Janowsky, D.S.; el-Yousef, M.K.; Davis, J.M.; Sekerke, H.J. A cholinergic-adrenergic hypothesis of mania and depression. Lancet, 1972, 2(7778), 632-635.
[http://dx.doi.org/10.1016/S0140-6736(72)93021-8] [PMID: 4116781]
[62]
Philip, N.S.; Carpenter, L.L.; Tyrka, A.R.; Price, L.H. Nicotinic acetylcholine receptors and depression: a review of the preclinical and clinical literature. Psychopharmacology (Berl.), 2010, 212(1), 1-12.
[http://dx.doi.org/10.1007/s00213-010-1932-6] [PMID: 20614106]
[63]
Gotti, C.; Riganti, L.; Vailati, S.; Clementi, F. Brain neuronal nicotinic receptors as new targets for drug discovery. Curr. Pharm. Des., 2006, 12(4), 407-428.
[http://dx.doi.org/10.2174/138161206775474486] [PMID: 16472136]
[64]
Albuquerque, E.X.; Pereira, E.F.; Alkondon, M.; Rogers, S.W. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol. Rev., 2009, 89(1), 73-120.
[http://dx.doi.org/10.1152/physrev.00015.2008] [PMID: 19126755]
[65]
Yu, L.F.; Zhang, H.K.; Caldarone, B.J.; Eaton, J.B.; Lukas, R.J.; Kozikowski, A.P. Recent developments in novel antidepressants targeting α4β2-nicotinic acetylcholine receptors. J. Med. Chem., 2014, 57(20), 8204-8223.
[http://dx.doi.org/10.1021/jm401937a] [PMID: 24901260]
[66]
Arneric, S.P.; Holladay, M.; Williams, M. Neuronal nicotinic receptors: a perspective on two decades of drug discovery research. Biochem. Pharmacol., 2007, 74(8), 1092-1101.
[http://dx.doi.org/10.1016/j.bcp.2007.06.033] [PMID: 17662959]
[67]
George, T.P.; Sacco, K.A.; Vessicchio, J.C.; Weinberger, A.H.; Shytle, R.D. Nicotinic antagonist augmentation of selective serotonin reuptake inhibitor-refractory major depressive disorder: a preliminary study. J. Clin. Psychopharmacol., 2008, 28(3), 340-344.
[http://dx.doi.org/10.1097/JCP.0b013e318172b49e] [PMID: 18480694]
[68]
Shytle, R.D.; Silver, A.A.; Lukas, R.J.; Newman, M.B.; Sheehan, D.V.; Sanberg, P.R. Nicotinic acetylcholine receptors as targets for antidepressants. Mol. Psychiatry, 2002, 7(6), 525-535.
[http://dx.doi.org/10.1038/sj.mp.4001035] [PMID: 12140772]
[69]
Philip, N.S.; Carpenter, L.L.; Tyrka, A.R.; Whiteley, L.B.; Price, L.H. Varenicline augmentation in depressed smokers: an 8-week, open-label study. J. Clin. Psychiatry, 2009, 70(7), 1026-1031.
[http://dx.doi.org/10.4088/JCP.08m04441] [PMID: 19323966]
[70]
Furey, M.L.; Drevets, W.C. Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch. Gen. Psychiatry, 2006, 63(10), 1121-1129.
[http://dx.doi.org/10.1001/archpsyc.63.10.1121] [PMID: 17015814]
[71]
Drevets, W.C.; Furey, M.L. Replication of scopolamine’s antidepressant efficacy in major depressive disorder: a randomized, placebo-controlled clinical trial. Biol. Psychiatry, 2010, 67(5), 432-438.
[http://dx.doi.org/10.1016/j.biopsych.2009.11.021] [PMID: 20074703]
[72]
Arias, H.R.; Rosenberg, A.; Targowska-Duda, K.M.; Feuerbach, D.; Jozwiak, K.; Moaddel, R.; Wainer, I.W. Tricyclic antidepressants and mecamylamine bind to different sites in the human alpha4beta2 nicotinic receptor ion channel. Int. J. Biochem. Cell Biol., 2010, 42(6), 1007-1018.
[http://dx.doi.org/10.1016/j.biocel.2010.03.002] [PMID: 20223294]
[73]
Hennings, E.C.; Kiss, J.P.; Vizi, E.S. Nicotinic acetylcholine receptor antagonist effect of fluoxetine in rat hippocampal slices. Brain Res., 1997, 759(2), 292-294.
[http://dx.doi.org/10.1016/S0006-8993(97)00343-0] [PMID: 9221950]
[74]
Fryer, J.D.; Lukas, R.J. Antidepressants noncompetitively inhibit nicotinic acetylcholine receptor function. J. Neurochem., 1999, 72(3), 1117-1124.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0721117.x] [PMID: 10037483]
[75]
López-Valdés, H.E.; García-Colunga, J. Antagonism of nicotinic acetylcholine receptors by inhibitors of monoamine uptake. Mol. Psychiatry, 2001, 6(5), 511-519.
[http://dx.doi.org/10.1038/sj.mp.4000885] [PMID: 11526465]
[76]
Weber, M.L.; Hofland, C.M.; Shaffer, C.L.; Flik, G.; Cremers, T.; Hurst, R.S.; Rollema, H. Therapeutic doses of antidepressants are projected not to inhibit human α4β2 nicotinic acetylcholine receptors. Neuropharmacology, 2013, 72, 88-95.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.027] [PMID: 23639435]
[77]
Popik, P.; Kozela, E.; Krawczyk, M. Nicotine and nicotinic receptor antagonists potentiate the antidepressant-like effects of imipramine and citalopram. Br. J. Pharmacol., 2003, 139(6), 1196-1202.
[http://dx.doi.org/10.1038/sj.bjp.0705359] [PMID: 12871839]
[78]
Andreasen, J.T.; Nielsen, E.O.; Christensen, J.K.; Olsen, G.M.; Peters, D.; Mirza, N.R.; Redrobe, J.P. Subtype-selective nicotinic acetylcholine receptor agonists enhance the responsiveness to citalopram and reboxetine in the mouse forced swim test. J. Psychopharmacol. (Oxford), 2011, 25(10), 1347-1356.
[http://dx.doi.org/10.1177/0269881110364271] [PMID: 20360159]
[79]
Caldarone, B.J.; Harrist, A.; Cleary, M.A.; Beech, R.D.; King, S.L.; Picciotto, M.R. High-affinity nicotinic acetylcholine receptors are required for antidepressant effects of amitriptyline on behavior and hippocampal cell proliferation. Biol. Psychiatry, 2004, 56(9), 657-664.
[http://dx.doi.org/10.1016/j.biopsych.2004.08.010] [PMID: 15522249]
[80]
Rabenstein, R.L.; Caldarone, B.J.; Picciotto, M.R. The nicotinic antagonist mecamylamine has antidepressant-like effects in wild-type but not beta2- or alpha7-nicotinic acetylcholine receptor subunit knockout mice. Psychopharmacology (Berl.), 2006, 189(3), 395-401.
[http://dx.doi.org/10.1007/s00213-006-0568-z] [PMID: 17016705]
[81]
Caldarone, B.J.; Wang, D.; Paterson, N.E.; Manzano, M.; Fedolak, A.; Cavino, K.; Kwan, M.; Hanania, T.; Chellappan, S.K.; Kozikowski, A.P.; Olivier, B.; Picciotto, M.R.; Ghavami, A. Dissociation between duration of action in the forced swim test in mice and nicotinic acetylcholine receptor occupancy with sazetidine, varenicline, and 5-I-A85380. Psychopharmacology (Berl.), 2011, 217(2), 199-210.
[http://dx.doi.org/10.1007/s00213-011-2271-y] [PMID: 21487659]
[82]
Lippiello, P.M.; Beaver, J.S.; Gatto, G.J.; James, J.W.; Jordan, K.G.; Traina, V.M.; Xie, J.; Bencherif, M. TC-5214 (S-(+)-mecamylamine): a neuronal nicotinic receptor modulator with antidepressant activity. CNS Neurosci. Ther., 2008, 14(4), 266-277.
[http://dx.doi.org/10.1111/j.1755-5949.2008.00054.x] [PMID: 19040552]
[83]
Targacept’s TC-5214 achieves all primary and secondary outcome measures in Phase 2b trial as augmentation treatment for major depressive disorder. Targacept, Inc. Available at: http://www.targacept.com/newsroom. [Accessed date:July15, 2009]
[84]
A study to assess the efficacy and safety of TC-5214 as an adjunct therapy in patients with major depressive disorder (MDD). Available at: http://clinicaltrials.gov/ct2/show/NCT01- 157078?term=TC5214&rank=17 [Accessed date: December 29, 2011
[85]
A study to assess the efficacy and safety of TC-5214 as an adjunct therapy in patients with major depressive disorder. Available at: http://www.clinicaltrials.gov/ct2/show/NCT01153347.[Accessed date: November 19, 2012
[86]
A study to assess the efficacy and safety of TC-5214 as an adjunct therapy in patients with major depressive disorder. Available at: http://clinicaltrials.gov/ct2/show/results/NCT01180400. [Accessed date: November 19, 2012]
[87]
Vieta, E.; Thase, M.E.; Naber, D.; D’Souza, B.; Rancans, E.; Lepola, U.; Olausson, B.; Szamosi, J.; Wilson, E.; Hosford, D.; Dunbar, G.; Tummala, R.; Eriksson, H. Efficacy and tolerability of flexibly-dosed adjunct TC-5214 (dexmecamylamine) in patients with major depressive disorder and inadequate response to prior antidepressant. Eur. Neuropsychopharmacol., 2014, 24(4), 564-574.
[http://dx.doi.org/10.1016/j.euroneuro.2013.12.008] [PMID: 24507016]
[88]
Ferry, L.H.; Burchette, R.J. Evaluation of bupropion versus placebo for treatment of nicotine dependence 147th Annual Meeting of the American Psychiatric Association, Philadelphia, PA1994, pp. 199-200.
[89]
Damaj, M.I.; Carroll, F.I.; Eaton, J.B.; Navarro, H.A.; Blough, B.E.; Mirza, S.; Lukas, R.J.; Martin, B.R. Enantioselective effects of hydroxy metabolites of bupropion on behavior and on function of monoamine transporters and nicotinic receptors. Mol. Pharmacol., 2004, 66(3), 675-682.
[http://dx.doi.org/10.1124/mol.104.001313] [PMID: 15322260]
[90]
Fryer, J.D.; Lukas, R.J. Noncompetitive functional inhibition at diverse, human nicotinic acetylcholine receptor subtypes by bupropion, phencyclidine, and ibogaine. J. Pharmacol. Exp. Ther., 1999, 288(1), 88-92.
[PMID: 9862757]
[91]
Harvey, S.C.; Maddox, F.N.; Luetje, C.W. Multiple determinants of dihydro-beta-erythroidine sensitivity on rat neuronal nicotinic receptor alpha subunits. J. Neurochem., 1996, 67(5), 1953-1959.
[http://dx.doi.org/10.1046/j.1471-4159.1996.67051953.x] [PMID: 8863500]
[92]
Daviss, W.B.; Perel, J.M.; Brent, D.A.; Axelson, D.A.; Rudolph, G.R.; Gilchrist, R.; Nuss, S.; Birmaher, B. Acute antidepressant response and plasma levels of bupropion and metabolites in a pediatric-aged sample: an exploratory study. Ther. Drug Monit., 2006, 28(2), 190-198.
[http://dx.doi.org/10.1097/01.ftd.0000197093.92559.7a] [PMID: 16628130]
[93]
Andreasen, J.T.; Olsen, G.M.; Wiborg, O.; Redrobe, J.P. Antidepressant-like effects of nicotinic acetylcholine receptor antagonists, but not agonists, in the mouse forced swim and mouse tail suspension tests. J. Psychopharmacol. (Oxford), 2009, 23(7), 797-804.
[http://dx.doi.org/10.1177/0269881108091587] [PMID: 18583432]
[94]
Scharfenberg, G.; Benndorf, S.; Kempe, G. [Cytisine (Tabex) as a pharmaceutical aid in stopping smoking Dtsch. Gesundheitsw., 1971, 26(10), 463-465. [Cytisine (Tabex) as a pharmaceutical aid in stopping smoking.
[PMID: 4930772]
[95]
Mineur, Y.S.; Eibl, C.; Young, G.; Kochevar, C.; Papke, R.L.; Gündisch, D.; Picciotto, M.R. Cytisine-based nicotinic partial agonists as novel antidepressant compounds. J. Pharmacol. Exp. Ther., 2009, 329(1), 377-386.
[http://dx.doi.org/10.1124/jpet.108.149609] [PMID: 19164465]
[96]
Mineur, Y.S.; Somenzi, O.; Picciotto, M.R. Cytisine, a partial agonist of high-affinity nicotinic acetylcholine receptors, has antidepressant-like properties in male C57BL/6J mice. Neuropharmacology, 2007, 52(5), 1256-1262.
[http://dx.doi.org/10.1016/j.neuropharm.2007.01.006] [PMID: 17320916]
[97]
Coe, J.W.; Vetelino, M.G.; Bashore, C.G.; Wirtz, M.C.; Brooks, P.R.; Arnold, E.P.; Lebel, L.A.; Fox, C.B.; Sands, S.B.; Davis, T.I.; Schulz, D.W.; Rollema, H.; Tingley, F.D., III; O’Neill, B.T. In pursuit of alpha4beta2 nicotinic receptor partial agonists for smoking cessation: carbon analogs of (-)-cytisine. Bioorg. Med. Chem. Lett., 2005, 15(12), 2974-2979.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.036] [PMID: 15908213]
[98]
Etter, J.F. Cytisine for smoking cessation: a literature review and a meta-analysis. Arch. Intern. Med., 2006, 166(15), 1553-1559.
[http://dx.doi.org/10.1001/archinte.166.15.1553] [PMID: 16908787]
[99]
Reavill, C.; Walther, B.; Stolerman, I.P.; Testa, B. Behavioural and pharmacokinetic studies on nicotine, cytisine and lobeline. Neuropharmacology, 1990, 29(7), 619-624.
[http://dx.doi.org/10.1016/0028-3908(90)90022-J] [PMID: 2385332]
[100]
Barlow, R.B.; McLeod, L.J. Some studies on cytisine and its methylated derivatives. Br. J. Pharmacol., 1969, 35(1), 161-174.
[http://dx.doi.org/10.1111/j.1476-5381.1969.tb07977.x] [PMID: 4387392]
[101]
Rollema, H.; Shrikhande, A.; Ward, K.M.; Tingley, F.D., III; Coe, J.W.; O’Neill, B.T.; Tseng, E.; Wang, E.Q.; Mather, R.J.; Hurst, R.S.; Williams, K.E.; de Vries, M.; Cremers, T.; Bertrand, S.; Bertrand, D. Pre-clinical properties of the alpha4beta2 nicotinic acetylcholine receptor partial agonists varenicline, cytisine and dianicline translate to clinical efficacy for nicotine dependence. Br. J. Pharmacol., 2010, 160(2), 334-345.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00682.x] [PMID: 20331614]
[102]
Rollema, H.; Guanowsky, V.; Mineur, Y.S.; Shrikhande, A.; Coe, J.W.; Seymour, P.A.; Picciotto, M.R. Varenicline has antidepressant-like activity in the forced swim test and augments sertraline’s effect. Eur. J. Pharmacol., 2009, 605(1-3), 114-116.
[http://dx.doi.org/10.1016/j.ejphar.2009.01.002] [PMID: 19168054]
[103]
Patterson, F.; Jepson, C.; Strasser, A.A.; Loughead, J.; Perkins, K.A.; Gur, R.C.; Frey, J.M.; Siegel, S.; Lerman, C. Varenicline improves mood and cognition during smoking abstinence. Biol. Psychiatry, 2009, 65(2), 144-149.
[http://dx.doi.org/10.1016/j.biopsych.2008.08.028] [PMID: 18842256]
[104]
Turner, J.R.; Castellano, L.M.; Blendy, J.A. Nicotinic partial agonists varenicline and sazetidine-A have differential effects on affective behavior. J. Pharmacol. Exp. Ther., 2010, 334(2), 665-672.
[http://dx.doi.org/10.1124/jpet.110.166280] [PMID: 20435920]
[105]
Rezvani, A.H.; Timofeeva, O.; Sexton, H.G.; DeCuir, D.; Xiao, Y.; Gordon, C.J.; Kellar, K.J.; Levin, E.D. Effects of sazetidine-A, a selective α4β2* nicotinic receptor desensitizing agent, on body temperature regulation in mice and rats. Eur. J. Pharmacol., 2012, 682(1-3), 110-117.
[http://dx.doi.org/10.1016/j.ejphar.2012.02.031] [PMID: 22387853]
[106]
Levin, E.D.; Sexton, H.G.; Gordon, K.; Gordon, C.J.; Xiao, Y.; Kellar, K.J.; Yenugonda, V.M.; Liu, Y.; White, M.P.; Paige, M.; Brown, M.L.; Rezvani, A.H. Effects of the sazetidine-a family of compounds on the body temperature in wildtype, nicotinic receptor β2-/- and α7-/- mice. Eur. J. Pharmacol., 2013, 718(1-3), 167-172.
[http://dx.doi.org/10.1016/j.ejphar.2013.08.037] [PMID: 24036108]
[107]
Rezvani, A.H.; Cauley, M.; Xiao, Y.; Kellar, K.J.; Levin, E.D. Effects of chronic sazetidine-A, a selective α4β2 neuronal nicotinic acetylcholine receptors desensitizing agent on pharmacologically-induced impaired attention in rats. Psychopharmacology (Berl.), 2013, 226(1), 35-43.
[http://dx.doi.org/10.1007/s00213-012-2895-6] [PMID: 23100170]
[108]
Cucchiaro, G.; Xiao, Y.; Gonzalez-Sulser, A.; Kellar, K.J. Analgesic effects of Sazetidine-A, a new nicotinic cholinergic drug. Anesthesiology, 2008, 109(3), 512-519.
[http://dx.doi.org/10.1097/ALN.0b013e3181834490] [PMID: 18719450]
[109]
Rezvani, A.H.; Cauley, M.; Sexton, H.; Xiao, Y.; Brown, M.L.; Paige, M.A.; McDowell, B.E.; Kellar, K.J.; Levin, E.D. Sazetidine-A, a selective α4β2 nicotinic acetylcholine receptor ligand: effects on dizocilpine and scopolamine-induced attentional impairments in female Sprague-Dawley rats. Psychopharmacology (Berl.), 2011, 215(4), 621-630.
[http://dx.doi.org/10.1007/s00213-010-2161-8] [PMID: 21274704]
[110]
Turner, J.R.; Wilkinson, D.S.; Poole, R.L.; Gould, T.J.; Carlson, G.C.; Blendy, J.A. Divergent functional effects of sazetidine-a and varenicline during nicotine withdrawal. Neuropsychopharmacology, 2013, 38(10), 2035-2047.
[http://dx.doi.org/10.1038/npp.2013.105] [PMID: 23624742]
[111]
Hussmann, G.P.; DeDominicis, K.E.; Turner, J.R.; Yasuda, R.P.; Klehm, J.; Forcelli, P.A.; Xiao, Y.; Richardson, J.R.; Sahibzada, N.; Wolfe, B.B.; Lindstrom, J.; Blendy, J.A.; Kellar, K.J. Chronic sazetidine-A maintains anxiolytic effects and slower weight gain following chronic nicotine without maintaining increased density of nicotinic receptors in rodent brain. J. Neurochem., 2014, 129(4), 721-731.
[http://dx.doi.org/10.1111/jnc.12653] [PMID: 24422997]
[112]
Johnson, J.E.; Slade, S.; Wells, C.; Petro, A.; Sexton, H.; Rezvani, A.H.; Brown, M.L.; Paige, M.A.; McDowell, B.E.; Xiao, Y.; Kellar, K.J.; Levin, E.D. Assessing the effects of chronic sazetidine-A delivery on nicotine self-administration in both male and female rats. Psychopharmacology (Berl.), 2012, 222(2), 269-276.
[http://dx.doi.org/10.1007/s00213-012-2642-z] [PMID: 22297831]
[113]
Levin, E.D.; Rezvani, A.H.; Xiao, Y.; Slade, S.; Cauley, M.; Wells, C.; Hampton, D.; Petro, A.; Rose, J.E.; Brown, M.L.; Paige, M.A.; McDowell, B.E.; Kellar, K.J. Sazetidine-A, a selective alpha4beta2 nicotinic receptor desensitizing agent and partial agonist, reduces nicotine self-administration in rats. J. Pharmacol. Exp. Ther., 2010, 332(3), 933-939.
[http://dx.doi.org/10.1124/jpet.109.162073] [PMID: 20007754]
[114]
Rezvani, A.H.; Slade, S.; Wells, C.; Petro, A.; Lumeng, L.; Li, T.K.; Xiao, Y.; Brown, M.L.; Paige, M.A.; McDowell, B.E.; Rose, J.E.; Kellar, K.J.; Levin, E.D. Effects of sazetidine-A, a selective alpha4beta2 nicotinic acetylcholine receptor desensitizing agent on alcohol and nicotine self-administration in selectively bred alcohol-preferring (P) rats. Psychopharmacology (Berl.), 2010, 211(2), 161-174.
[http://dx.doi.org/10.1007/s00213-010-1878-8] [PMID: 20535453]
[115]
Liu, J.; Yu, L.F.; Eaton, J.B.; Caldarone, B.; Cavino, K.; Ruiz, C.; Terry, M.; Fedolak, A.; Wang, D.; Ghavami, A.; Lowe, D.A.; Brunner, D.; Lukas, R.J.; Kozikowski, A.P. Discovery of isoxazole analogues of sazetidine-A as selective α4β2-nicotinic acetylcholine receptor partial agonists for the treatment of depression. J. Med. Chem., 2011, 54(20), 7280-7288.
[http://dx.doi.org/10.1021/jm200855b] [PMID: 21905669]
[116]
Yuan, Y.; Yu, L.F.; Qiu, X.; Kozikowski, A.P.; van Breemen, R.B. Pharmacokinetics and brain penetration of LF-3-88, (2-[5-[5-(2(S)-azetidinylmethoxyl)-3-pyridyl]-3-isoxazolyl]ethanol), a selective α4β2-nAChR partial agonist and promising antidepressant. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 912, 38-42.
[http://dx.doi.org/10.1016/j.jchromb.2012.11.011] [PMID: 23246847]
[117]
Rahman, S. Targeting brain nicotinic acetylcholine receptors to treat major depression and co-morbid alcohol or nicotine addiction. CNS Neurol. Disord. Drug Targets, 2015, 14(5), 647-653.
[http://dx.doi.org/10.2174/1871527314666150429112954] [PMID: 25921743]
[118]
Rahman, S.; Engleman, E.A.; Bell, R.L. Recent advances in nicotinic receptor signaling in alcohol abuse and alcoholism. Prog. Mol. Biol. Transl. Sci., 2016, 137, 183-201.
[http://dx.doi.org/10.1016/bs.pmbts.2015.10.004] [PMID: 26810002]
[119]
Kessler, R.C.; Nelson, C.B.; McGonagle, K.A.; Edlund, M.J.; Frank, R.G.; Leaf, P.J. The epidemiology of co-occurring addictive and mental disorders: implications for prevention and service utilization. Am. J. Orthopsychiatry, 1996, 66(1), 17-31.
[http://dx.doi.org/10.1037/h0080151] [PMID: 8720638]
[120]
Schuckit, M.A.; Tipp, J.E.; Bergman, M.; Reich, W.; Hesselbrock, V.M.; Smith, T.L. Comparison of induced and independent major depressive disorders in 2,945 alcoholics. Am. J. Psychiatry, 1997, 154(7), 948-957.
[http://dx.doi.org/10.1176/ajp.154.7.948] [PMID: 9210745]
[121]
Bell, R.L.; Eiler, B.J., II; Cook, J.B.; Rahman, S. Nicotinic receptor ligands reduce ethanol intake by high alcohol-drinking HAD-2 rats. Alcohol, 2009, 43(8), 581-592.
[http://dx.doi.org/10.1016/j.alcohol.2009.09.027] [PMID: 20004336]
[122]
Sajja, R.K.; Dwivedi, C.; Rahman, S. Nicotinic ligands modulate ethanol-induced dopamine function in mice. Pharmacology, 2010, 86(3), 168-173.
[http://dx.doi.org/10.1159/000317063] [PMID: 20714207]
[123]
Sajja, R.K.; Rahman, S. Lobeline and cytisine reduce voluntary ethanol drinking behavior in male C57BL/6J mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35, 257e264..
[124]
Sajja, R.K.; Rahman, S. Neuronal nicotinic receptor ligands modulate chronic nicotine-induced ethanol consumption in C57BL/6J mice. Pharmacol. Biochem. Behav., 2012, 102(1), 36-43.
[http://dx.doi.org/10.1016/j.pbb.2012.03.017] [PMID: 22741175]
[125]
Roni, M.A.; Rahman, S. Neuronal nicotinic receptor antagonist reduces anxiety-like behavior in mice. Neurosci. Lett., 2011, 504(3), 237-241.
[http://dx.doi.org/10.1016/j.neulet.2011.09.035] [PMID: 21964392]
[126]
Roni, M.A.; Rahman, S. Antidepressant-like effects of lobeline in mice: behavioral, neurochemical, and neuroendocrine evidence. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 41, 44-51.
[http://dx.doi.org/10.1016/j.pnpbp.2012.11.011] [PMID: 23200829]
[127]
Roni, M.A.; Rahman, S. Effects of lobeline and reboxetine, fluoxetine, or bupropion combination on depression-like behaviors in mice. Pharmacol. Biochem. Behav.,, 2015, 139(Pt A), 1-6.
[http://dx.doi.org/10.1016/j.pbb.2015.10.006]
[128]
Roni, M.A.; Rahman, S. The effects of lobeline on depression-like behavior and hippocampal cell proliferation following chronic stress in mice. Neurosci. Lett., 2015, 584, 7-11.
[http://dx.doi.org/10.1016/j.neulet.2014.10.009] [PMID: 25451721]
[129]
Roni, M.A.; Rahman, S. The effects of lobeline on nicotine withdrawal-induced depression-like behavior in mice. Psychopharmacology (Berl.), 2014, 231(15), 2989-2998.
[http://dx.doi.org/10.1007/s00213-014-3472-y] [PMID: 24682499]
[130]
Roni, M.A.; Rahman, S. Lobeline attenuates ethanol abstinence-induced depression-like behavior in mice. Alcohol, 2017, 61(61), 63-70.
[http://dx.doi.org/10.1016/j.alcohol.2017.01.015] [PMID: 28554528]
[131]
Braida, D.; Ponzoni, L.; Martucci, R.; Sparatore, F.; Gotti, C.; Sala, M. Role of neuronal nicotinic acetylcholine receptors (nAChRs) on learning and memory in zebrafish. Psychopharmacology (Berl.), 2014, 231(9), 1975-1985.
[http://dx.doi.org/10.1007/s00213-013-3340-1] [PMID: 24311357]
[132]
Kenney, J.W.; Gould, T.J. Modulation of hippocampus-dependent learning and synaptic plasticity by nicotine. Mol. Neurobiol., 2008, 38(1), 101-121.
[http://dx.doi.org/10.1007/s12035-008-8037-9] [PMID: 18690555]
[133]
Placzek, A.N.; Zhang, T.A.; Dani, J.A. Nicotinic mechanisms influencing synaptic plasticity in the hippocampus. Acta Pharmacol. Sin., 2009, 30(6), 752-760.
[http://dx.doi.org/10.1038/aps.2009.39] [PMID: 19434057]
[134]
Heishman, S.J.; Kleykamp, B.A.; Singleton, E.G. Metaanalysis of the acute effects of nicotine and smoking on human performance. Psychopharmacol., (Berlin), 2010, 210, 453-469.
[135]
Hahn, B.; Sharples, C.G.V.; Wonnacott, S.; Shoaib, M.; Stolerman, I.P. Attentional effects of nicotinic agonists in rats. Neuropharmacology, 2003, 44(8), 1054-1067.
[http://dx.doi.org/10.1016/S0028-3908(03)00099-6] [PMID: 12763099]
[136]
Bitner, R.S.; Bunnelle, W.H.; Anderson, D.J.; Briggs, C.A.; Buccafusco, J.; Curzon, P.; Decker, M.W.; Frost, J.M.; Gronlien, J.H.; Gubbins, E.; Li, J.; Malysz, J.; Markosyan, S.; Marsh, K.; Meyer, M.D.; Nikkel, A.L.; Radek, R.J.; Robb, H.M.; Timmermann, D.; Sullivan, J.P.; Gopalakrishnan, M. Broad-spectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways. J. Neurosci., 2007, 27(39), 10578-10587.
[http://dx.doi.org/10.1523/JNEUROSCI.2444-07.2007] [PMID: 17898229]
[137]
Howe, W.M.; Ji, J.; Parikh, V.; Williams, S.; Mocaër, E.; Trocmé-Thibierge, C.; Sarter, M. Enhancement of attentional performance by selective stimulation of alpha4beta2(*) nAChRs: underlying cholinergic mechanisms. Neuropsychopharmacology, 2010, 35(6), 1391-1401.
[http://dx.doi.org/10.1038/npp.2010.9] [PMID: 20147893]
[138]
Castner, S.A.; Smagin, G.N.; Piser, T.M.; Wang, Y.; Smith, J.S.; Christian, E.P.; Mrzljak, L.; Williams, G.V. Immediate and sustained improvements in working memory after selective stimulation of α7 nicotinic acetylcholine receptors. Biol. Psychiatry, 2011, 69(1), 12-18.
[http://dx.doi.org/10.1016/j.biopsych.2010.08.006] [PMID: 20965497]
[139]
Lendvai, B.; Kassai, F.; Szájli, A.; Némethy, Z. α7 nicotinic acetylcholine receptors and their role in cognition. Brain Res. Bull., 2013, 93, 86-96.
[http://dx.doi.org/10.1016/j.brainresbull.2012.11.003] [PMID: 23178154]
[140]
Rollema, H.; Hajós, M.; Seymour, P.A.; Kozak, R.; Majchrzak, M.J.; Guanowsky, V.; Horner, W.E.; Chapin, D.S.; Hoffmann, W.E.; Johnson, D.E.; McLean, S.; Freeman, J.; Williams, K.E. Preclinical pharmacology of the α4β2 nAChR partial agonist varenicline related to effects on reward, mood and cognition. Biochem. Pharmacol., 2009, 78(7), 813-824.
[http://dx.doi.org/10.1016/j.bcp.2009.05.033] [PMID: 19501054]
[141]
Davis, J.A.; Gould, T.J. Hippocampal nAChRs mediate nicotine withdrawal-related learning deficits. Eur. Neuropsychopharmacol., 2009, 19(8), 551-561.
[http://dx.doi.org/10.1016/j.euroneuro.2009.02.003] [PMID: 19278836]
[142]
Kendziorra, K.; Meyer, P.; Wolf, H.; Barthel, H.; Hesse, S.; Seese, A.; Sorger, D.; Patt, M.; Gertz, J.; Sabri, O. Cerebral nicotinic acetylcholine receptors (nAChRs) in patients with Alzheimer’s disease (AD) assessed with 2-F18-A85380 (2-FA) PET-correlations to dementia severity. J. Nucl. Med., 2006, 47(Suppl. 1), 8.
[143]
Felix, R.; Levin, E.D. Nicotinic antagonist administration into the ventral hippocampus and spatial working memory in rats. Neuroscience, 1997, 81(4), 1009-1017.
[http://dx.doi.org/10.1016/S0306-4522(97)00224-8] [PMID: 9330363]
[144]
Hidaka, N.; Suemaru, K.; Kato, Y.; Araki, H. Involvement of α4β2 nicotinic acetylcholine receptors in working memory impairment induced by repeated electroconvulsive seizures in rats. Epilepsy Res., 2013, 104(1-2), 181-185.
[http://dx.doi.org/10.1016/j.eplepsyres.2012.09.017] [PMID: 23219030]
[145]
Picciotto, M.R.; Lewis, A.S.; van Schalkwyk, G.I.; Mineur, Y.S. Mood and anxiety regulation by nicotinic acetylcholine receptors: A potential pathway to modulate aggression and related behavioral states. Neuropharmacology, 2015, 96(Pt B), 235-243.
[http://dx.doi.org/10.1016/j.neuropharm.2014.12.028] [PMID: 25582289]
[146]
Diagnostic and Statistical Manual of Mental Disorders, (5th edition. ), , 2013. (DSM-5).
[147]
Döpfner, M.; Hautmann, C.; Görtz-Dorten, A.; Klasen, F.; Ravens-Sieberer, U. Long-term course of ADHD symptoms from childhood to early adulthood in a community sample. Eur. Child Adolesc. Psychiatry, 2015, 24(6), 665-673.
[http://dx.doi.org/10.1007/s00787-014-0634-8] [PMID: 25395380]
[148]
Faraone, S.V.; Perlis, R.H.; Doyle, A.E.; Smoller, J.W.; Goralnick, J.J.; Holmgren, M.A.; Sklar, P. Molecular genetics of attention-deficit/hyperactivity disorder. Biol. Psychiatry, 2005, 57(11), 1313-1323.
[http://dx.doi.org/10.1016/j.biopsych.2004.11.024] [PMID: 15950004]
[149]
Kessler, R.C.; Adler, L.A.; Barkley, R.; Biederman, J.; Conners, C.K.; Greenhill, L.L.; Spencer, T. The prevalence and correlates of adult ADHD. ADHD in adults: characterization, diagnosis, and treatment,, 2011, 9-17.
[http://dx.doi.org/10.1017/CBO9780511780752.003]
[150]
Huang, X. Xu, Y.; Li, Q.; Liu, P.; Yang, Y.; Zhang, F.;... & Guo, L. Nicotinic acetylcholine receptor α4 subunit gene variation associated with attention deficit hyperactivity disorder. Tsinghua Sci. Technol., 2009, 14(4), 534-540.
[http://dx.doi.org/10.1016/S1007-0214(09)70113-0]
[151]
Watterson, E.; Spitzer, A.; Watterson, L.R.; Brackney, R.J.; Zavala, A.R.; Olive, M.F.; Sanabria, F. Nicotine-induced behavioral sensitization in an adult rat model of attention deficit/hyperactivity disorder (ADHD). Behav. Brain Res., 2016, 312, 333-340.
[http://dx.doi.org/10.1016/j.bbr.2016.06.050] [PMID: 27363925]
[152]
Pomerleau, O.F.; Downey, K.K.; Stelson, F.W.; Pomerleau, C.S. Cigarette smoking in adult patients diagnosed with attention deficit hyperactivity disorder. J. Subst. Abuse, 1995, 7(3), 373-378.
[http://dx.doi.org/10.1016/0899-3289(95)90030-6] [PMID: 8749796]
[153]
Milberger, S.; Biederman, J.; Faraone, S.V.; Chen, L.; Jones, J. ADHD is associated with early initiation of cigarette smoking in children and adolescents. J. Am. Acad. Child Adolesc. Psychiatry, 1997, 36(1), 37-44.
[http://dx.doi.org/10.1097/00004583-199701000-00015] [PMID: 9000779]
[154]
Lambert, N.M.; Hartsough, C.S. Prospective study of tobacco smoking and substance dependencies among samples of ADHD and non-ADHD participants. J. Learn. Disabil., 1998, 31(6), 533-544.
[http://dx.doi.org/10.1177/002221949803100603] [PMID: 9813951]
[155]
Lerman, C.; Audrain, J.; Tercyak, K.; Hawk, L.W., Jr; Bush, A.; Crystal-Mansour, S.; Rose, C.; Niaura, R.; Epstein, L.H. Attention-Deficit Hyperactivity Disorder (ADHD) symptoms and smoking patterns among participants in a smoking-cessation program. Nicotine Tob. Res., 2001, 3(4), 353-359.
[http://dx.doi.org/10.1080/14622200110072156] [PMID: 11694203]
[156]
Wilens, T.E.; Vitulano, M.; Upadhyaya, H.; Adamson, J.; Sawtelle, R.; Utzinger, L.; Biederman, J. Cigarette smoking associated with attention deficit hyperactivity disorder. J. Pediatr., 2008, 153(3), 414-419.
[http://dx.doi.org/10.1016/j.jpeds.2008.04.030] [PMID: 18534619]
[157]
Kollins, S.H.; McClernon, F.J.; Fuemmeler, B.F. Association between smoking and attention-deficit/hyperactivity disorder symptoms in a population-based sample of young adults. Arch. Gen. Psychiatry, 2005, 62(10), 1142-1147.
[http://dx.doi.org/10.1001/archpsyc.62.10.1142] [PMID: 16203959]
[158]
Potter, A.S.; Newhouse, P.A.; Bucci, D.J. Central nicotinic cholinergic systems: a role in the cognitive dysfunction in attention-deficit/hyperactivity disorder? Behav. Brain Res., 2006, 175(2), 201-211.
[http://dx.doi.org/10.1016/j.bbr.2006.09.015] [PMID: 17081628]
[159]
Levin, E.D.; Rezvani, A.H. Nicotinic treatment for cognitive dysfunction. Curr. Drug Targets CNS Neurol. Disord., 2002, 1(4), 423-431.
[http://dx.doi.org/10.2174/1568007023339102] [PMID: 12769614]
[160]
Newhouse, P.A.; Potter, A.; Singh, A. Effects of nicotinic stimulation on cognitive performance. Curr. Opin. Pharmacol., 2004, 4(1), 36-46.
[http://dx.doi.org/10.1016/j.coph.2003.11.001] [PMID: 15018837]
[161]
Sacco, K.A.; Bannon, K.L.; George, T.P. Nicotinic receptor mechanisms and cognition in normal states and neuropsychiatric disorders. J. Psychopharmacol. (Oxford), 2004, 18(4), 457-474.
[http://dx.doi.org/10.1177/0269881104047273] [PMID: 15582913]
[162]
Levin, E.D.; McClernon, F.J.; Rezvani, A.H. Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berl.), 2006, 184(3-4), 523-539.
[http://dx.doi.org/10.1007/s00213-005-0164-7] [PMID: 16220335]
[163]
Levin, E.D.; Conners, C.K.; Sparrow, E.; Hinton, S.C.; Erhardt, D.; Meck, W.H.; Rose, J.E.; March, J. Nicotine effects on adults with attention-deficit/hyperactivity disorder. Psychopharmacology (Berl.), 1996, 123(1), 55-63Berl.
[http://dx.doi.org/10.1007/BF02246281] [PMID: 8741955]
[164]
Singh, A.; Potter, A.; Newhouse, P. Nicotinic acetylcholine receptor system and neuropsychiatric disorders. IDrugs, 2004, 7(12), 1096-1103.
[PMID: 15599803]
[165]
Wilens, T.E.; Spencer, T.J.; Biederman, J. A review of the pharmacotherapy of adults with attention-deficit/hyperactivity disorder. J. Atten. Disord., 2002, 5(4), 189-202.
[http://dx.doi.org/10.1177/108705470100500401] [PMID: 11967475]
[166]
Conners, C.K.; Levin, E.D.; Sparrow, E.; Hinton, S.C.; Erhardt, D.; Meck, W.H.; Rose, J.E.; March, J. Nicotine and attention in adult attention deficit hyperactivity disorder (ADHD). Psychopharmacol. Bull., 1996, 32(1), 67-73.
[PMID: 8927677]
[167]
Gehricke, J.G.; Hong, N.; Whalen, C.K.; Steinhoff, K.; Wigal, T.L. Effects of transdermal nicotine on symptoms, moods, and cardiovascular activity in the everyday lives of smokers and nonsmokers with attention-deficit/hyperactivity disorder. Psychol. Addict. Behav., 2009, 23(4), 644-655.
[http://dx.doi.org/10.1037/a0017441] [PMID: 20025370]
[168]
Poltavski, D.V.; Petros, T. Effects of transdermal nicotine on attention in adult non-smokers with and without attentional deficits. Physiol. Behav., 2006, 87(3), 614-624.
[http://dx.doi.org/10.1016/j.physbeh.2005.12.011] [PMID: 16466655]
[169]
Potter, A.S.; Newhouse, P.A. Acute nicotine improves cognitive deficits in young adults with attention-deficit/hyperactivity disorder. Pharmacol. Biochem. Behav., 2008, 88(4), 407-417.
[http://dx.doi.org/10.1016/j.pbb.2007.09.014] [PMID: 18022679]
[170]
Potter, A.S.; Newhouse, P.A. Effects of acute nicotine administration on behavioral inhibition in adolescents with attention-deficit/hyperactivity disorder. Psychopharmacology (Berl.), 2004, 176(2), 182-194.
[http://dx.doi.org/10.1007/s00213-004-1874-y] [PMID: 15083253]
[171]
Shytle, R.D.; Silver, A.A.; Wilkinson, B.J.; Sanberg, P.R. A pilot controlled trial of transdermal nicotine in the treatment of attention deficit hyperactivity disorder. World J. Biol. Psychiatry, 2002, 3(3), 150-155.
[http://dx.doi.org/10.3109/15622970209150616] [PMID: 12478880]
[172]
Wilens, T.E.; Decker, M.W. Neuronal nicotinic receptor agonists for the treatment of attention-deficit/hyperactivity disorder: focus on cognition. Biochem. Pharmacol., 2007, 74(8), 1212-1223.
[http://dx.doi.org/10.1016/j.bcp.2007.07.002] [PMID: 17689498]
[173]
Wilens, T.E.; Biederman, J.; Spencer, T.J.; Bostic, J.; Prince, J.; Monuteaux, M.C.; Soriano, J.; Fine, C.; Abrams, A.; Rater, M.; Polisner, D. A pilot controlled clinical trial of ABT-418, a cholinergic agonist, in the treatment of adults with attention deficit hyperactivity disorder. Am. J. Psychiatry, 1999, 156(12), 1931-1937.
[PMID: 10588407]
[174]
Wilens, T.E.; Verlinden, M.H.; Adler, L.A.; Wozniak, P.J.; West, S.A. ABT-089, a neuronal nicotinic receptor partial agonist, for the treatment of attention-deficit/hyperactivity disorder in adults: results of a pilot study. Biol. Psychiatry, 2006, 59(11), 1065-1070.
[http://dx.doi.org/10.1016/j.biopsych.2005.10.029] [PMID: 16499880]
[175]
Wilens, T.E.; Biederman, J.; Wong, J.; Spencer, T.J.; Prince, J.B. Adjunctive donepezil in attention deficit hyperactivity disorder youth: case series. J. Child Adolesc. Psychopharmacol., 2000, 10(3), 217-222.
[http://dx.doi.org/10.1089/10445460050167322] [PMID: 11052411]
[176]
Biederman, J.; Mick, E.; Faraone, S.; Hammerness, P.; Surman, C.; Harpold, T.; Dougherty, M.; Aleardi, M.; Spencer, T. A double-blind comparison of galantamine hydrogen bromide and placebo in adults with attention-deficit/hyperactivity disorder: a pilot study. J. Clin. Psychopharmacol., 2006, 26(2), 163-166.
[http://dx.doi.org/10.1097/01.jcp.0000204139.20417.8a] [PMID: 16633145]
[177]
Wilens, T.E.; Waxmonsky, J.; Scott, M.; Swezey, A.; Kwon, A.; Spencer, T.J.; Biederman, J. An open trial of adjunctive donepezil in attention-deficit/hyperactivity disorder. J. Child Adolesc. Psychopharmacol., 2005, 15(6), 947-955.
[http://dx.doi.org/10.1089/cap.2005.15.947] [PMID: 16379515]
[178]
Potter, A.S.; Dunbar, G.; Mazzulla, E.; Hosford, D.; Newhouse, P.A. AZD3480, a novel nicotinic receptor agonist, for the treatment of attention-deficit/hyperactivity disorder in adults. Biol. Psychiatry, 2014, 75(3), 207-214.
[http://dx.doi.org/10.1016/j.biopsych.2013.06.002] [PMID: 23856296]
[179]
Jucaite, A.; Öhd, J.; Potter, A.S.; Jaeger, J.; Karlsson, P.; Hannesdottir, K.; Boström, E.; Newhouse, P.A.; Paulsson, B. A randomized, double-blind, placebo-controlled crossover study of α4β 2* nicotinic acetylcholine receptor agonist AZD1446 (TC-6683) in adults with attention-deficit/hyperactivity disorder. Psychopharmacology (Berl.), 2014, 231(6), 1251-1265.
[http://dx.doi.org/10.1007/s00213-013-3116-7] [PMID: 23640072]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy