Abstract
Development of reliable vectors is a major challenge in gene therapy. Previous gene transfer methods using non-viral vectors, such as liposomes or nanoparticles, have resulted in relatively low levels (35∼ 50 %) of gene expression. We have developed a silicon nanoparticle (SNAP) system, a novel non-viral vector, for DNA transfer into cells. SNAP was synthesized chemically and modified with sodium chloride or sodium iodide. Electronmicroscopy of SNAP and fluorescence microscopy of fluorescence-labeled SNAP revealed that they were generated uniformly, had diameters of 10-100 nm, and showed a better efficiency (about 70 %) of DNA transfection into cells as well as protection of DNA against degradation. The microscopy also demonstrated the adhesion of SNAP with HT1080 cell surface and entry of SNAP into the cells without cytotoxicity. Intravenous and / or intra-abdominal administration of the SNAP to mice revealed the accumulation of SNAP in the cells of the brain, liver, spleen, lung, kidney, intestine, prostate and the testis without any pathological cell changes or mortality, suggesting that they passed through the blood-brain, blood-prostate, and blood-testis barriers. These findings indicate that the SNAP generated has good biological characteristics as a potential promising vector for gene transfer, gene therapy and drug delivery.
Keywords: non-viral vector, dna transfer, gene expression, electronmicroscopy, for gene transfer, drug delivery
Current Gene Therapy
Title: Sodium Chloride Modified Silica Nanoparticles as a Non-Viral Vector with a High Efficiency of DNA Transfer into Cells
Volume: 3 Issue: 3
Author(s): Yuxiang Chen, Zhigang Xue, Duo Zheng, Kun Xia, Yanzhong Zhao, Ting Liu, Zhigao Long and Jiahui Xia
Affiliation:
Keywords: non-viral vector, dna transfer, gene expression, electronmicroscopy, for gene transfer, drug delivery
Abstract: Development of reliable vectors is a major challenge in gene therapy. Previous gene transfer methods using non-viral vectors, such as liposomes or nanoparticles, have resulted in relatively low levels (35∼ 50 %) of gene expression. We have developed a silicon nanoparticle (SNAP) system, a novel non-viral vector, for DNA transfer into cells. SNAP was synthesized chemically and modified with sodium chloride or sodium iodide. Electronmicroscopy of SNAP and fluorescence microscopy of fluorescence-labeled SNAP revealed that they were generated uniformly, had diameters of 10-100 nm, and showed a better efficiency (about 70 %) of DNA transfection into cells as well as protection of DNA against degradation. The microscopy also demonstrated the adhesion of SNAP with HT1080 cell surface and entry of SNAP into the cells without cytotoxicity. Intravenous and / or intra-abdominal administration of the SNAP to mice revealed the accumulation of SNAP in the cells of the brain, liver, spleen, lung, kidney, intestine, prostate and the testis without any pathological cell changes or mortality, suggesting that they passed through the blood-brain, blood-prostate, and blood-testis barriers. These findings indicate that the SNAP generated has good biological characteristics as a potential promising vector for gene transfer, gene therapy and drug delivery.
Export Options
About this article
Cite this article as:
Chen Yuxiang, Xue Zhigang, Zheng Duo, Xia Kun, Zhao Yanzhong, Liu Ting, Long Zhigao and Xia Jiahui, Sodium Chloride Modified Silica Nanoparticles as a Non-Viral Vector with a High Efficiency of DNA Transfer into Cells, Current Gene Therapy 2003; 3 (3) . https://dx.doi.org/10.2174/1566523034578339
DOI https://dx.doi.org/10.2174/1566523034578339 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
![](/images/wayfinder.jpg)
- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Cardiotoxicity of Molecularly Targeted Agents
Current Cardiology Reviews Adult Neural Stem Cells: Response to Stroke Injury and Potential for Therapeutic Applications
Current Stem Cell Research & Therapy From TGF-β to Cancer Therapy
Current Drug Targets NK-1 Receptor Antagonists: A New Paradigm in Pharmacological Therapy
Current Medicinal Chemistry Targeted-Therapy in Advanced Renal Cell Carcinoma
Current Medicinal Chemistry Signal Transduction Therapy with Rationally Designed Kinase Inhibitors
Current Signal Transduction Therapy The CLCA Gene Family A Novel Family of Putative Chloride Channels
Current Genomics Current Status on Natural Products with Antitumor Activity from Brazilian Marine Sponges
Current Pharmaceutical Biotechnology New Player on An Old Field; the Keap1/Nrf2 Pathway as a Target for Treatment of Type 2 Diabetes and Metabolic Syndrome
Current Diabetes Reviews Methionine Aminopeptidases as Potential Targets for Treatment of Gastrointestinal Cancers and other Tumors
Current Drug Targets Fluorescence Studies of Anti-Cancer Drugs - Analytical and Biomedical Applications
Current Drug Targets Recent Progress on Tumor Missile Therapy and Tumor Vascular Targeting Therapy as a New Approach
Current Vascular Pharmacology Recent Developments on 1,2,4-Triazole Nucleus in Anticancer Compounds: A Review
Anti-Cancer Agents in Medicinal Chemistry Intracellular Calcium Homeostasis and Kidney Disease
Current Medicinal Chemistry Evaluation of Brazilian Biotechnology Patent Activity from 1975 to 2010
Recent Patents on DNA & Gene Sequences CSPG4 in Cancer: Multiple Roles
Current Molecular Medicine Strategies to Increase the Oral Bioavailability of Nucleoside Analogs
Current Medicinal Chemistry Connecting A Tumor to the Environment
Current Pharmaceutical Design Immunomodulatory Activity of MicroRNAs: Potential Implications for Multiple Myeloma Treatment
Current Cancer Drug Targets New Approaches to the Modulation of the Cyclooxygenase-2 and 5-Lipoxygenase Pathways
Current Topics in Medicinal Chemistry