[1]
Noskin, G.A.; Rubin, R.J.; Schentag, J.J.; Kluytmans, J.; Hedblom, E.C. Smulders, Lapetina, M.E.; Gemmen E. The burden of Staphylococcus aureus infections on hospitals in the United States: An analysis of the 2000 and 2001 Nationwide Inpatient Sample database. Arch. Intern. Med., 2005, 165(15), 1756-1761.
[2]
Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26, 343-356.
[3]
Kacem, N.; Roumy, V.; Duhal, N.; Merouane, F.; Neut, C.; Christen, P.; Hostettmann, K.; Rhouati, S. Chemical composition of the essential oil from Algerian Genista quadriflora Munby and determination of its antibacterial and antifungal activities. Ind. Crops Prod., 2016, 90, 87-93.
[4]
Grundmann, H.; de Kraker, M.; Davey, P. Clinical impact of antimicrobial resistance: Design matters. Lancet Infect. Dis., 2011, 11, 344.
[5]
Lai, C.C.; Wang, C.Y.; Chu, C.C.; Tan, C.K.; Lu, C.L.; Lee, Y.C.; Huang, Y.T.; Lee, P.I.; Hsueh, P.R. Correlation between antibiotic consumption and resistance of Gram-negative bacteria causing healthcare-associated infections at a university hospital in Taiwan from 2000 to 2009. J. Antimicrob. Chemother., 2011, 66, 1374-1382.
[6]
Osório, T.M.; Monache, F.D.; Chiaradia, L.D.; Mascarello, A.; Stumpf, T.R.; Zanetti, C.R.; Silveira, D.B.; Barardi, C.R.M.; Smânia, E.F.A.; Viancelli, A.; Garcia, L.A.T.; Yunes, R.A.; Nunes, R.J.; Junior, A.S. Antibacterial activity of chalcones, hydrazones and oxadiazoles against methicillin-resistant Staphylococcus aureus. Bioorg. Med. Chem. Lett., 2012, 22, 225-230.
[7]
Orhan, D.D.; Özçelik, B.; Özgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res., 2010, 165, 496-504.
[8]
Zheng, W.F.; Tan, R.X.; Yang, L.; Liu, Z.L. Two flavones from Artemisia giraldii and their antimicrobial activity. Planta Med., 1996, 62, 160-162.
[9]
Sagrera, G.; Bertucci, A.; Vazquez, A.; Seoane, G. Synthesis and antifungal activities of natural and synthetic bioflavonoids. Bioorg. Med. Chem., 2011, 19, 3060-3073.
[10]
Venkatesan, P.; Maruthavanan, T. Synthesis of substituted flavone derivatives as potent antimicrobial agents. Bull. Chem. Soc. Ethiop., 2011, 25, 419-425.
[11]
Sathiamoorthy, B.; Gupta, P.; Kumar, M.; Chaturvedi, A.K.; Shukla, P.K.; Maurya, R. New antifungal flavonoid glycoside from Vitex negundo. Bioorg. Med. Chem. Lett., 2007, 17, 239-242.
[12]
Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem., 2014, 85, 758-777.
[13]
Lopez, S.N.; Castelli, M.V.; Zacchino, S.A.; Domınguez, J.N.; Lobo, G.; Charris-Charris, J.; Cortés, J.C.G.; Ribas, J.C.; Devia, C.; Rodrıguez, A.M.; Enriz, R.D. In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorg. Med. Chem., 2001, 9, 199-201.
[14]
Tsuchiya, H.; Sato, M.; Akagiri, M.; Takagi, N.; Tanaka, T.; Iinuma, M. Anti-candida activity of synthetic hydroxychalcones. Pharmazie, 1994, 49(10), 756-758.
[15]
Al-Saif, S.S.A.; Abdel-Raouf, N.; El-Wazanani, H.A.; Aref, I.A. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi J. Biol. Sci., 2014, 21(1), 57-64.
[16]
Hossion, A.M.; Zamami, Y.; Kandahary, R.K.; Tsuchiya, T.; Ogawa, W.; Iwado, A.; Sasak, K. Quercetin diacylglycoside analogues showing dual inhibition of DNA gyrase and topoisomerase IV as novel antibacterial agents. J. Med. Chem., 2011, 54(11), 3686-3703.
[17]
Lee, K.A.; Moon, S.H.; Kim, K.T.; Mendonca, A.F.; Paik, H.D. Antimicrobial effects of various flavonoids on Escherichia coli O157: H7 cell growth and lipopolysaccharide production. Food Sci. Biotechnol., 2010, 19(1), 257-261.
[18]
Cushnie, T.; Lamb, A. Assessment of the antibacterial activity of galangin against 4-quinolone resistant strains of Staphylococcus aureus. Phytomedicine, 2006, 13(3), 187-191.
[19]
Eumkeb, G.; Sakdarat, S.; Siriwong, S. Reversing β-lactam antibiotic resistance of Staphylococcus aureus with galangin from Alpinia officinarum Hance and synergism with ceftazidime. Phytomedicine, 2010, 18(1), 40-45.
[20]
Pepeljnjak, S.; Kosalec, I. Galangin expresses bactericidal activity against multiple-resistant bacteria: MRSA, Enterococcus spp. and Pseudomonas aeruginosa. FEMS Microbiol. Lett., 2004, 240(1), 111-116.
[21]
Ansari, J.A.; Naz, S.; Tarar, O.M. Siddiqi; R., Haider, M.S.; Jamil, K. Binding effect of Proline-Rich-Proteins (PRPs) on in vitro antimicrobial activity of the flavonoids. Braz. J. Microbiol., 2015, 46(1), 183-188.
[22]
Kamlesh, K.N.; Sivakumar, T.; Afroze, A. Antimicrobial activity of flavone analogues. J. App. Pharm, 2016, 9(1), 1-9.
[23]
Jayashree, B.S.; Alam, A.; Nayak, Y.; Kumar, D.V. Synthesis of 3-methylflavones and their antioxidant and antibacterial activities. Med. Chem. Res., 2012, 21, 1991-1996.
[24]
Walle, T. Methylation of dietary flavones greatly improves their hepatic metabolic stability and intestinal absorption. Mol. Pharm., 2007, 4, 826-832.
[25]
Verma, A.K.; Pratap, R. Chemistry of biologically important flavones. Tetrahedron, 2012, 68, 8523-8538.
[26]
Harborne, J.B.; Baxter, H. The handbook of natural flavonoids; Wiley & Sons: Chichester, UK, 1999, Vol. 1 and 2, .
[27]
Bendaha, H.; Yu, L.; Touzani, R.; Souane, R.; Giaever, G.; Nislow, C.; Boone, C.; El Kadiri, S.; Brown, G.W.; Bellaoui, M. New azole antifungal agents with novel modes of action: Synthesis and biological studies of new tridentate ligands based on pyrazole and triazole. Eur. J. Med. Chem., 2011, 46(9), 4117-4124.
[28]
Gillum, A.M.; Tsay, E.Y.; Kirsch, D.R. Isolation of the candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae URA3 and E. coli pyrF mutations. Mol. Gen. Genet.: MGG, 1984, 198, 179-182.
[29]
Abrigach, F.; Bouchal, B.; Riant, O.; Macé, O.; Takfaoui, A.; Radi, S.; Bellaoui, M.; Touzani, R. New Antifungal agents: N, N,N′, N′-tetradentepyrazole synthesis and characterization. Med. Chem., 2016, 12(1), 83-89.
[30]
Ayari, B.; Riahi, L.; Ziadi, S.; Chograni, H.; Mliki, A. Evaluation
of antioxidant and antimicrobial activities of Tunisian ajuga IVA l.
essential oils. Revue F. S. B. 2013. XI
[31]
Société Française de Microbiologie Recommandations du Comité
de l’Antibiogramme de la Société Française de Microbiologie.
SFM, January. 2008. 49.
[32]
Adesokan, A.A.; Akanji, M.A.; Yakubu, M.T. Antibacterial potentials of aqueous extract of Enantia chlorantha stem bark. Afr. J. Biotechnol., 2007, 6(22), 2502-2505.
[33]
Performance Standards for Antimicrobial Disk Susceptibility Tests, 1997.
[34]
Abdel Ghani, S.B.; Mugisha, P.J.; Wilcox, J.C.; Gado, E.A.; Medu, E.O.; Lamb, A.J.; Brown, R.C. Convenient one-pot synthesis of chromone derivatives and their antifungal and antibacterial evaluation. Synth. Commun., 2013, 43(11), 1549-1556.
[35]
Harit, T.; Bellaouchi, R.; Asehraou, A.; Rahal, M.; Bouabdallah, I.; Malek, F. Synthesis, characterization, antimicrobial activity and theoretical studies of new thiophene-based tripodal ligands. J. Mol. Struct., 2017, 1133, 74-79.
[36]
Ahmad, A.; Kaleem, M.; Ahmed, Z.; Shafiq, H. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections. Food Res. Int., 2015, 77, 221-235.
[37]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013.
[38]
Basic, J.; Kalinic, M.; Ivkovic, B.; Eric, S.; Milenkovic, M.; Vladimirov, S.; Vujic, Z. Synthesis, QSAR analysis and mechanism of antybacterial activity of simple 2′-hydroxy chalcones. Dig. J. Nanomater. Biostruct., 2014, 9, 1537-1546.