摘要
细菌金属酶的利用,特别是没有哺乳动物(人)对应物的细菌金属酶,已引起人们的注意,开发出新的抗菌剂以克服耐药性,尤其是多药耐药性。 在这篇综述中,我们关注最近在细菌酶肽脱甲酰酶(PDF),金属-β-内酰胺酶(MBL),蛋氨酸氨肽酶(MetAP)和UDP-3-O-酰基-N-乙酰氨基葡萄糖胺抑制剂的开发方面取得的成就。 脱乙酰酶(LpxC)。 介绍了细菌金属酶抑制剂的设计和研究的现状,并概述和讨论了挑战。
关键词: 金属酶,抑制剂,细菌,肽去甲酰酶,蛋氨酸氨肽酶,金属β-内酰胺酶,UDP-3-O-酰基葡糖胺脱乙酰酶。
[1]
Available at:World Health Organization: Infectious diseases.
Available at: http://www.who.int/topics/infec-tious_diseases/en/ [Accessed November 2017].
[2]
AMR Review: Tackling drug-resistant infections globally:
final report and recommendations (review on antimicrobial
resistance 2016. Available at: https://amr-review.org/ [Accessed November 2017].
[3]
Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature, 2016, 529(7586), 336-343.
[http://dx.doi.org/10.1038/nature17042] [PMID: 26791724]
[http://dx.doi.org/10.1038/nature17042] [PMID: 26791724]
[4]
Kealey, C.; Creaven, C.A.; Murphy, C.D.; Brady, C.B. New approaches to antibiotic discovery. Biotechnol. Lett., 2017, 39(6), 805-817.
[http://dx.doi.org/10.1007/s10529-017-2311-8] [PMID: 28275884]
[http://dx.doi.org/10.1007/s10529-017-2311-8] [PMID: 28275884]
[5]
Brown, E.D.; Wright, G.D. New targets and screening approaches in antimicrobial drug discovery. Chem. Rev., 2005, 105(2), 759-774.
[http://dx.doi.org/10.1021/cr030116o] [PMID: 15700964]
[http://dx.doi.org/10.1021/cr030116o] [PMID: 15700964]
[6]
Gualerzi, C.O.; Brandi, L.; Fabbretti, A.; Pon, C.L. Antibiotics Targets, Mechanisms and Resistance; Wiley & Sons: New York, 2014, p. 576.
[7]
Winum, J-Y.; Köhler, S.; Scozzafava, A.; Montero, J-L.; Supuran, C.T. Targeting bacterial metalloenzymes: a new strategy for the development of anti-infective agents. Antiinfect. Agents Med. Chem., 2008, 7(3), 169-179.
[http://dx.doi.org/10.2174/187152108784911232]
[http://dx.doi.org/10.2174/187152108784911232]
[8]
Supuran, C.T.; Carta, F.; Scozzafava, A. Metalloenzyme inhibitors for the treatment of gram-negative bacterial infections: a patent review (2009-2012). Expert Opin. Ther. Pat., 2013, 23(7), 777-788.
[http://dx.doi.org/ 10.1517/13543776.2013.777042] [PMID: 23458841]
[http://dx.doi.org/ 10.1517/13543776.2013.777042] [PMID: 23458841]
[9]
Capasso, C.; Supuran, C.T. Inhibition of bacterial carbonic anhydrases as a novel approach to escape drug resistance. Curr. Top. Med. Chem., 2017, 17(11), 1237-1248.
[http://dx.doi.org/10.2174/1568026617666170104101058] [PMID: 28049405]
[http://dx.doi.org/10.2174/1568026617666170104101058] [PMID: 28049405]
[10]
Capasso, C.; Supuran, C.T. An overview of the selectivity and efficiency of the bacterial carbonic anhydrase inhibitors. Curr. Med. Chem., 2015, 22(18), 2130-2139.
[http://dx.doi.org/10.2174/0929867321666141012174921] [PMID: 25312213]
[http://dx.doi.org/10.2174/0929867321666141012174921] [PMID: 25312213]
[11]
Lopez, M.; Köhler, S.; Winum, J-Y. Zinc metalloenzymes as new targets against the bacterial pathogen Brucella. J. Inorg. Biochem., 2012, 111, 138-145.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.10.019] [PMID: 22196018]
[http://dx.doi.org/10.1016/j.jinorgbio.2011.10.019] [PMID: 22196018]
[12]
Köhler, S.; Ouahrani-Bettache, S.; Winum, J-Y. Brucella suis carbonic anhydrases and their inhibitors: Towards alternative antibiotics? J. Enzyme Inhib. Med. Chem., 2017, 32(1), 683-687.
[http://dx.doi.org/10.1080/14756366.2017.1295451] [PMID: 28274160]
[http://dx.doi.org/10.1080/14756366.2017.1295451] [PMID: 28274160]
[13]
Monti, S.M.; De Simone, G.; D’Ambrosio, K. L-Histidinol dehydrogenase as a new target for old diseases. Curr. Top. Med. Chem., 2016, 16(21), 2369-2378.
[http://dx.doi.org/10.2174/1568026616666160413140000] [PMID: 27072690]
[http://dx.doi.org/10.2174/1568026616666160413140000] [PMID: 27072690]
[14]
Aubart, K.; Zalacain, M. Peptide deformylase inhibitors for
addressing the issue of bacterial resistance: Progress in Medicinal
Chemistry; King, F.D; Lawton, G., Eds.; Elsevier
Science: Amsterdam, 2006, 44, pp.109-143.
[15]
Giglione, C.; Fieulaine, S.; Meinnel, T. N-terminal protein modifications: Bringing back into play the ribosome. Biochimie, 2015, 114, 134-146.
[http://dx.doi.org/10.1016/j.biochi.2014.11.008] [PMID: 25450248]
[http://dx.doi.org/10.1016/j.biochi.2014.11.008] [PMID: 25450248]
[16]
Rajagopalan, P.T.R.; Pei, D. Oxygen-mediated inactivation of peptide deformylase. J. Biol. Chem., 1998, 273(35), 22305-22310.
[http://dx.doi.org/10.1074/jbc.273.35.22305] [PMID: 9712848]
[http://dx.doi.org/10.1074/jbc.273.35.22305] [PMID: 9712848]
[17]
Sangshetti, J.N.; Khan, F.A.; Shinde, D.B. Peptide Deformylase Inhibitors. Curr. Med. Chem., 2015, 22(2), 214-236.
[http://dx.doi.org/10.2174/0929867321666140826115734] [PMID: 25174923]
[http://dx.doi.org/10.2174/0929867321666140826115734] [PMID: 25174923]
[18]
Sharma, A.; Khuller, G.K.; Sharma, S. Peptide deformylase--a promising therapeutic target for tuberculosis and antibacterial drug discovery. Expert Opin. Ther. Targets, 2009, 13(7), 753-765.
[http://dx.doi.org/10.1517/14728220903005590] [PMID: 19530983]
[http://dx.doi.org/10.1517/14728220903005590] [PMID: 19530983]
[19]
Chen, D.; Yuan, Z. Therapeutic potential of peptide deformylase inhibitors. Expert Opin. Investig. Drugs, 2005, 14(9), 1107-1116.
[http://dx.doi.org/10.1517/13543784.14.9.1107] [PMID: 16144495]
[http://dx.doi.org/10.1517/13543784.14.9.1107] [PMID: 16144495]
[20]
Chen, D.Z.; Patel, D.V.; Hackbarth, C.J.; Wang, W.; Dreyer, G.; Young, D.C.; Margolis, P.S.; Wu, C.; Ni, Z.J.; Trias, J.; White, R.J.; Yuan, Z. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry, 2000, 39(6), 1256-1262.
[http://dx.doi.org/10.1021/bi992245y] [PMID: 10684604]
[http://dx.doi.org/10.1021/bi992245y] [PMID: 10684604]
[21]
Yoo, J.S.; Zheng, C.J.; Lee, S.; Kwak, J.H.; Kim, W.G.; Macrolactin, N. A new peptide deformylase inhibitor produced by Bacillus subtilis. Bioorg. Med. Chem. Lett., 2006, 16(18), 4889-4892.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.058] [PMID: 16809037]
[http://dx.doi.org/10.1016/j.bmcl.2006.06.058] [PMID: 16809037]
[22]
East, S.P. Actinonin and Analogs: Inhibitors of Bacterial Peptide Deformylase: Antimicrobials: New and Old Molecules in the Fight Against Multi-Resistant Bacteria; Flavia, M; Olga, G., Ed.; Springer: Berlin, 2014, pp. 287-305.
[http://dx.doi.org/10.1007/978-3-642-39968-8]
[http://dx.doi.org/10.1007/978-3-642-39968-8]
[23]
Fieulaine, S.; Boularot, A.; Artaud, I.; Desmadril, M.; Dardel, F.; Meinnel, T.; Giglione, C. Trapping conformational states along ligand-binding dynamics of peptide deformylase: the impact of induced fit on enzyme catalysis. PLoS Biol., 2011, 9(5)e1001066
[http://dx.doi.org/10.1371/journal.pbio.1001066] [PMID: 21629676]
[http://dx.doi.org/10.1371/journal.pbio.1001066] [PMID: 21629676]
[24]
Gao, J.; Liang, L.; Zhu, Y.; Qiu, S.; Wang, T.; Zhang, L. Ligand and structure-based approaches for the identification of peptide deformylase inhibitors as antibacterial drugs. Int. J. Mol. Sci., 2016, 17(7), 1141.
[http://dx.doi.org/10.3390/ijms17071141] [PMID: 27428963]
[http://dx.doi.org/10.3390/ijms17071141] [PMID: 27428963]
[25]
Merzoug, A.; Chikhi, A.; Bensegueni, A.; Boucherit, H.; Okay, S. Virtual screening approach of bacterial peptide deformylase inhibitors results in new antibiotics. Mol. Inform., in press
[http://dx.doi.org/10.1002/minf.201700087] [PMID: 28991412]
[http://dx.doi.org/10.1002/minf.201700087] [PMID: 28991412]
[26]
Lv, F.; Chen, C.; Tang, Y.; Wei, J.; Zhu, T.; Hu, W. New peptide deformylase inhibitors design, synthesis and pharmacokinetic assessment. Bioorg. Med. Chem. Lett., 2016, 26(15), 3714-3718.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.077] [PMID: 27293070]
[http://dx.doi.org/10.1016/j.bmcl.2016.05.077] [PMID: 27293070]
[27]
Singh, A.; Srivastava, R.; Singh, R.K. Design, synthesis, and antibacterial activities of novel heterocyclic arylsulphonamide derivatives. Interdiscip. Sci., 2018, 10(4), 748-761.
[http://dx.doi.org/10.1007/s12539-016-0207-2] [PMID: 28194576]
[http://dx.doi.org/10.1007/s12539-016-0207-2] [PMID: 28194576]
[28]
Khan, F.A.; Patil, R.H.; Patil, M.; Arote, R.; Shinde, D.B.; Sangshetti, J.N. Bacterial peptide deformylase inhibition of tetrazole-substituted biaryl acid analogs: synthesis, biological evaluations, and Molecular Docking Study. Arch. Pharm. (Weinheim), 2016, 349(12), 934-943.
[http://dx.doi.org/10.1002/ardp.201600254] [PMID: 27859538]
[http://dx.doi.org/10.1002/ardp.201600254] [PMID: 27859538]
[29]
Khan, F.A.; Patil, R.H.; Shinde, D.B.; Sangshetti, J.N. Design and synthesis of 4′-((5-benzylidene-2,4-dioxothiazolidin-3-yl)methyl)biphenyl-2-carbonitrile analogs as bacterial peptide deformylase inhibitors. Chem. Biol. Drug Des., 2016, 88(6), 938-944.
[http://dx.doi.org/10.1111/cbdd.12817] [PMID: 27401234]
[http://dx.doi.org/10.1111/cbdd.12817] [PMID: 27401234]
[30]
Khan, F.A.K.; Jadhav, K.S.; Patil, R.H.; Shinde, D.B.; Arote, R.B.; Sangshetti, J.N. Biphenyl tetrazole-thiazolidinediones as novel bacterial peptide deformylase inhibitors: Synthesis, biological evaluations and molecular docking study. Biomed. Pharmacother., 2016, 83, 1146-1153.
[http://dx.doi.org/10.1016/j.biopha.2016.08.036] [PMID: 27551762]
[http://dx.doi.org/10.1016/j.biopha.2016.08.036] [PMID: 27551762]
[31]
Khan, F.A.; Patil, R.H.; Shinde, D.B.; Sangshetti, J.N. Bacterial Peptide deformylase inhibition of cyano substituted biaryl analogs: Synthesis, in vitro biological evaluation, molecular docking study and in silico ADME prediction. Bioorg. Med. Chem., 2016, 24(16), 3456-3463.
[http://dx.doi.org/10.1016/j.bmc.2016.05.051] [PMID: 27269198]
[http://dx.doi.org/10.1016/j.bmc.2016.05.051] [PMID: 27269198]
[32]
Green, B.G.; Toney, J.H.; Kozarich, J.W.; Grant, S.K. Inhibition of bacterial peptide deformylase by biaryl acid analogs. Arch. Biochem. Biophys., 2000, 375(2), 355-358.
[http://dx.doi.org/10.1006/abbi.1999.1673] [PMID: 10700392]
[http://dx.doi.org/10.1006/abbi.1999.1673] [PMID: 10700392]
[33]
Lee, H.Y.; An, K.M.; Jung, J.; Koo, J.M.; Kim, J.G.; Yoon, J.M.; Lee, M.J.; Jang, H.; Lee, H.S.; Park, S.; Kang, J.H. Identification of novel aminopiperidine derivatives for antibacterial activity against Gram-positive bacteria. Bioorg. Med. Chem. Lett., 2016, 26(13), 3148-3152.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.086] [PMID: 27173797]
[http://dx.doi.org/10.1016/j.bmcl.2016.04.086] [PMID: 27173797]
[34]
Fieulaine, S.; Alves de Sousa, R.; Maigre, L.; Hamiche, K.; Alimi, M.; Bolla, J.M.; Taleb, A.; Denis, A.; Pagès, J.M.; Artaud, I.; Meinnel, T.; Giglione, C. A unique peptide deformylase platform to rationally design and challenge novel active compounds. Sci. Rep., 2016, 6, 35429.
[http://dx.doi.org/10.1038/srep35429] [PMID: 27762275]
[http://dx.doi.org/10.1038/srep35429] [PMID: 27762275]
[35]
Bonomo, R.A. β-Lactamases: A focus on current challenges. Cold Spring Harb. Perspect. Med., 2017, 7(1)a025239
[http://dx.doi.org/10.1101/cshperspect.a025239] [PMID: 27742735]
[http://dx.doi.org/10.1101/cshperspect.a025239] [PMID: 27742735]
[36]
Gonzalez, M.M.; Vila, A.J. An Elusive Task: A Clinically
Useful Inhibitor of Metallo-β-Lactamases: Topics in Medicinal
Chemistry; Claudiu, T. S.; Clemente, C., Eds.;
Springer: Switzerland, 2017, 22, pp.1-34.
[http://dx.doi.org/ 10.1007/7355_2016_6]
[37]
Khan, A.U.; Maryam, L.; Zarrilli, R. Structure, genetics and worldwide spread of new delhi Metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol., 2017, 17(1), 101.
[http://dx.doi.org/10.1186/s12866-017-1012-8] [PMID: 28449650]
[http://dx.doi.org/10.1186/s12866-017-1012-8] [PMID: 28449650]
[38]
Bush, K.; Jacoby, G.A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother., 2010, 54(3), 969-976.
[http://dx.doi.org/10.1128/AAC.01009-09] [PMID: 19995920]
[http://dx.doi.org/10.1128/AAC.01009-09] [PMID: 19995920]
[39]
Palzkill, T. Metallo-β-lactamase structure and function. Ann. N. Y. Acad. Sci., 2013, 1277, 91-104.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06796.x] [PMID: 23163348]
[http://dx.doi.org/10.1111/j.1749-6632.2012.06796.x] [PMID: 23163348]
[40]
Mojica, M.F.; Bonomo, R.A.; Fast, W. B1-Metallo-β-Lactamases: Where do we stand? Curr. Drug Targets, 2016, 17(9), 1029-1050.
[http://dx.doi.org/10.2174/1389450116666151001105622] [PMID: 26424398]
[http://dx.doi.org/10.2174/1389450116666151001105622] [PMID: 26424398]
[41]
Hou, C-F.D.; Phelan, E.K.; Miraula, M.; Ollis, D.L.; Schenk, G.; Mitic, N. Unusual metallo-β-lactamases may constitute a new subgroup in this family of enzymes. Am. J. Mol. Biol., 2014, 4(1), 11-15.
[http://dx.doi.org/10.4236/ajmb.2014.41002]
[http://dx.doi.org/10.4236/ajmb.2014.41002]
[42]
Crowder, M.W.; Spencer, J.; Vila, A.J. Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc. Chem. Res., 2006, 39(10), 721-728.
[http://dx.doi.org/10.1021/ar0400241] [PMID: 17042472]
[http://dx.doi.org/10.1021/ar0400241] [PMID: 17042472]
[43]
Phelan, E.K.; Miraula, M.; Selleck, C.; Ollis, D.L.; Schenk, G.; Mitic, N. Metallo-β-lactamases: a major threat to human health. Am. J. Mol. Biol., 2014, 4(3), 89-104.
[http://dx.doi.org/10.4236/ajmb.2014.43011]
[http://dx.doi.org/10.4236/ajmb.2014.43011]
[44]
Zhang, H.; Hao, Q. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J., 2011, 25(8), 2574-2582.
[http://dx.doi.org/10.1096/fj.11-184036] [PMID: 21507902]
[http://dx.doi.org/10.1096/fj.11-184036] [PMID: 21507902]
[45]
Garau, G.; Bebrone, C.; Anne, C.; Galleni, M.; Frère, J.M.; Dideberg, O. A metallo-β-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. J. Mol. Biol., 2005, 345(4), 785-795.
[http://dx.doi.org/10.1016/j.jmb.2004.10.070] [PMID: 15588826]
[http://dx.doi.org/10.1016/j.jmb.2004.10.070] [PMID: 15588826]
[46]
Lisa, M.N.; Palacios, A.R.; Aitha, M.; González, M.M.; Moreno, D.M.; Crowder, M.W.; Bonomo, R.A.; Spencer, J.; Tierney, D.L.; Llarrull, L.I.; Vila, A.J. A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases. Nat. Commun., 2017, 8(1), 538.
[http://dx.doi.org/10.1038/s41467-017-00601-9] [PMID: 28912448]
[http://dx.doi.org/10.1038/s41467-017-00601-9] [PMID: 28912448]
[47]
Olsen, I. New promising β-lactamase inhibitors for clinical use. Eur. J. Clin. Microbiol. Infect. Dis., 2015, 34(7), 1303-1308.
[http://dx.doi.org/10.1007/s10096-015-2375-0] [PMID: 25864193]
[http://dx.doi.org/10.1007/s10096-015-2375-0] [PMID: 25864193]
[48]
Drawz, S.M.; Bonomo, R.A. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23(1), 160-201.
[http://dx.doi.org/10.1128/CMR.00037-09] [PMID: 20065329]
[http://dx.doi.org/10.1128/CMR.00037-09] [PMID: 20065329]
[49]
Walter, M.W.; Felici, A.; Galleni, M.; Soto, R.P.; Adlington, R.M.; Baldwin, J.E.; Frère, J-M.; Gololobov, M.; Schofield, C.J. Trifluoromethyl alcohol and ketone inhibitors of metallo-β- lactamases. Bioorg. Med. Chem. Lett., 1996, 6(20), 2455-2458.
[http://dx.doi.org/10.1016/0960-894X(96)00453-2]
[http://dx.doi.org/10.1016/0960-894X(96)00453-2]
[50]
Rotondo, C.M.; Wright, G.D. Inhibitors of metallo-β-lactamases. Curr. Opin. Microbiol., 2017, 39, 96-105.
[http://dx.doi.org/10.1016/j.mib.2017.10.026] [PMID: 29154026]
[http://dx.doi.org/10.1016/j.mib.2017.10.026] [PMID: 29154026]
[51]
McGeary, R.P.; Tan, D.T.; Schenk, G. Progress toward inhibitors of metallo-β-lactamases. Future Med. Chem., 2017, 9(7), 673-691.
[http://dx.doi.org/10.4155/fmc-2017-0007] [PMID: 28504895]
[http://dx.doi.org/10.4155/fmc-2017-0007] [PMID: 28504895]
[52]
Chen, A.Y.; Thomas, P.W.; Stewart, A.C.; Bergstrom, A.; Cheng, Z.; Miller, C.; Bethel, C.R.; Marshall, S.H.; Credille, C.V.; Riley, C.L.; Page, R.C.; Bonomo, R.A.; Crowder, M.W.; Tierney, D.L.; Fast, W.; Cohen, S.M. Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-β-lactamase-1. J. Med. Chem., 2017, 60(17), 7267-7283.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00407] [PMID: 28809565]
[http://dx.doi.org/10.1021/acs.jmedchem.7b00407] [PMID: 28809565]
[53]
King, A.M.; Reid-Yu, S.A.; Wang, W.; King, D.T.; De Pascale, G.; Strynadka, N.C.; Walsh, T.R.; Coombes, B.K.; Wright, G.D. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature, 2014, 510(7506), 503-506.
[http://dx.doi.org/10.1038/nature13445] [PMID: 24965651]
[http://dx.doi.org/10.1038/nature13445] [PMID: 24965651]
[54]
Zhang, J.; Wang, S.; Wei, Q.; Guo, Q.; Bai, Y.; Yang, S.; Song, F.; Zhang, L.; Lei, X. Synthesis and biological evaluation of Aspergillomarasmine A derivatives as novel NDM-1 inhibitor to overcome antibiotics resistance. Bioorg. Med. Chem., 2017, 25(19), 5133-5141.
[http://dx.doi.org/10.1016/j.bmc.2017.07.025] [PMID: 28784300]
[http://dx.doi.org/10.1016/j.bmc.2017.07.025] [PMID: 28784300]
[55]
Chang, Y.N.; Xiang, Y.; Zhang, Y.J.; Wang, W.M.; Chen, C.; Oelschlaeger, P.; Yang, K.W. Carbamylmethyl Mercaptoacetate Thioether: A Novel scaffold for the development of L1 Metallo-β-lactamase Inhibitors. ACS Med. Chem. Lett., 2017, 8(5), 527-532.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00058] [PMID: 28523105]
[http://dx.doi.org/10.1021/acsmedchemlett.7b00058] [PMID: 28523105]
[56]
Xiang, Y.; Chang, Y.N.; Ge, Y.; Kang, J.S.; Zhang, Y.L.; Liu, X.L.; Oelschlaeger, P.; Yang, K.W. Azolylthioacetamides as a potent scaffold for the development of metallo-β-lactamase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(23), 5225-5229.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.038] [PMID: 29122480]
[http://dx.doi.org/10.1016/j.bmcl.2017.10.038] [PMID: 29122480]
[57]
Shin, W.S.; Bergstrom, A.; Bonomo, R.A.; Crowder, M.W.; Muthyala, R.; Sham, Y.Y. Discovery of 1-Hydroxypyridine-2(1H)-thione-6-carboxylic acid as a first-in-class low-cytotoxic nanomolar metallo β-lactamase inhibitor. ChemMedChem, 2017, 12(11), 845-849.
[http://dx.doi.org/10.1002/cmdc.201700182] [PMID: 28482143]
[http://dx.doi.org/10.1002/cmdc.201700182] [PMID: 28482143]
[58]
Skagseth, S.; Akhter, S.; Paulsen, M.H.; Muhammad, Z.; Lauksund, S.; Samuelsen, Ø.; Leiros, H.S.; Bayer, A. Metallo-β-lactamase inhibitors by bioisosteric replacement: Preparation, activity and binding. Eur. J. Med. Chem., 2017, 135, 159-173.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.035] [PMID: 28445786]
[http://dx.doi.org/10.1016/j.ejmech.2017.04.035] [PMID: 28445786]
[59]
Cahill, S.T.; Cain, R.; Wang, D.Y.; Lohans, C.T.; Wareham, D.W.; Oswin, H.P.; Mohammed, J.; Spencer, J.; Fishwick, C.W.; McDonough, M.A.; Schofield, C.J.; Brem, J. Cyclic boronates inhibit all classes of β-lactamases. Antimicrob. Agents Chemother., 2017, 61(4), e02260-e16.
[http://dx.doi.org/10.1128/AAC.02260-16] [PMID: 28115348]
[http://dx.doi.org/10.1128/AAC.02260-16] [PMID: 28115348]
[60]
McGeary, R.P.; Tan, D.T.C.; Selleck, C.; Monteiro Pedroso, M.; Sidjabat, H.E.; Schenk, G. Structure-activity relationship study and optimisation of 2-aminopyrrole-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile as a broad spectrum metallo-β-lactamase inhibitor. Eur. J. Med. Chem., 2017, 137, 351-364.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.061] [PMID: 28614759]
[http://dx.doi.org/10.1016/j.ejmech.2017.05.061] [PMID: 28614759]
[61]
Miller, C.G.; Kukral, A.M.; Miller, J.L.; Movva, N.R. pepM is an essential gene in Salmonella typhimurium. J. Bacteriol., 1989, 171(9), 5215-5217.
[http://dx.doi.org/10.1128/jb.171.9.5215-5217.1989] [PMID: 2670909]
[http://dx.doi.org/10.1128/jb.171.9.5215-5217.1989] [PMID: 2670909]
[62]
Chang, S.Y.; McGary, E.C.; Chang, S. Methionine aminopeptidase gene of Escherichia coli is essential for cell growth. J. Bacteriol., 1989, 171(7), 4071-4072.
[http://dx.doi.org/10.1128/jb.171.7.4071-4072.1989] [PMID: 2544569]
[http://dx.doi.org/10.1128/jb.171.7.4071-4072.1989] [PMID: 2544569]
[63]
Walker, K.W.; Bradshaw, R.A. Yeast methionine aminopeptidase I can utilize either Zn2+ or Co2+ as a cofactor: a case of mistaken identity? Protein Sci., 1998, 7(12), 2684-2687.
[http://dx.doi.org/10.1002/pro.5560071224] [PMID: 9865965]
[http://dx.doi.org/10.1002/pro.5560071224] [PMID: 9865965]
[64]
D’souza, V.M.; Holz, R.C. The methionyl aminopeptidase from Escherichia coli can function as an iron(II) enzyme. Biochemistry, 1999, 38(34), 11079-11085.
[http://dx.doi.org/10.1021/bi990872h] [PMID: 10460163]
[http://dx.doi.org/10.1021/bi990872h] [PMID: 10460163]
[65]
Ye, Q-Z.; Xie, S-X.; Huang, M.; Huang, W-J.; Lu, J-P.; Ma, Z-Q. Metalloform-selective inhibitors of Escherichia coli methionine aminopeptidase and X-ray structure of a Mn(II)-form enzyme complexed with an inhibitor. J. Am. Chem. Soc., 2004, 126(43), 13940-13941.
[http://dx.doi.org/10.1021/ja045864p] [PMID: 15506752]
[http://dx.doi.org/10.1021/ja045864p] [PMID: 15506752]
[66]
Huang, Q-Q.; Huang, M.; Nan, F-J.; Ye, Q-Z. Metalloform-selective inhibition: synthesis and structure-activity analysis of Mn(II)-form-selective inhibitors of Escherichia coli methionine aminopeptidase. Bioorg. Med. Chem. Lett., 2005, 15(24), 5386-5391.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.019] [PMID: 16219464]
[http://dx.doi.org/10.1016/j.bmcl.2005.09.019] [PMID: 16219464]
[67]
Xie, S.X.; Huang, W.J.; Ma, Z.Q.; Huang, M.; Hanzlik, R.P.; Ye, Q.Z. Structural analysis of metalloform-selective inhibition of methionine aminopeptidase. Acta Crystallogr. D Biol. Crystallogr., 2006, 62(Pt 4), 425-432.
[http://dx.doi.org/10.1107/S0907444906003878] [PMID: 16552144]
[http://dx.doi.org/10.1107/S0907444906003878] [PMID: 16552144]
[68]
Huang, M.; Xie, S-X.; Ma, Z-Q.; Huang, Q-Q.; Nan, F-J.; Ye, Q-Z. Inhibition of monometalated methionine aminopeptidase: inhibitor discovery and crystallographic analysis. J. Med. Chem., 2007, 50(23), 5735-5742.
[http://dx.doi.org/10.1021/jm700930k] [PMID: 17948983]
[http://dx.doi.org/10.1021/jm700930k] [PMID: 17948983]
[69]
Vedantham, P.; Guerra, J.M.; Schoenen, F.; Huang, M.; Gor, P.J.; Georg, G.I.; Wang, J.L.; Neuenswander, B.; Lushington, G.H.; Mitscher, L.A.; Ye, Q-Z.; Hanson, P.R. Ionic immobilization, diversification, and release: application to the generation of a library of methionine aminopeptidase inhibitors. J. Comb. Chem., 2008, 10(2), 185-194.
[http://dx.doi.org/10.1021/cc700085c] [PMID: 18163595]
[http://dx.doi.org/10.1021/cc700085c] [PMID: 18163595]
[70]
Chai, S.C.; Wang, W-L.; Ye, Q-Z.F.E.F.E. (II) is the native cofactor for Escherichia coli methionine aminopeptidase. J. Biol. Chem., 2008, 283(40), 26879-26885.
[http://dx.doi.org/10.1074/jbc.M804345200] [PMID: 18669631]
[http://dx.doi.org/10.1074/jbc.M804345200] [PMID: 18669631]
[71]
Lu, J-P.; Chai, S.C.; Ye, Q-Z. Catalysis and inhibition of Mycobacterium tuberculosis methionine aminopeptidase. J. Med. Chem., 2010, 53(3), 1329-1337.
[http://dx.doi.org/10.1021/jm901624n] [PMID: 20038112]
[http://dx.doi.org/10.1021/jm901624n] [PMID: 20038112]
[72]
Lu, J-P.; Ye, Q-Z. Expression and characterization of Mycobacterium tuberculosis methionine aminopeptidase type 1a. Bioorg. Med. Chem. Lett., 2010, 20(9), 2776-2779.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.067] [PMID: 20363127]
[http://dx.doi.org/10.1016/j.bmcl.2010.03.067] [PMID: 20363127]
[73]
Yuan, H.; Chai, S.C.; Lam, C.K.; Howard, X.H.; Ye, Q-Z. Two methionine aminopeptidases from Acinetobacter baumannii are functional enzymes. Bioorg. Med. Chem. Lett., 2011, 21(11), 3395-3398.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.116] [PMID: 21524572]
[http://dx.doi.org/10.1016/j.bmcl.2011.03.116] [PMID: 21524572]
[74]
Wang, W-L.; Chai, S.C.; Ye, Q-Z. Synthesis and biological evaluation of salicylate-based compounds as a novel class of methionine aminopeptidase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(23), 7151-7154.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.080] [PMID: 22001086]
[http://dx.doi.org/10.1016/j.bmcl.2011.09.080] [PMID: 22001086]
[75]
Wangtrakuldee, P.; Byrd, M.S.; Campos, C.G.; Henderson, M.W.; Zhang, Z.; Clare, M.; Masoudi, A.; Myler, P.J.; Horn, J.R.; Cotter, P.A.; Hagen, T.J. Discovery of inhibitors of Burkholderia pseudomallei methionine aminopeptidase with antibacterial activity. ACS Med. Chem. Lett., 2013, 4(8), 699-703.
[http://dx.doi.org/10.1021/ml400034m] [PMID: 24376907]
[http://dx.doi.org/10.1021/ml400034m] [PMID: 24376907]
[76]
Huguet, F.; Melet, A.; Alves de Sousa, R.; Lieutaud, A.; Chevalier, J.; Maigre, L.; Deschamps, P.; Tomas, A.; Leulliot, N.; Pages, J-M.; Artaud, I. Hydroxamic acids as potent inhibitors of Fe(II) and Mn(II) E. coli methionine aminopeptidase: biological activities and X-ray structures of oxazole hydroxamate-EcMetAP-Mn complexes. ChemMedChem, 2012, 7(6), 1020-1030.
[http://dx.doi.org/10.1002/cmdc.201200076] [PMID: 22489069]
[http://dx.doi.org/10.1002/cmdc.201200076] [PMID: 22489069]
[77]
Schiffmann, R.; Heine, A.; Klebe, G.; Klein, C.D.P. Metal ions as cofactors for the binding of inhibitors to methionine aminopeptidase: a critical view of the relevance of in vitro metalloenzyme assays. Angew. Chem. Int. Ed. Engl., 2005, 44(23), 3620-3623.
[http://dx.doi.org/10.1002/anie.200500592] [PMID: 15880695]
[http://dx.doi.org/10.1002/anie.200500592] [PMID: 15880695]
[78]
Schiffmann, R.; Neugebauer, A.; Klein, C.D. Metal-mediated inhibition of Escherichia coli methionine aminopeptidase: structure-activity relationships and development of a novel scoring function for metal-ligand interactions. J. Med. Chem., 2006, 49(2), 511-522.
[http://dx.doi.org/10.1021/jm050476z] [PMID: 16420038]
[http://dx.doi.org/10.1021/jm050476z] [PMID: 16420038]
[79]
Altmeyer, M.A.; Marschner, A.; Schiffmann, R.; Klein, C.D. Subtype-selectivity of metal-dependent methionine aminopeptidase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(14), 4038-4044.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.093] [PMID: 20621724]
[http://dx.doi.org/10.1016/j.bmcl.2010.05.093] [PMID: 20621724]
[80]
Chen, X.; Chong, C.R.; Shi, L.; Yoshimoto, T.; Sullivan, D.J., Jr; Liu, J.O. Inhibitors of Plasmodium falciparum methionine aminopeptidase 1b possess antimalarial activity. Proc. Natl. Acad. Sci. USA, 2006, 103(39), 14548-14553.
[http://dx.doi.org/10.1073/pnas.0604101103] [PMID: 16983082]
[http://dx.doi.org/10.1073/pnas.0604101103] [PMID: 16983082]
[81]
Kishor, C.; Arya, T.; Reddi, R.; Chen, X.; Saddanapu, V.; Marapaka, A.K.; Gumpena, R.; Ma, D.; Liu, J.O.; Addlagatta, A. Identification, biochemical and structural evaluation of species-specific inhibitors against type I methionine aminopeptidases. J. Med. Chem., 2013, 56(13), 5295-5305.
[http://dx.doi.org/10.1021/jm400395p] [PMID: 23767698]
[http://dx.doi.org/10.1021/jm400395p] [PMID: 23767698]
[82]
Oefner, C.; Douangamath, A.; D’Arcy, A.; Häfeli, S.; Mareque, D.; Mac Sweeney, A.; Padilla, J.; Pierau, S.; Schulz, H.; Thormann, M.; Wadman, S.; Dale, G.E. The 1.15A crystal structure of the Staphylococcus aureus methionyl-aminopeptidase and complexes with triazole based inhibitors. J. Mol. Biol., 2003, 332(1), 13-21.
[http://dx.doi.org/10.1016/S0022-2836(03)00862-3] [PMID: 12946343]
[http://dx.doi.org/10.1016/S0022-2836(03)00862-3] [PMID: 12946343]
[83]
Marino, J.P., Jr; Fisher, P.W.; Hofmann, G.A.; Kirkpatrick, R.B.; Janson, C.A.; Johnson, R.K.; Ma, C.; Mattern, M.; Meek, T.D.; Ryan, M.D.; Schulz, C.; Smith, W.W.; Tew, D.G.; Tomazek, T.A., Jr; Veber, D.F.; Xiong, W.C.; Yamamoto, Y.; Yamashita, K.; Yang, G.; Thompson, S.K. Highly potent inhibitors of methionine aminopeptidase-2 based on a 1,2,4-triazole pharmacophore. J. Med. Chem., 2007, 50(16), 3777-3785.
[http://dx.doi.org/10.1021/jm061182w] [PMID: 17636946]
[http://dx.doi.org/10.1021/jm061182w] [PMID: 17636946]
[84]
Huang, M.; Xie, S-X.; Ma, Z-Q.; Hanzlik, R.P.; Ye, Q-Z. Metal mediated inhibition of methionine aminopeptidase by quinolinyl sulfonamides. Biochem. Biophys. Res. Commun., 2006, 339(2), 506-513.
[http://dx.doi.org/10.1016/j.bbrc.2005.11.042] [PMID: 16300729]
[http://dx.doi.org/10.1016/j.bbrc.2005.11.042] [PMID: 16300729]
[85]
Luo, Q-L.; Li, J-Y.; Liu, Z-Y.; Chen, L-L.; Li, J.; Qian, Z.; Shen, Q.; Li, Y.; Lushington, G.H.; Ye, Q-Z.; Nan, F-J. Discovery and structural modification of inhibitors of methionine aminopeptidases from Escherichia coli and Saccharomyces cerevisiae. J. Med. Chem., 2003, 46(13), 2631-2640.
[http://dx.doi.org/10.1021/jm0300532] [PMID: 12801227]
[http://dx.doi.org/10.1021/jm0300532] [PMID: 12801227]
[86]
Li, J-Y.; Chen, L-L.; Cui, Y-M.; Luo, Q-L.; Gu, M.; Nan, F-J.; Ye, Q-Z. Characterization of full length and truncated type I human methionine aminopeptidases expressed from Escherichia coli. Biochemistry, 2004, 43(24), 7892-7898.
[http://dx.doi.org/10.1021/bi0360859] [PMID: 15196033]
[http://dx.doi.org/10.1021/bi0360859] [PMID: 15196033]
[87]
Luo, Q-L.; Li, J-Y.; Liu, Z-Y.; Chen, L-L.; Li, J.; Ye, Q-Z.; Nan, F-J. Inhibitors of type I MetAPs containing pyridine-2-carboxylic acid thiazol-2-ylamide. Part 1: SAR studies on the determination of the key scaffold. Bioorg. Med. Chem. Lett., 2005, 15(3), 635-638.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.034] [PMID: 15664828]
[http://dx.doi.org/10.1016/j.bmcl.2004.11.034] [PMID: 15664828]
[88]
Luo, Q-L.; Li, J-Y.; Chen, L-L.; Li, J.; Ye, Q-Z.; Nan, F-J. Inhibitors of type I MetAPs containing pyridine-2-carboxylic acid thiazol-2-ylamide. Part 2: SAR studies on the pyridine ring 3-substituent. Bioorg. Med. Chem. Lett., 2005, 15(3), 639-644.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.035] [PMID: 15664829]
[http://dx.doi.org/10.1016/j.bmcl.2004.11.035] [PMID: 15664829]
[89]
Cui, Y-M.; Huang, Q-Q.; Xu, J.; Chen, L-L.; Li, J-Y.; Ye, Q-Z.; Li, J.; Nan, F-J. Identification of potent type I MetAP inhibitors by simple bioisosteric replacement. Part 1: Synthesis and preliminary SAR studies of thiazole-4-carboxylic acid thiazol-2-ylamide derivatives. Bioorg. Med. Chem. Lett., 2005, 15(16), 3732-3736.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.055] [PMID: 15993057]
[http://dx.doi.org/10.1016/j.bmcl.2005.05.055] [PMID: 15993057]
[90]
Cui, Y-M.; Huang, Q-Q.; Xu, J.; Chen, L-L.; Li, J-Y.; Ye, Q-Z.; Li, J.; Nan, F-J. Identification of potent type I MetAPs inhibitors by simple bioisosteric replacement. Part 2: SAR studies of 5-heteroalkyl substituted TCAT derivatives. Bioorg. Med. Chem. Lett., 2005, 15(18), 4130-4135.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.005] [PMID: 16005224]
[http://dx.doi.org/10.1016/j.bmcl.2005.06.005] [PMID: 16005224]
[91]
Wang, W-L.; Chai, S.C.; Huang, M.; He, H-Z.; Hurley, T.D.; Ye, Q-Z. Discovery of inhibitors of Escherichia coli methionine aminopeptidase with the Fe(II)-form selectivity and antibacterial activity. J. Med. Chem., 2008, 51(19), 6110-6120.
[http://dx.doi.org/10.1021/jm8005788] [PMID: 18785729]
[http://dx.doi.org/10.1021/jm8005788] [PMID: 18785729]
[92]
Keding, S.J.; Dales, N.A.; Lim, S.; Beaulieu, D.; Rich, D.H. Synthesis of (3R)-amino-(2S)-hydroxy amino acids for inhibition of methionine aminopeptidase-1. Synth. Commun., 1998, 28(23), 4463-4470.
[http://dx.doi.org/10.1080/00397919808004481]
[http://dx.doi.org/10.1080/00397919808004481]
[93]
Li, J-Y.; Chen, L-L.; Cui, Y-M.; Luo, Q-L.; Li, J.; Nan, F-J.; Ye, Q-Z. Specificity for inhibitors of metal-substituted methionine aminopeptidase. Biochem. Biophys. Res. Commun., 2003, 307(1), 172-179.
[http://dx.doi.org/10.1016/S0006-291X(03)01144-6] [PMID: 12849997]
[http://dx.doi.org/10.1016/S0006-291X(03)01144-6] [PMID: 12849997]
[94]
Hu, X.; Zhu, J.; Srivathsan, S.; Pei, D. Peptidyl hydroxamic acids as methionine aminopeptidase inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(1), 77-79.
[http://dx.doi.org/10.1016/j.bmcl.2003.10.031] [PMID: 14684302]
[http://dx.doi.org/10.1016/j.bmcl.2003.10.031] [PMID: 14684302]
[95]
Mitra, S.; Sheppard, G.; Wang, J.; Bennett, B.; Holz, R.C. Analyzing the binding of Co(II)-specific inhibitors to the methionyl aminopeptidases from Escherichia coli and Pyrococcus furiosus. J. Biol. Inorg. Chem., 2009, 14(4), 573-585.
[http://dx.doi.org/10.1007/s00775-009-0471-2] [PMID: 19198897]
[http://dx.doi.org/10.1007/s00775-009-0471-2] [PMID: 19198897]
[96]
Evdokimov, A.G.; Pokross, M.; Walter, R.L.; Mekel, M.; Barnett, B.L.; Amburgey, J.; Seibel, W.L.; Soper, S.J.; Djung, J.F.; Fairweather, N.; Diven, C.; Rastogi, V.; Grinius, L.; Klanke, C.; Siehnel, R.; Twinem, T.; Andrews, R.; Curnow, A. Serendipitous discovery of novel bacterial methionine aminopeptidase inhibitors. Proteins, 2007, 66(3), 538-546.
[http://dx.doi.org/10.1002/prot.21207] [PMID: 17120228]
[http://dx.doi.org/10.1002/prot.21207] [PMID: 17120228]
[97]
Lowther, W.T.; Orville, A.M.; Madden, D.T.; Lim, S.; Rich, D.H.; Matthews, B.W. Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis. Biochemistry, 1999, 38(24), 7678-7688.
[http://dx.doi.org/10.1021/bi990684r] [PMID: 10387007]
[http://dx.doi.org/10.1021/bi990684r] [PMID: 10387007]
[98]
Douangamath, A.; Dale, G.E.; D’Arcy, A.; Almstetter, M.; Eckl, R.; Frutos-Hoener, A.; Henkel, B.; Illgen, K.; Nerdinger, S.; Schulz, H.; Mac Sweeney, A.; Thormann, M.; Treml, A.; Pierau, S.; Wadman, S.; Oefner, C. Crystal structures of Staphylococcus aureus methionine aminopeptidase complexed with keto heterocycle and aminoketone inhibitors reveal the formation of a tetrahedral intermediate. J. Med. Chem., 2004, 47(6), 1325-1328.
[http://dx.doi.org/10.1021/jm034188j] [PMID: 14998322]
[http://dx.doi.org/10.1021/jm034188j] [PMID: 14998322]
[99]
Sin, N.; Meng, L.; Wang, M.Q.W.; Wen, J.J.; Bornmann, W.G.; Crews, C.M. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc. Natl. Acad. Sci. USA, 1997, 94(12), 6099-6103.
[http://dx.doi.org/10.1073/pnas.94.12.6099] [PMID: 9177176]
[http://dx.doi.org/10.1073/pnas.94.12.6099] [PMID: 9177176]
[100]
Altmeyer, M.; Amtmann, E.; Heyl, C.; Marschner, A.; Scheidig, A.J.; Klein, C.D. Beta-aminoketones as prodrugs for selective irreversible inhibitors of type-1 methionine aminopeptidases. Bioorg. Med. Chem. Lett., 2014, 24(22), 5310-5314.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.047] [PMID: 25293447]
[http://dx.doi.org/10.1016/j.bmcl.2014.09.047] [PMID: 25293447]
[101]
Wang, W-L.; Chai, S.C.; Ye, Q-Z. Synthesis and structure-function analysis of Fe(II)-form-selective antibacterial inhibitors of Escherichia coli methionine aminopeptidase. Bioorg. Med. Chem. Lett., 2009, 19(4), 1080-1083.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.011] [PMID: 19167218]
[http://dx.doi.org/10.1016/j.bmcl.2009.01.011] [PMID: 19167218]
[102]
Haldar, M.K.; Scott, M.D.; Sule, N.; Srivastava, D.K.; Mallik, S. Synthesis of barbiturate-based methionine aminopeptidase-1 inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(7), 2373-2376.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.066] [PMID: 18343108]
[http://dx.doi.org/10.1016/j.bmcl.2008.02.066] [PMID: 18343108]
[103]
Krátký, M.; Vinšová, J.; Novotná, E.; Mandíková, J.; Wsól, V.; Trejtnar, F.; Ulmann, V.; Stolaříková, J.; Fernandes, S.; Bhat, S.; Liu, J.O. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis (Edinb.), 2012, 92(5), 434-439.
[http://dx.doi.org/10.1016/j.tube.2012.06.001] [PMID: 22765970]
[http://dx.doi.org/10.1016/j.tube.2012.06.001] [PMID: 22765970]
[104]
Towbin, H.; Bair, K.W.; DeCaprio, J.A.; Eck, M.J.; Kim, S.; Kinder, F.R.; Morollo, A.; Mueller, D.R.; Schindler, P.; Song, H.K.; van Oostrum, J.; Versace, R.W.; Voshol, H.; Wood, J.; Zabludoff, S.; Phillips, P.E. Proteomics-based target identification: bengamides as a new class of methionine aminopeptidase inhibitors. J. Biol. Chem., 2003, 278(52), 52964-52971.
[http://dx.doi.org/10.1074/jbc.M309039200] [PMID: 14534293]
[http://dx.doi.org/10.1074/jbc.M309039200] [PMID: 14534293]
[105]
Lu, J-P.; Yuan, X-H.; Yuan, H.; Wang, W-L.; Wan, B.; Franzblau, S.G.; Ye, Q-Z. Inhibition of Mycobacterium tuberculosis methionine aminopeptidases by bengamide derivatives. ChemMedChem, 2011, 6(6), 1041-1048.
[http://dx.doi.org/10.1002/cmdc.201100003] [PMID: 21465667]
[http://dx.doi.org/10.1002/cmdc.201100003] [PMID: 21465667]
[106]
Young, K.; Silver, L.L.; Bramhill, D.; Cameron, P.; Eveland, S.S.; Raetz, C.R.; Hyland, S.A.; Anderson, M.S. The envA permeability/cell division gene of Escherichia coli encodes the second enzyme of lipid A biosynthesis. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase. J. Biol. Chem., 1995, 270(51), 30384-30391.
[http://dx.doi.org/10.1074/jbc.270.51.30384] [PMID: 8530464]
[http://dx.doi.org/10.1074/jbc.270.51.30384] [PMID: 8530464]
[107]
Barb, A.W.; Zhou, P. Mechanism and inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis. Curr. Pharm. Biotechnol., 2008, 9(1), 9-15.
[http://dx.doi.org/10.2174/138920108783497668] [PMID: 18289052]
[http://dx.doi.org/10.2174/138920108783497668] [PMID: 18289052]
[108]
Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2009, 48(1), 1-12.
[http://dx.doi.org/10.1086/595011] [PMID: 19035777]
[http://dx.doi.org/10.1086/595011] [PMID: 19035777]
[109]
Zhang, J.; Chan, A.; Lippa, B.; Cross, J.B.; Liu, C.; Yin, N.; Romero, J.A.; Lawrence, J.; Heney, R.; Herradura, P.; Goss, J.; Clark, C.; Abel, C.; Zhang, Y.; Poutsiaka, K.M.; Epie, F.; Conrad, M.; Mahamoon, A.; Nguyen, K.; Chavan, A.; Clark, E.; Li, T.C.; Cheng, R.K.; Wood, M.; Andersen, O.A.; Brooks, M.; Kwong, J.; Barker, J.; Parr, I.B.; Gu, Y.; Ryan, M.D.; Coleman, S.; Metcalf, C.A. III Structure-based discovery of LpxC inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(8), 1670-1680.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.006] [PMID: 28302397]
[http://dx.doi.org/10.1016/j.bmcl.2017.03.006] [PMID: 28302397]
[110]
Zhang, J.; Zhang, L.; Li, X.; Xu, W. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) inhibitors: a new class of antibacterial agents. Curr. Med. Chem., 2012, 19(13), 2038-2050.
[http://dx.doi.org/10.2174/092986712800167374] [PMID: 22414079]
[http://dx.doi.org/10.2174/092986712800167374] [PMID: 22414079]
[111]
Mansoor, U.F.; Vitharana, D.; Reddy, P.A.; Daubaras, D.L.; McNicholas, P.; Orth, P.; Black, T.; Siddiqui, M.A. Design and synthesis of potent Gram-negative specific LpxC inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(4), 1155-1161.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.111] [PMID: 21273067]
[http://dx.doi.org/10.1016/j.bmcl.2010.12.111] [PMID: 21273067]
[112]
Jain, R.K.; Gordeev, M.F.; Lewis, J.G. Preparation of pyrrolidinecarboxamide
derivatives as antibac-terial agents.
W.O. Patent 069,020A2; 069,021A2, 2007.
[113]
Montgomery, J.I.; Brown, M.F.; Reilly, U.; Price, L.M.; Abramite, J.A.; Arcari, J.; Barham, R.; Che, Y.; Chen, J.M.; Chung, S.W.; Collantes, E.M.; Desbonnet, C.; Doroski, M.; Doty, J.; Engtrakul, J.J.; Harris, T.M.; Huband, M.; Knafels, J.D.; Leach, K.L.; Liu, S.; Marfat, A.; McAllister, L.; McElroy, E.; Menard, C.A.; Mitton-Fry, M.; Mullins, L.; Noe, M.C.; O’Donnell, J.; Oliver, R.; Penzien, J.; Plummer, M.; Shanmugasundaram, V.; Thoma, C.; Tomaras, A.P.; Uccello, D.P.; Vaz, A.; Wishka, D.G. Pyridone methylsulfone hydroxamate LpxC inhibitors for the treatment of serious gram-negative infections. J. Med. Chem., 2012, 55(4), 1662-1670.
[http://dx.doi.org/10.1021/jm2014875] [PMID: 22257165]
[http://dx.doi.org/10.1021/jm2014875] [PMID: 22257165]
[114]
Onishi, H.R.; Pelak, B.A.; Gerckens, L.S.; Silver, L.L.; Kahan, F.M.; Chen, M.H.; Patchett, A.A.; Galloway, S.M.; Hyland, S.A.; Anderson, M.S.; Raetz, C.R. Antibacterial agents that inhibit lipid A biosynthesis. Science, 1996, 274(5289), 980-982.
[http://dx.doi.org/10.1126/science.274.5289.980] [PMID: 8875939]
[http://dx.doi.org/10.1126/science.274.5289.980] [PMID: 8875939]
[115]
Clements, J.M.; Coignard, F.; Johnson, I.; Chandler, S.; Palan, S.; Waller, A.; Wijkmans, J.; Hunter, M.G. Antibacterial activities and characterization of novel inhibitors of LpxC. Antimicrob. Agents Chemother., 2002, 46(6), 1793-1799.
[http://dx.doi.org/10.1128/AAC.46.6.1793-1799.2002] [PMID: 12019092]
[http://dx.doi.org/10.1128/AAC.46.6.1793-1799.2002] [PMID: 12019092]
[116]
Kurasaki, H.; Tsuda, K.; Shinoyama, M.; Takaya, N.; Yamaguchi, Y.; Kishii, R.; Iwase, K.; Ando, N.; Nomura, M.; Kohno, Y.; Lpx, C.; Lpx, C. Inhibitors: design, synthesis, and biological evaluation of oxazolidinones as gram-negative antibacterial agents. ACS Med. Chem. Lett., 2016, 7(6), 623-628.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00057] [PMID: 27326338]
[http://dx.doi.org/10.1021/acsmedchemlett.6b00057] [PMID: 27326338]
[117]
Murphy-Benenato, K.E.; Olivier, N.; Choy, A.; Ross, P.L.; Miller, M.D.; Thresher, J.; Gao, N.; Hale, M.R. Synthesis, Structure, and SAR of Tetrahydropyran-Based LpxC Inhibitors. ACS Med. Chem. Lett., 2014, 5(11), 1213-1218.
[http://dx.doi.org/10.1021/ml500210x] [PMID: 25408833]
[http://dx.doi.org/10.1021/ml500210x] [PMID: 25408833]
[118]
Gao, N.; McLeod, S.M.; Hajec, L.; Olivier, N.B.; Lahiri, S.D.; Bryan Prince, D.; Thresher, J.; Ross, P.L.; Whiteaker, J.D.; Doig, P.; Li, A.H.; Hill, P.J.; Cornebise, M.; Reck, F.; Hale, M.R. Overexpression of Pseudomonas aeruginosa LpxC with its inhibitors in an acrB-deficient Escherichia coli strain. Protein Expr. Purif., 2014, 104, 57-64.
[http://dx.doi.org/10.1016/j.pep.2014.09.006] [PMID: 25240855]
[http://dx.doi.org/10.1016/j.pep.2014.09.006] [PMID: 25240855]
[119]
Lee, C.J.; Liang, X.; Gopalaswamy, R.; Najeeb, J.; Ark, E.D.; Toone, E.J.; Zhou, P. Structural basis of the promiscuous inhibitor susceptibility of Escherichia coli LpxC. ACS Chem. Biol., 2014, 9(1), 237-246.
[http://dx.doi.org/10.1021/cb400067g] [PMID: 24117400]
[http://dx.doi.org/10.1021/cb400067g] [PMID: 24117400]
[120]
Liang, X.; Lee, C.J.; Zhao, J.; Toone, E.J.; Zhou, P. Synthesis, structure, and antibiotic activity of aryl-substituted LpxC inhibitors. J. Med. Chem., 2013, 56(17), 6954-6966.
[http://dx.doi.org/10.1021/jm4007774] [PMID: 23914798]
[http://dx.doi.org/10.1021/jm4007774] [PMID: 23914798]
[121]
Hale, M.R.; Hill, P.; Lahiri, S.; Miller, M.D.; Ross, P.; Alm, R.; Gao, N.; Kutschke, A.; Johnstone, M.; Prince, B.; Thresher, J.; Yang, W. Exploring the UDP pocket of LpxC through amino acid analogs. Bioorg. Med. Chem. Lett., 2013, 23(8), 2362-2367.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.055] [PMID: 23499237]
[http://dx.doi.org/10.1016/j.bmcl.2013.02.055] [PMID: 23499237]
[122]
Caughlan, R.E.; Jones, A.K.; Delucia, A.M.; Woods, A.L.; Xie, L.; Ma, B.; Barnes, S.W.; Walker, J.R.; Sprague, E.R.; Yang, X.; Dean, C.R. Mechanisms decreasing in vitro susceptibility to the LpxC inhibitor CHIR-090 in the gram-negative pathogen Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2012, 56(1), 17-27.
[http://dx.doi.org/10.1128/AAC.05417-11] [PMID: 22024823]
[http://dx.doi.org/10.1128/AAC.05417-11] [PMID: 22024823]
[123]
Liang, X.; Lee, C.J.; Chen, X.; Chung, H.S.; Zeng, D.; Raetz, C.R.; Li, Y.; Zhou, P.; Toone, E.J. Syntheses, structures and antibiotic activities of LpxC inhibitors based on the diacetylene scaffold. Bioorg. Med. Chem., 2011, 19(2), 852-860.
[http://dx.doi.org/10.1016/j.bmc.2010.12.017] [PMID: 21194954]
[http://dx.doi.org/10.1016/j.bmc.2010.12.017] [PMID: 21194954]
[124]
Cole, K.E.; Gattis, S.G.; Angell, H.D.; Fierke, C.A.; Christianson, D.W. Structure of the metal-dependent deacetylase LpxC from Yersinia enterocolitica complexed with the potent inhibitor CHIR-090. Biochemistry, 2011, 50(2), 258-265.
[http://dx.doi.org/10.1021/bi101622a] [PMID: 21171638]
[http://dx.doi.org/10.1021/bi101622a] [PMID: 21171638]
[125]
Barb, A.W.; Zhou, P. Mechanism and inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis. Curr. Pharm. Biotechnol., 2008, 9(1), 9-15.
[http://dx.doi.org/10.2174/138920108783497668] [PMID: 18289052]
[http://dx.doi.org/10.2174/138920108783497668] [PMID: 18289052]
[126]
Barb, A.W.; Jiang, L.; Raetz, C.R.; Zhou, P. Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: Time-dependent inhibition and specificity in ligand binding. Proc. Natl. Acad. Sci. USA, 2007, 104(47), 18433-18438.
[http://dx.doi.org/10.1073/pnas.0709412104] [PMID: 18025458]
[http://dx.doi.org/10.1073/pnas.0709412104] [PMID: 18025458]
[127]
Barb, A.W.; McClerren, A.L.; Snehelatha, K.; Reynolds, C.M.; Zhou, P.; Raetz, C.R. Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli. Biochemistry, 2007, 46(12), 3793-3802.
[http://dx.doi.org/10.1021/bi6025165] [PMID: 17335290]
[http://dx.doi.org/10.1021/bi6025165] [PMID: 17335290]
[128]
McClerren, A.L.; Endsley, S.; Bowman, J.L.; Andersen, N.H.; Guan, Z.; Rudolph, J.; Raetz, C.R. A slow, tight-binding inhibitor of the zinc-dependent deacetylase LpxC of lipid A biosynthesis with antibiotic activity comparable to ciprofloxacin. Biochemistry, 2005, 44(50), 16574-16583.
[http://dx.doi.org/10.1021/bi0518186] [PMID: 16342948]
[http://dx.doi.org/10.1021/bi0518186] [PMID: 16342948]
[129]
Piizzi, G.; Parker, D.T.; Peng, Y.; Dobler, M.; Patnaik, A.; Wattanasin, S.; Liu, E.; Lenoir, F.; Nunez, J.; Kerrigan, J.; McKenney, D.; Osborne, C.; Yu, D.; Lanieri, L.; Bojkovic, J.; Dzink-Fox, J.; Lilly, M.D.; Sprague, E.R.; Lu, Y.; Wang, H.; Ranjitkar, S.; Xie, L.; Wang, B.; Glick, M.; Hamann, L.G.; Tommasi, R.; Yang, X.; Dean, C.R. Design, synthesis, and properties of a potent inhibitor of Pseudomonas aeruginosa deacetylase LpxC. J. Med. Chem., 2017, 60(12), 5002-5014.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00377] [PMID: 28549219]
[http://dx.doi.org/10.1021/acs.jmedchem.7b00377] [PMID: 28549219]
[130]
Jackman, J.E.; Fierke, C.A.; Tumey, L.N.; Pirrung, M.; Uchiyama, T.; Tahir, S.H.; Hindsgaul, O.; Raetz, C.R. Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(r-3-hydroxymyristoyl)-n-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. J. Biol. Chem., 2000, 275(15), 11002-11009.
[http://dx.doi.org/10.1074/jbc.275.15.11002] [PMID: 10753902]
[http://dx.doi.org/10.1074/jbc.275.15.11002] [PMID: 10753902]
[131]
Pirrung, M.C.; Tumey, L.N.; Raetz, C.R.; Jackman, J.E.; Snehalatha, K.; McClerren, A.L.; Fierke, C.A.; Gantt, S.L.; Rusche, K.M. Inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): isoxazoline zinc amidase inhibitors bearing diverse metal binding groups. J. Med. Chem., 2002, 45(19), 4359-4370.
[http://dx.doi.org/10.1021/jm020183v] [PMID: 12213077]
[http://dx.doi.org/10.1021/jm020183v] [PMID: 12213077]
[132]
Cuny, G.D. A new class of UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase (LpxC) inhibitors for the treatment of Gram-negative infections: PCT application WO 2008027466. Expert Opin. Ther. Pat., 2009, 19(6), 893-899.
[http://dx.doi.org/10.1517/13543770902766829] [PMID: 19473108]
[http://dx.doi.org/10.1517/13543770902766829] [PMID: 19473108]
[133]
Whittington, D.A.; Rusche, K.M.; Shin, H.; Fierke, C.A.; Christianson, D.W. Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8146-8150.
[http://dx.doi.org/10.1073/pnas.1432990100] [PMID: 12819349]
[http://dx.doi.org/10.1073/pnas.1432990100] [PMID: 12819349]
[134]
Shin, H.; Gennadios, H.A.; Whittington, D.A.; Christianson, D.W. Amphipathic benzoic acid derivatives: synthesis and binding in the hydrophobic tunnel of the zinc deacetylase LpxC. Bioorg. Med. Chem., 2007, 15(7), 2617-2623.
[http://dx.doi.org/10.1016/j.bmc.2007.01.044] [PMID: 17296300]
[http://dx.doi.org/10.1016/j.bmc.2007.01.044] [PMID: 17296300]
[135]
Buetow, L.; Dawson, A.; Hunter, W.N. The nucleotide-binding site of Aquifex aeolicus LpxC. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2006, 62(Pt 11), 1082-1086.
[http://dx.doi.org/10.1107/S1744309106041893] [PMID: 17077484]
[http://dx.doi.org/10.1107/S1744309106041893] [PMID: 17077484]
[136]
Barb, A.W.; Leavy, T.M.; Robins, L.I.; Guan, Z.; Six, D.A.; Zhou, P.; Hangauer, M.J.; Bertozzi, C.R.; Raetz, C.R. Uridine-based inhibitors as new leads for antibiotics targeting Escherichia coli LpxC. Biochemistry, 2009, 48(14), 3068-3077.
[http://dx.doi.org/10.1021/bi900167q] [PMID: 19256534]
[http://dx.doi.org/10.1021/bi900167q] [PMID: 19256534]