[2]
Surya, S.P.; Jayanthi, G.; Smitha, K.R. In vitro evaluation of the anticancer effect of methanolic extract of Alstonia scholaris leaves on mammary carcinoma. J. Appl. Pharm. Sci., 2012, 2(5), 142-149.
[3]
D’Incalci, M.; Galmarini, C.M. A review of trabectedin (ET-743): A unique mechanism of action. Mol. Cancer Ther., 2010, 9(8), 2157-2163. [http://dx.doi.org/10.1158/1535-7163.MCT-10-0263]. [PMID: 20647340].
[4]
Patil, A.; Vadera, K.; Patil, D.; Phatak, A.; Juvekar, A.; Chandra, N. In vitro anticancer activity of Argemone mexicana L. seeds and Alstonia scholaris (l.) R. Br. bark on different human cancer cell lines. World J. Pharm. Pharm. Sci., 2014, 3(11), 706-722.
[5]
Jeremić, M.; Pešić, M.; Dinić, J.; Banković, J.; Novaković, I.; Šegan, D.; Sladić, D. Simple avarone mimetics as selective agents against multidrug resistant cancer cells. Eur. J. Med. Chem., 2016, 118, 107-120. [http://dx.doi.org/10.1016/j.ejmech.2016.04.011]. [PMID: 27128177].
[6]
Doroshow, J.H. Overcoming resistance to targeted anticancer drugs. N. Engl. J. Med., 2013, 369(19), 1852-1853. [http://dx.doi.org/10.1056/NEJMe1311325]. [PMID: 24180495].
[7]
Jagetia, G.C.; Baliga, M.S.; Venkatesh, P. Effect of Sapthaparna (Alstonia scholaris Linn) in modulating the benzo(a)pyrene-induced forestomach carcinogenesis in mice. Toxicol. Lett., 2003, 144(2), 183-193. [http://dx.doi.org/10.1016/S0378-4274(03)00205-4]. [PMID: 12927362].
[8]
Khattak, S.; Khan, H. Anti-cancer potential of phyto-alkaloids: A prospective review. Curr. Cancer Ther. Rev., 2016, 12(1), 66-75. [http://dx.doi.org/10.2174/1573394712666160617081638].
[9]
Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J-M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; Arslan, Ö.; Sanz, M.A.; Bergeron, J.; Demirkan, F.; Lech-Maranda, E.; Rambaldi, A.; Thomas, X.; Horst, H-A.; Brüggemann, M.; Klapper, W.; Wood, B.L.; Fleishman, A.; Nagorsen, D.; Holland, C.; Zimmerman, Z.; Topp, M.S. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med., 2017, 376(9), 836-847. [http://dx.doi.org/10.1056/NEJMoa1609783]. [PMID: 28249141].
[10]
Khan, H. Medicinal plants need biological screening: A future treasure as therapeutic agents. Biol. Med. (Aligarh), 2014, 6e110. [http://dx.doi.org/10.4172/0974-8369.1000e110]
[11]
Save, S.A.; Lonkhande, R.S.; Chowdhary, A.S. Thevetia peruviana: The good luck tree. Innov. Pharm. Pharmacother., 2015, 3(3), 586-606.
[12]
Khan, H. Medicinal plants in light of history recognized therapeutic modality. J. Evid. Based Complementary Altern. Med., 2014, 19(3), 216-219. [http://dx.doi.org/10.1177/2156587214533346]. [PMID: 24789912].
[13]
Aboul-enein, A.M. Adu el-ela, F.; Shalaby, E.; El-shemy, H. Potent anticancer and antioxidant activities of active ingredients separated from Solanum nigrum and Cassia italica Extracts. J. Afrid Land Studies, 2014, 24(1), 145-152.
[14]
Bohé, L.; Crich, D. 6.01 Synthesis of Glycosides A2 - Knochel,
Paul, 2nd ed; Comprehensive Organic Synthesis II, , 2014; pp. 1-33.
[15]
Khattak, S.; Khan, H. Phyto-glycosides as therapeutic target in the treatment of diabetes. Mini Rev. Med. Chem., 2018, 18(3), 208-215. [http://dx.doi.org/10.2174/1389557516666160909112751]. [PMID: 27629995].
[16]
Lindhorst, T.K. Essentials of Carbohydrate Chemistry and Biochemistry, 3rd ed; Wiley-VCH Weinheim, 2007.
[17]
Zahid, N.I.; Conn, C.E.; Brooks, N.J.; Ahmad, N.; Seddon, J.M.; Hashim, R. Investigation of the effect of sugar stereochemistry on biologically relevant lyotropic phases from branched-chain synthetic glycolipids by small-angle X-ray scattering. Langmuir, 2013, 29(51), 15794-15804. [http://dx.doi.org/10.1021/la4040134]. [PMID: 24274824].
[18]
Rathore, H.; From, A.H.; Ahmed, K.; Fullerton, D.S. Cardiac glycosides. 7. Sugar stereochemistry and cardiac glycoside activity. J. Med. Chem., 1986, 29(10), 1945-1952. [http://dx.doi.org/10.1021/jm00160a025]. [PMID: 3020248].
[19]
Schneider, N.F.Z.; Cerella, C.; Simões, C.M.O.; Diederich, M. Anticancer and immunogenic properties of cardiac glycosides. Molecules, 2017, 22(11), 1932. [http://dx.doi.org/10.3390/molecules22111932]. [PMID: 29117117].
[20]
Langenhan, J.M.; Peters, N.R.; Guzei, I.A.; Hoffmann, F.M.; Thorson, J.S. Enhancing the anticancer properties of cardiac glycosides by neoglycorandomization. Proc. Natl. Acad. Sci. USA, 2005, 102(35), 12305-12310. [http://dx.doi.org/10.1073/pnas.0503270102]. [PMID: 16105948].
[21]
Park, E-H.; Kim, Y-J.; Yamabe, N.; Park, S-H.; Kim, H-K.; Jang, H-J.; Kim, J.H.; Cheon, G.J.; Ham, J.; Kang, K.S. Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell. J. Ginseng Res., 2014, 38(1), 22-27. [http://dx.doi.org/10.1016/j.jgr.2013.11.007]. [PMID: 24558306].
[22]
Jeong, S.M.; Lee, J-H.; Kim, J-H.; Lee, B-H.; Yoon, I-S.; Lee, J-H.; Kim, D-H.; Rhim, H.; Kim, Y.; Nah, S-Y. Stereospecificity of ginsenoside Rg3 action on ion channels. Mol. Cells, 2004, 18(3), 383-389. [PMID: 15650337].
[23]
Bustos-Brito, C.; Sánchez-Castellanos, M.; Esquivel, B.; Calderón, J.S.; Calzada, F.; Yépez-Mulia, L.; Joseph-Nathan, P.; Cuevas, G.; Quijano, L. ent-Kaurene Glycosides from Ageratina cylindrica. J. Nat. Prod., 2015, 78(11), 2580-2587. [http://dx.doi.org/10.1021/acs.jnatprod.5b00488]. [PMID: 26517282].
[24]
Okoye, F.B.C.; Sawadogo, W.R.; Sendker, J.; Aly, A.H.; Quandt, B.; Wray, V.; Hensel, A.; Esimone, C.O.; Debbab, A.; Diederich, M.; Proksch, P. Flavonoid glycosides from Olax mannii: Structure elucidation and effect on the nuclear factor kappa B pathway. J. Ethnopharmacol., 2015, 176, 27-34.
[25]
Kereru, P.G.; Keriko, J.M.; Gachanja, A.N.; Keni, G.M. Direct detection of triterpinoids saponin in medicinal plant. Afr. J. Trad. Compliment. Altern. Med., 2008, 5(1), 56-60.
[26]
Pan, L-L.; Fang, P-L.; Zhang, X-J.; Ni, W.; Li, L.; Yang, L-M.; Chen, C-X.; Zheng, Y-T.; Li, C-T.; Hao, X-J.; Liu, H-Y. Tigliane-type diterpenoid glycosides from Euphorbia fischeriana. J. Nat. Prod., 2011, 74(6), 1508-1512. [http://dx.doi.org/10.1021/np200058c]. [PMID: 21534540].
[27]
Mshvildadze, V.; Legault, J.; Lavoie, S.; Gauthier, C.; Pichette, A. Anticancer diarylheptanoid glycosides from the inner bark of Betula papyrifera. Phytochemistry, 2007, 68(20), 2531-2536. [http://dx.doi.org/10.1016/j.phytochem.2007.05.018]. [PMID: 17599372].
[28]
Gan, Y.J.; Mei, W.L.; Zhao, Y.X.; Dai, H.F. A new cytotoxic cardenolide from the latex of Antiaris toxicaria. Chin. Chem. Lett., 2009, 20(4), 450-452. [http://dx.doi.org/10.1016/j.cclet.2008.12.043].
[29]
Sun, L.; Zhao, Y.; Yuan, H.; Li, X.; Cheng, A.; Lou, H. Solamargine, a steroidal alkaloid glycoside, induces oncosis in human K562 leukemia and squamous cell carcinoma KB cells. Cancer Chemother. Pharmacol., 2011, 67(4), 813-821. [http://dx.doi.org/10.1007/s00280-010-1387-9]. [PMID: 20563579].
[30]
Liu, Q.; Tang, J-S.; Hu, M-J.; Liu, J.; Chen, H-F.; Gao, H.; Wang, G-H.; Li, S-L.; Hao, X-J.; Zhang, X-K.; Yao, X.S. Antiproliferative cardiac glycosides from the latex of Antiaris toxicaria. J. Nat. Prod., 2013, 76(9), 1771-1780. [http://dx.doi.org/10.1021/np4005147]. [PMID: 24033101].
[31]
Podolak, I.; Galanty, A.; Sobolewska, D. Saponins as cytotoxic agents: A review. Phytochem. Rev., 2010, 9(3), 425-474. [http://dx.doi.org/10.1007/s11101-010-9183-z]. [PMID: 20835386].
[32]
Sun, J.; Lou, H.; Dai, S.; Xu, H.; Zhao, F.; Liu, K. Indole alkoloids from Nauclea officinalis with weak antimalarial activity. Phytochemistry, 2008, 69(6), 1405-1410. [http://dx.doi.org/10.1016/j.phytochem.2008.01.008]. [PMID: 18328515].
[33]
El-Seedi, H.R.; Burman, R.; Mansour, A.; Turki, Z.; Boulos, L.; Gullbo, J.; Göransson, U. The traditional medical uses and cytotoxic activities of sixty-one Egyptian plants: discovery of an active cardiac glycoside from Urginea maritima. J. Ethnopharmacol., 2013, 145(3), 746-757. [http://dx.doi.org/10.1016/j.jep.2012.12.007]. [PMID: 23228916].
[34]
Xue, R.; Han, N.; Ye, C.; Wang, L.; Yang, J.; Wang, Y.; Yin, J. The cytotoxic activities of cardiac glycosides from Streptocaulon juventas and the structure-activity relationships. Fitoterapia, 2014, 98, 228-233. [http://dx.doi.org/10.1016/j.fitote.2014.08.008]. [PMID: 25128424].
[35]
Zhang, J.; Kurita, M.; Shinozaki, T.; Ukiya, M.; Yasukawa, K.; Shimizu, N.; Tokuda, H.; Masters, E.T.; Akihisa, M.; Akihisa, T. Triterpene glycosides and other polar constituents of shea (Vitellaria paradoxa) kernels and their bioactivities. Phytochemistry, 2014, 108, 157-170. [http://dx.doi.org/10.1016/j.phytochem.2014.09.017]. [PMID: 25446237].
[36]
Zhong, R.; Guo, Q.; Zhou, G.; Fu, H.; Wan, K. Three new labdane-type diterpene glycosides from fruits of Rubus chingii and their cytotoxic activities against five humor cell lines. Fitoterapia, 2015, 102, 23-26. [http://dx.doi.org/10.1016/j.fitote.2015.01.007]. [PMID: 25598186].
[37]
Li, Y-W.; Qi, J.; Zhang, Y-Y.; Huang, Z.; Kou, J-P.; Zhou, S-P.; Zhang, Y.; Yu, B-Y. Novel cytotoxic steroidal glycosides from the roots of Liriope muscari. Chin. J. Nat. Med., 2015, 13(6), 461-466. [http://dx.doi.org/10.1016/S1875-5364(15)30040-6]. [PMID: 26073343].
[38]
Raees, M.A.; Hussain, H.; Rehman, N.U.; Khan, H.Y.; Abbas, G.; Al-Rawahi, A.; Elyassi, A.; Al-Amri, I.S.; Green, I.R.; Al-Broumi, M.A.; Mahmood, T.; Al-Harrasi, A. Desmiflavasides A and B: Two new bioactive pregnane glycosides from the sap of Desmidorchis flava. Phytochem. Lett., 2015, 12, 153-157. [http://dx.doi.org/10.1016/j.phytol.2015.03.013].
[39]
Fan, B-Y.; Li, Z-R.; Ma, T.; Gu, Y-C.; Zhao, H-J.; Luo, J-G.; Kong, L-Y. Further screening of the resin glycosides in the edible water spinach and characterisation on their mechanism of anticancer potential. J. Funct. Foods, 2015, 19, 141-154. [http://dx.doi.org/10.1016/j.jff.2015.09.027].
[40]
Jia, S.; Liu, X.; Dai, R.; Meng, W.; Chen, Y.; Deng, Y.; Lv, F. Six new polyhydroxy steroidal glycosides from Dregea sinensis Hemsl. Phytochem. Lett., 2015, 11, 209-214. [http://dx.doi.org/10.1016/j.phytol.2014.12.016].
[41]
Xue, R.; Han, N.; Xia, M.; Ye, C.; Hao, Z.; Wang, L.; Wang, Y.; Yang, J.; Saiki, I.; Yin, J. TXA9, a cardiac glycoside from Streptocaulon juventas, exerts a potent anti-tumor activity against human non-small cell lung cancer cells in vitro and in vivo. Steroids, 2015, 94, 51-59. [http://dx.doi.org/10.1016/j.steroids.2014.12.015]. [PMID: 25555472].
[42]
Rascón-Valenzuela, L.; Velázquez, C.; Garibay-Escobar, A.; Medina-Juárez, L.A.; Vilegas, W.; Robles-Zepeda, R.E. Antiproliferative activity of cardenolide glycosides from Asclepias subulata. J. Ethnopharmacol., 2015, 171, 280-286. [http://dx.doi.org/10.1016/j.jep.2015.05.057]. [PMID: 26068432].
[43]
Park, S.; Nhiem, N.X.; Lee, T.H.; Kim, N.; Kim, S.Y.; Chae, H-J.; Kim, S.H. Isolation of two new bioactive sesquiterpene lactone glycosides from the roots of Ixeris dentata. Bioorg. Med. Chem. Lett., 2015, 25(20), 4562-4566. [http://dx.doi.org/10.1016/j.bmcl.2015.08.061]. [PMID: 26341134].
[44]
Zheng, J-Y.; Wang, Q.; Iu, L. Z.X.; Liu, C.X.; Guo, Z.Y.; Zhang, H.Q.; He, H.B.; Tu, X.; Zou, K. Two new steroidal glycosides with unique structural feature of 14α-hydroxy-5β-steroids from Reineckia carnea. Fitoterapia, 2016, 115, 19-23. [http://dx.doi.org/10.1016/j.fitote.2016.09.014]. [PMID: 27693739].
[45]
Xue, Z.; Yan, R.; Yang, B. Phenylethanoid glycosides and phenolic glycosides from stem bark of Magnolia officinalis. Phytochemistry, 2016, 127, 50-62. [http://dx.doi.org/10.1016/j.phytochem.2016.03.011]. [PMID: 27086163].
[46]
Raees, M.A.; Hussain, H.; Al-Rawahi, A.; Csuk, R.; Muhammad, S.A.; Khan, H.Y.; Rehman, N.U.; Abbas, G.; Al-Broumi, M.A.; Green, I.R.; Elyassi, A.; Mahmood, T.; Al-Harrasi, A. Anti-proliferative and computational studies of two new pregnane glycosides from Desmidorchis flava. Bioorg. Chem., 2016, 67, 95-104. [http://dx.doi.org/10.1016/j.bioorg.2016.05.008]. [PMID: 27299811].
[47]
Shah, Z.A.; Hameed, A.; Ahmed, A.; Simjee, S.U.; Jabeen, A.; Ullah, A.; Shaheen, F. Cytotoxic and anti-inflammatory salicin glycosides from leaves of Salix acmophylla. Phytochem. Lett., 2016, 17, 107-113. [http://dx.doi.org/10.1016/j.phytol.2016.07.013].
[48]
Verma, A.; Ahmed, B.; Anwar, F.; Rahman, M.; Patel, D.K.; Kaithwas, G.; Rani, R.; Bhatt, P.C.; Kumar, V. Novel glycoside from Wedelia calendulacea inhibits diethyl nitrosamine-induced renal cancer via downregulating the COX-2 and PEG2 through nuclear factor-κB pathway. Inflammopharmacology, 2017, 25(1), 159-175. [http://dx.doi.org/10.1007/s10787-017-0310-y]. [PMID: 28155120].
[49]
Shahzad, N.; Khan, W.; Md, S.; Ali, A.; Saluja, S.S.; Sharma, S.; Al-Allaf, F.A.; Abduljaleel, Z.; Ibrahim, I.A.A.; Abdel-Wahab, A.F.; Afify, M.A.; Al-Ghamdi, S.S. Phytosterols as a natural anticancer agent: Current status and future perspective. Biomed. Pharmacother., 2017, 88, 786-794. [http://dx.doi.org/10.1016/j.biopha.2017.01.068]. [PMID: 28157655].
[50]
Guo, L.; Lv, G.; Qiu, L.; Yang, H.; Zhang, L.; Yu, H.; Zou, M.; Lin, J. Insights into anticancer activity and mechanism of action of a ruthenium(II) complex in human esophageal squamous carcinoma EC109 cells. Eur. J. Pharmacol., 2016, 786, 60-71. [http://dx.doi.org/10.1016/j.ejphar.2016.05.042]. [PMID: 27262377].
[51]
Lei, Y.; Zhang, D.; Yu, J.; Dong, H.; Zhang, J.; Yang, S. Targeting autophagy in cancer stem cells as an anticancer therapy. Cancer Lett., 2017, 393, 33-39. [http://dx.doi.org/10.1016/j.canlet.2017.02.012]. [PMID: 28216370].
[52]
Cerella, C.; Dicato, M.; Diederich, M. Assembling the puzzle of anti-cancer mechanisms triggered by cardiac glycosides. Mitochondrion, 2013, 13(3), 225-234. [http://dx.doi.org/10.1016/j.mito.2012.06.003]. [PMID: 22735572].
[53]
Cham, B.E. Drug therapy: Solamargine and other solasodine rhamnosyl glycosides as anticancer agents. Modern Chemother., 2013, 2(2), 33-49. [http://dx.doi.org/10.4236/mc.2013.22005].
[54]
Allan, G.; Ouadid-Ahidouch, H.; Sanchez-Fernandez, E.M.; Risquez-Cuadro, R.; Fernandez, J.M.G.; Ortiz-Mellet, C.; Ahidouch, A. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells. PLoS One, 2013, 8(10)e76411 [http://dx.doi.org/10.1371/journal.pone.0076411]. [PMID: 24124558].
[55]
Patel, S. Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomed. Pharmacother., 2016, 84, 1036-1041. [http://dx.doi.org/10.1016/j.biopha.2016.10.030]. [PMID: 27780131].
[56]
Song, Z.; Xu, X. Advanced research on anti-tumor effects of amygdalin. J. Cancer Res. Ther., 2014, 10(Suppl. 1), 3-7. [http://dx.doi.org/10.4103/0973-1482.139743]. [PMID: 25207888].
[57]
Leu, W-J.; Chang, H-S.; Chan, S-H.; Hsu, J-L.; Yu, C-C.; Hsu, L-C.; Chen, I.S.; Guh, J-H.; Reevesioside, A. Reevesioside A, a cardenolide glycoside, induces anticancer activity against human hormone-refractory prostate cancers through suppression of c-myc expression and induction of G1 arrest of the cell cycle. PLoS One, 2014, 9(1)e87323 [http://dx.doi.org/10.1371/journal.pone.0087323]. [PMID: 24475272].
[58]
Rascón Valenzuela, L.A.; Jiménez Estrada, M.; Velázquez Contreras, C.A.; Garibay Escobar, A.; Medina Juárez, L.A.; Gámez Meza, N.; Robles Zepeda, R.E. Antiproliferative and apoptotic activities of extracts of Asclepias subulata. Pharm. Biol., 2015, 53(12), 1741-1751. [http://dx.doi.org/10.3109/13880209.2015.1005752]. [PMID: 25853961].
[59]
Rascón-Valenzuela, L.A.; Velázquez, C.; Garibay-Escobar, A.; Vilegas, W.; Medina-Juárez, L.A.; Gámez-Meza, N.; Robles-Zepeda, R.E. Apoptotic activities of cardenolide glycosides from Asclepias subulata. J. Ethnopharmacol., 2016, 193, 303-311. [http://dx.doi.org/10.1016/j.jep.2016.08.022]. [PMID: 27545974].
[60]
Fan, B-Y.; Li, Z-R.; Ma, T.; Gu, Y-C.; Zhao, H-J.; Luo, J-G.; Kong, L-Y. Further screening of the resin glycosides in the edible water spinach and characterisation on their mechanism of anticancer potential. J. Funct. Foods, 2015, 19, 141-154. [http://dx.doi.org/10.1016/j.jff.2015.09.027].
[61]
Aminin, D.L.; Menchinskaya, E.S.; Pisliagin, E.A.; Silchenko, A.S.; Avilov, S.A.; Kalinin, V.I. Anticancer activity of sea cucumber triterpene glycosides. Mar. Drugs, 2015, 13(3), 1202-1223. [http://dx.doi.org/10.3390/md13031202]. [PMID: 25756523].
[62]
Okoye, F.B.; Sawadogo, W.R.; Sendker, J.; Aly, A.H.; Quandt, B.; Wray, V.; Hensel, A.; Esimone, C.O.; Debbab, A.; Diederich, M.; Proksch, P. Flavonoid glycosides from Olax mannii: Structure elucidation and effect on the nuclear factor kappa B pathway. J. Ethnopharmacol., 2015, 176, 27-34. [http://dx.doi.org/10.1016/j.jep.2015.10.019]. [PMID: 26475120].
[63]
Polkowski, K.; Popiołkiewicz, J.; Krzeczyński, P.; Ramza, J.; Pucko, W.; Zegrocka-Stendel, O.; Boryski, J.; Skierski, J.S.; Mazurek, A.P.; Grynkiewicz, G. Cytostatic and cytotoxic activity of synthetic genistein glycosides against human cancer cell lines. Cancer Lett., 2004, 203(1), 59-69. [http://dx.doi.org/10.1016/j.canlet.2003.08.023]. [PMID: 14670618].
[64]
Lamartiniere, C.A. Protection against breast cancer with genistein: A component of soy. Am. J. Clin. Nutr., 2000, 71(6)(Suppl.), 1705S-1707S. [http://dx.doi.org/10.1093/ajcn/71.6.1705S]. [PMID: 10837323].
[65]
Messina, M.J.; Persky, V.; Setchell, K.D.; Barnes, S. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr. Cancer, 1994, 21(2), 113-131. [http://dx.doi.org/10.1080/01635589409514310]. [PMID: 8058523].
[66]
Morabito, N.; Crisafulli, A.; Vergara, C.; Gaudio, A.; Lasco, A.; Frisina, N.; D’Anna, R.; Corrado, F.; Pizzoleo, M.A.; Cincotta, M.; Altavilla, D.; Ientile, R.; Squadrito, F. Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: A randomized double-blind placebo-controlled study. J. Bone Miner. Res., 2002, 17(10), 1904-1912. [http://dx.doi.org/10.1359/jbmr.2002.17.10.1904]. [PMID: 12369794].
[67]
Squadrito, F.; Altavilla, D.; Morabito, N.; Crisafulli, A.; D’Anna, R.; Corrado, F.; Ruggeri, P.; Campo, G.M.; Calapai, G.; Caputi, A.P.; Squadrito, G. The effect of the phytoestrogen genistein on plasma nitric oxide concentrations, endothelin-1 levels and endothelium dependent vasodilation in postmenopausal women. Atherosclerosis, 2002, 163(2), 339-347. [http://dx.doi.org/10.1016/S0021-9150(02)00013-8]. [PMID: 12052481].
[68]
Popiołkiewicz, J.; Polkowski, K.; Skierski, J.S.; Mazurek, A.P. In vitro toxicity evaluation in the development of new anticancer drugs-genistein glycosides. Cancer Lett., 2005, 229(1), 67-75. [http://dx.doi.org/10.1016/j.canlet.2005.01.014]. [PMID: 16157220].
[69]
Iyer, A.K.; Zhou, M.; Azad, N.; Elbaz, H.; Wang, L.; Rogalsky, D.K.; Rojanasakul, Y.; O’Doherty, G.A.; Langenhan, J.M. A direct comparison of the anticancer activities of digitoxin MeON-neoglycosides and O-Glycosides: Oligosaccharide chain length-dependent induction of caspase-9-mediated apoptosis. ACS Med. Chem. Lett., 2010, 1(7), 326-330. [http://dx.doi.org/10.1021/ml1000933]. [PMID: 21103068].
[70]
Nandurkar, N.S.; Zhang, J.; Ye, Q.; Ponomareva, L.V.; She, Q.B.; Thorson, J.S. The identification of perillyl alcohol glycosides with improved antiproliferative activity. J. Med. Chem., 2014, 57(17), 7478-7484. [http://dx.doi.org/10.1021/jm500870u]. [PMID: 25121720].
[71]
Bkhaitan, M.M.; Mirza, A.Z.; Shamshad, H.; Ali, H.I. Identification of potent virtual leads and ADME prediction of isoxazolidine podophyllotoxin derivatives as topoisomerase II and tubulin inhibitors. J. Mol. Graph. Model., 2017, 73, 74-93. [http://dx.doi.org/10.1016/j.jmgm.2017.01.015]. [PMID: 28242581].
[72]
Chen, C.; Yu, Y.; Wang, X.; Shi, P.; Wang, Y.; Wang, P. Manipulation of pH-Sensitive interactions between podophyllotoxin-chitosan for enhanced controlled drug release. Int. J. Biol. Macromol., 2017, 95, 451-461. [http://dx.doi.org/10.1016/j.ijbiomac.2016.11.053]. [PMID: 27867056].
[73]
Zhang, L.; Liu, L.; Zheng, C.; Wang, Y.; Nie, X.; Shi, D.; Chen, Y.; Wei, G.; Wang, J. Synthesis and biological evaluation of novel podophyllotoxin-NSAIDs conjugates as multifunctional anti-MDR agents against resistant human hepatocellular carcinoma Bel-7402/5-FU cells. Eur. J. Med. Chem., 2017, 131, 81-91. [http://dx.doi.org/10.1016/j.ejmech.2017.03.011]. [PMID: 28301815].
[74]
Zi, C-T.; Yang, D.; Dong, F-W.; Li, G-T.; Li, Y.; Ding, Z-T.; Zhou, J.; Jiang, Z-H.; Hu, J-M. Synthesis and antitumor activity of novel per-butyrylated glycosides of podophyllotoxin and its derivatives. Bioorg. Med. Chem., 2015, 23(7), 1437-1446. [http://dx.doi.org/10.1016/j.bmc.2015.02.021]. [PMID: 25744190].
[75]
Sun, W-X.; Ji, Y-J.; Wan, Y.; Han, H-W.; Lin, H-Y.; Lu, G-H.; Qi, J-L.; Wang, X-M.; Yang, Y-H. Design and synthesis of piperazine acetate podophyllotoxin ester derivatives targeting tubulin depolymerization as new anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(17), 4066-4074. [http://dx.doi.org/10.1016/j.bmcl.2017.07.047]. [PMID: 28757065].
[76]
Zhang, X.; Rakesh, K.P.; Shantharam, C.S.; Manukumar, H.M.; Asiri, A.M.; Marwani, H.M.; Qin, H-L. Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs. Bioorg. Med. Chem., 2018, 26(2), 340-355. [http://dx.doi.org/10.1016/j.bmc.2017.11.026]. [PMID: 29269253].
[77]
Khan, N.; Sharma, S.; Sultana, S. Amelioration of ferric nitrilotriacetate (Fe-NTA) induced renal oxidative stress and tumor promotion response by coumarin (1,2-benzopyrone) in Wistar rats. Cancer Lett., 2004, 210(1), 17-26. [http://dx.doi.org/10.1016/j.canlet.2004.01.011]. [PMID: 15172116].
[78]
Verma, A.; Bhatt, P.C.; Kaithwas, G.; Sethi, N.; Rashid, M.; Singh, Y.; Rahman, M.; Al-Abbasi, F.; Anwar, F.; Kumar, V. Chemomodulatory effect Melastoma Malabathricum Linn against chemically induced renal carcinogenesis rats via attenuation of inflammation, oxidative stress, and early markers of tumor expansion. Inflammopharmacology, 2016, 24(5), 233-251. [http://dx.doi.org/10.1007/s10787-016-0276-1]. [PMID: 27628241].
[79]
Sablina, A.A.; Budanov, A.V.; Ilyinskaya, G.V.; Agapova, L.S.; Kravchenko, J.E.; Chumakov, P.M. The antioxidant function of the p53 tumor suppressor. Nat. Med., 2005, 11(12), 1306-1313. [http://dx.doi.org/10.1038/nm1320]. [PMID: 16286925].
[80]
Maran, J.P.; Priya, B.; Manikandan, S. Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruit pulp. J. Food Sci. Technol., 2014, 51(9), 1938-1946. [http://dx.doi.org/10.1007/s13197-013-1237-y]. [PMID: 25190849].
[81]
Teo, C.C.; Tan, S.N.; Yong, J.W.H.; Hew, C.S.; Ong, E.S. Pressurized hot water extraction (PHWE). J. Chromatogr. A, 2010, 1217(16), 2484-2494. [http://dx.doi.org/10.1016/j.chroma.2009.12.050]. [PMID: 20060531].
[82]
Plaza, M.; Turner, C. Pressurized hot water extraction of bioactives. Trends Analyt. Chem., 2015, 71, 39-54. [http://dx.doi.org/10.1016/j.trac.2015.02.022].
[83]
Liau, B-C.; Ponnusamy, V.K.; Lee, M-R.; Jong, T-T.; Chen, J-H. Development of pressurized hot water extraction for five flavonoid glycosides from defatted Camellia oleifera seeds (byproducts). Ind. Crops Prod., 2017, 95, 296-304. [http://dx.doi.org/10.1016/j.indcrop.2016.10.034].
[84]
Muilenburg, V.L.; Phelan, P.L.; Bonello, P.; Herms, D.A. Inter- and intra-specific variation in stem phloem phenolics of paper birch (Betula papyrifera) and European white birch (Betula pendula). J. Chem. Ecol., 2011, 37(11), 1193-1202. [http://dx.doi.org/10.1007/s10886-011-0028-z]. [PMID: 22012323].
[85]
Sun, X.; Huo, X.; Luo, T.; Li, M.; Yin, Y.; Jiang, Y. The anticancer flavonoid chrysin induces the unfolded protein response in hepatoma cells. J. Cell. Mol. Med., 2011, 15(11), 2389-2398. [http://dx.doi.org/10.1111/j.1582-4934.2010.01244.x]. [PMID: 21199322].
[86]
Lin, C-N.; Lu, C-M.; Cheng, M-K.; Gan, K-H.; Won, S-J. The cytotoxic principles of Solanum incanum. J. Nat. Prod., 1990, 53(2), 513-516. [http://dx.doi.org/10.1021/np50068a041]. [PMID: 2380724].
[87]
Shi, L-S.; Liao, Y-R.; Su, M-J.; Lee, A-S.; Kuo, P-C.; Damu, A.G.; Kuo, S-C.; Sun, H-D.; Lee, K-H.; Wu, T-S. Cardiac glycosides from Antiaris toxicaria with potent cardiotonic activity. J. Nat. Prod., 2010, 73(7), 1214-1222. [http://dx.doi.org/10.1021/np9005212]. [PMID: 20553004].
[88]
Tuncok, Y.; Kozan, O.; Cavdar, C.; Guven, H.; Fowler, J. Urginea maritima (squill) toxicity. J. Toxicol. Clin. Toxicol., 1995, 33(1), 83-86. [http://dx.doi.org/10.3109/15563659509020221]. [PMID: 7837318].
[89]
Ueda, J-Y.; Tezuka, Y.; Banskota, A.H.; Tran, Q.L.; Tran, Q.K.; Saiki, I.; Kadota, S. Constituents of the Vietnamese medicinal plant Streptocaulon juventas and their antiproliferative activity against the human HT-1080 fibrosarcoma cell line. J. Nat. Prod., 2003, 66(11), 1427-1433. [http://dx.doi.org/10.1021/np030177h]. [PMID: 14640513].
[90]
Ojo, O.; Nadro, M.; Tella, I. Protection of rats by extracts of some common Nigerian trees against acetaminophen-induced hepatotoxicity. Afr. J. Biotechnol., 2006, 5(9), 755-760.
[91]
Ohtani, K.; Yang, C-R.; Miyajima, C.; Zhou, J.; Tanaka, O. Labdane-type diterpene glycosides from fruits of Rubus foliolosus. Chem. Pharm. Bull. (Tokyo), 1991, 39(9), 2443-2445. [http://dx.doi.org/10.1248/cpb.39.2443].
[92]
Jiang, C.; Liu, Z-H.; Li, L.; Lin, B-B.; Yang, F.; Qin, M-J. A new eudesmane sesquiterpene glycosides from Liriope muscari. J. Asian Nat. Prod. Res., 2012, 14(5), 491-495. [http://dx.doi.org/10.1080/10286020.2012.668533]. [PMID: 22423627].
[93]
Hussain, H.; Raees, M.A.; Rehman, N.U.; Al-Rawahi, A.; Csuk, R.; Khan, H.Y.; Abbas, G.; Al-Broumi, M.A.; Green, I.R.; Elyassi, A.; Mahmood, T.; Al-Harrasi, A. Nizwaside: A new anticancer pregnane glycoside from the sap of Desmidorchis flava. Arch. Pharm. Res., 2015, 38(12), 2137-2142. [http://dx.doi.org/10.1007/s12272-015-0653-0]. [PMID: 26335549].
[94]
Fan, B-Y.; Gu, Y-C.; He, Y.; Li, Z-R.; Luo, J-G.; Kong, L-Y. Cytotoxic resin glycosides from Ipomoea aquatica and their effects on intracellular Ca2+ concentrations. J. Nat. Prod., 2014, 77(10), 2264-2272. [http://dx.doi.org/10.1021/np5005246]. [PMID: 25314138].
[95]
Liu, Y.; Tang, W.; Yu, S.; Qu, J.; Liu, J.; Liu, Y. Eight new C-21 steroidal glycosides from Dregea sinensis var. corrugata. Steroids, 2007, 72(6-7), 514-523. [http://dx.doi.org/10.1016/j.steroids.2007.03.002]. [PMID: 17482655].
[96]
Xue, R.; Han, N.; Ye, C.; Wang, H-B.; Yin, J. Cardenolide glycosides from root of Streptocaulon juventas. Phytochemistry, 2013, 88, 105-111. [http://dx.doi.org/10.1016/j.phytochem.2012.12.004]. [PMID: 23286880].
[97]
Fumiko, A.; Mori, Y.; Yamauchi, T. Cardenolide glycosides from the seeds of Asclepias curassavica. Chem. Pharm. Bull. (Tokyo), 1992, 40(11), 2917-2920. [http://dx.doi.org/10.1248/cpb.40.2917].
[98]
Song, X.; Zhang, D.; He, H.; Li, Y.; Yang, X.; Deng, C.; Tang, Z.; Cui, J.; Yue, Z. Steroidal glycosides from Reineckia carnea. Fitoterapia, 2015, 105, 240-245. [http://dx.doi.org/10.1016/j.fitote.2015.07.008]. [PMID: 26186990].
[99]
Nakazawa, T.; Yasuda, T.; Ohsawa, K. Metabolites of orally administered Magnolia officinalis extract in rats and man and its antidepressant-like effects in mice. J. Pharm. Pharmacol., 2003, 55(11), 1583-1591. [http://dx.doi.org/10.1211/0022357022188]. [PMID: 14713371].
[100]
Raees, M.A.; Hussain, H.; Rehman, N.U.; Khan, H.Y.; Abbas, G.; Al-Rawahi, A.; Elyassi, A.; Al-Amri, I.S.; Green, I.R.; Al-Broumi, M.A. Desmiflavasides A and B: Two new bioactive pregnane glycosides from the sap of Desmidorchis flava. Phytochem. Lett., 2015, 12, 153-157. [http://dx.doi.org/10.1016/j.phytol.2015.03.013].
[101]
Raees, M.A.; Hussain, H.; Al-Rawahi, A.; Csuk, R.; Muhammad, S.A.; Khan, H.Y.; Rehman, N.U.; Abbas, G.; Al-Broumi, M.A.; Green, I.R.; Elyassi, A.; Mahmood, T.; Al-Harrasi, A. Anti-proliferative and computational studies of two new pregnane glycosides from Desmidorchis flava. Bioorg. Chem., 2016, 67, 95-104. [http://dx.doi.org/10.1016/j.bioorg.2016.05.008]. [PMID: 27299811].
[102]
Salem, A-F.Z.; Salem, M.Z.; González-Ronquillo, M.; Camacho, L.; Cipriano, M. Major chemical constituents of Leucaena leucocephala and Salix babylonica leaf extracts. J. Trop. Agric., 2011, 49, 95-98.
[103]
Verma, A.; Singh, D.; Anwar, F.; Bhatt, P.C.; Al-Abbasi, F.; Kumar, V. Triterpenoids principle of Wedelia calendulacea attenuated diethynitrosamine-induced hepatocellular carcinoma via down-regulating oxidative stress, inflammation and pathology via NF-kB pathway. Inflammopharmacology, 2018, 26(1), 133-146.