General Review Article

癌症治疗中的基因沉默策略:耐药性的更新

卷 26, 期 34, 2019

页: [6282 - 6303] 页: 22

弟呕挨: 10.2174/0929867325666180403141554

价格: $65

conference banner
摘要

RNAi,转录后基因沉默机制,可以被认为是科学领域最重要的突破和快速发展的领域之一。 研究人员试图将这一发现用于各种疾病的治疗,尽管针对耐药性癌症的治疗方法多种多样,但癌症是其中之一,但根除耐药性仍是一个无法解决的问题。 本综述总结了转录和转录后基因沉默机制,并着重指出了导致耐药性的机制,例如药物外排,药物失活,药物靶点改变,DNA损伤修复,上皮-间质转化以及 肿瘤细胞异质性和肿瘤微环境的作用,涉及这些过程中的基因。 最终指出了RNAi在体内治疗疾病和进展中所应用的障碍。

关键词: 耐药性,基因沉默,癌症,RNA干扰,转录后基因,耐治疗性癌症。

[1]
Shah, S.M.; Saini, N.; Ashraf, S.; Kumar, G.R.; Center, A.B. Gene Silencing, mechanism and applications. Int J Biomed Life Sci, 2012, 3(1), 114-126.
[2]
Miele, E.; Spinelli, G.P.; Miele, E.; Di Fabrizio, E.; Ferretti, E.; Tomao, S.; Gulino, A. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int. J. Nanomedicine, 2012, 7, 3637-3657.
[http://dx.doi.org/10.2147/IJN.S23696] [PMID: 22915840]
[3]
Lu, B.; Huang, X.; Mo, J.; Zhao, W. Drug delivery using nanoparticles for cancer stem-like cell targeting. Front. Pharmacol., 2016, 7, 84.
[http://dx.doi.org/10.3389/fphar.2016.00084] [PMID: 27148051]
[4]
Liu, T.; Liu, X.; Li, W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget, 2016, 7(26), 40800-40815.
[http://dx.doi.org/10.18632/oncotarget.8315] [PMID: 27027348]
[5]
Kapse-Mistry, S.; Govender, T.; Srivastava, R.; Yergeri, M. Nanodrug delivery in reversing multidrug resistance in cancer cells. Front. Pharmacol., 2014, 5, 159.
[http://dx.doi.org/10.3389/fphar.2014.00159] [PMID: 25071577]
[6]
Shi, W-J.; Gao, J-B. Molecular mechanisms of chemoresistance in gastric cancer. World J. Gastrointest. Oncol., 2016, 8(9), 673-681.
[http://dx.doi.org/10.4251/wjgo.v8.i9.673] [PMID: 27672425]
[7]
Chen, Y-Y.; Li, Z-Z.; Ye, Y-Y.; Xu, F.; Niu, R-J.; Zhang, H-C.; Zhang, Y-J.; Liu, Y-B.; Han, B-S. Knockdown of SALL4 inhibits the proliferation and reverses the resistance of MCF-7/ADR cells to doxorubicin hydrochloride. BMC Mol. Biol., 2016, 17(1), 6.
[http://dx.doi.org/10.1186/s12867-016-0055-y] [PMID: 26935744]
[8]
Jones, V.S.; Huang, R-Y.; Chen, L-P.; Chen, Z-S.; Fu, L.; Huang, R-P. Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim. Biophys. Acta, 2016, 1865(2), 255-265.
[http://dx.doi.org/10.1016/j.bbcan.2016.03.005] [PMID: 26993403]
[9]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: an overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[10]
Hu, T.; Li, Z.; Gao, C-Y.; Cho, C.H. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J. Gastroenterol., 2016, 22(30), 6876-6889.
[http://dx.doi.org/10.3748/wjg.v22.i30.6876] [PMID: 27570424]
[11]
Chorawala, M.; Oza, P.; Shah, G. Mechanisms of anticancer drugs resistance: an overview. Int. J. Pharm. Sci. Drug Res., 2012, 4(1), 1-9.
[12]
Magee, P.; Shi, L.; Garofalo, M. Role of microRNAs in chemoresistance. Ann. Transl. Med., 2015, 3(21), 332.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2015.11.32] [PMID: 26734642]
[13]
Zhang, G-N.; Ashby, C.R. Jr.; Zhang, Y-K.; Chen, Z-S.; Guo, H. The reversal of antineoplastic drug resistance in cancer cells by β-elemene. Chin. J. Cancer, 2015, 34(11), 488-495.
[http://dx.doi.org/10.1186/s40880-015-0048-0] [PMID: 26370907]
[14]
Schmidt, F.; Efferth, T. Tumor heterogeneity, single-cell sequencing, and drug resistance. Pharmaceuticals (Basel), 2016, 9(2), 33.
[http://dx.doi.org/10.3390/ph9020033] [PMID: 27322289]
[15]
Wang, P.; An, F.; Zhuang, X.; Liu, J.; Zhao, L.; Zhang, B.; Liu, L.; Lin, P.; Li, M. Chronopharmacology and mechanism of antitumor effect of erlotinib in Lewis tumor-bearing mice. PLoS One, 2014, 9(7)e101720
[http://dx.doi.org/10.1371/journal.pone.0101720] [PMID: 25000529]
[16]
Almåsbak, H.; Aarvak, T.; Vemuri, M.C.M.C. CAR T cell therapy: A game changer in cancer treatment. Journal of immunology research, 2016.
[http://dx.doi.org/10.1155/2016/5474602]
[17]
Li, H.; Wu, X.; Cheng, X. Advances in diagnosis and treatment of metastatic cervical cancer. J. Gynecol. Oncol., 2016, 27(4)e43
[http://dx.doi.org/10.3802/jgo.2016.27.e43] [PMID: 27171673]
[18]
Yin, F.; Liu, X.; Li, D.; Wang, Q.; Zhang, W.; Li, L. Tumor suppressor genes associated with drug resistance in ovarian cancer. (review) Oncol. Rep., 2013, 30(1), 3-10.
[http://dx.doi.org/10.3892/or.2013.2446] [PMID: 23660957]
[19]
Xu, J-H.; Hu, S-L.; Shen, G-D.; Shen, G. Tumor suppressor genes and their underlying interactions in paclitaxel resistance in cancer therapy. Cancer Cell Int., 2016, 16(1), 13.
[http://dx.doi.org/10.1186/s12935-016-0290-9] [PMID: 26900348]
[20]
Luqmani, Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract., 2005, 14(Suppl. 1), 35-48.
[http://dx.doi.org/10.1159/000086183] [PMID: 16103712]
[21]
Yadav, S.; van Vlerken, L.E.; Little, S.R.; Amiji, M.M. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother. Pharmacol., 2009, 63(4), 711-722.
[http://dx.doi.org/10.1007/s00280-008-0790-y] [PMID: 18618115]
[22]
Barakate, A.; Stephens, J. An overview of CRISPR-based tools and their improvements: new opportunities in understanding plant–pathogen interactions for better crop protection. Front. Plant Sci., 2016, 7, 765.
[http://dx.doi.org/10.3389/fpls.2016.00765] [PMID: 27313592]
[23]
Esteller, M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Genet., 2007, 16(Spec No 1), R50-R59.
[http://dx.doi.org/10.1093/hmg/ddm018] [PMID: 17613547]
[24]
Schoeberl, U.E.; Kurth, H.M.; Noto, T.; Mochizuki, K. Biased transcription and selective degradation of small RNAs shape the pattern of DNA elimination in Tetrahymena. Genes Dev., 2012, 26(15), 1729-1742.
[http://dx.doi.org/10.1101/gad.196493.112] [PMID: 22855833]
[25]
Noto, T.; Kataoka, K.; Suhren, J.H.; Hayashi, A.; Woolcock, K.J.; Gorovsky, M.A.; Mochizuki, K. Small-RNA-mediated genome-wide trans-recognition network in Tetrahymena DNA elimination. Mol. Cell, 2015, 59(2), 229-242.
[http://dx.doi.org/10.1016/j.molcel.2015.05.024] [PMID: 26095658]
[26]
Coruh, C.; Cho, S.H.; Shahid, S.; Liu, Q.; Wierzbicki, A.; Axtell, M.J. Comprehensive annotation of Physcomitrella patens small RNA loci reveals that the heterochromatic short interfering RNA pathway is largely conserved in land plants. Plant Cell, 2015, 27(8), 2148-2162.
[http://dx.doi.org/10.1105/tpc.15.00228] [PMID: 26209555]
[27]
Blevins, T.; Podicheti, R.; Mishra, V.; Marasco, M.; Wang, J.; Rusch, D.; Tang, H.; Pikaard, C.S. Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. eLife, 2015, 4e09591
[http://dx.doi.org/10.7554/eLife.09591] [PMID: 26430765]
[28]
Wassenegger, M. The role of the RNAi machinery in heterochromatin formation. Cell, 2005, 122(1), 13-16.
[http://dx.doi.org/10.1016/j.cell.2005.06.034] [PMID: 16009128]
[29]
Götz, U.; Marker, S.; Cheaib, M.; Andresen, K.; Shrestha, S.; Durai, D.A.; Nordström, K.J.; Schulz, M.H.; Simon, M. Two sets of RNAi components are required for heterochromatin formation in trans triggered by truncated transgenes. Nucleic Acids Res., 2016, 44(12), 5908-5923.
[http://dx.doi.org/10.1093/nar/gkw267] [PMID: 27085807]
[30]
Fagegaltier, D.; Bougé, A-L.; Berry, B.; Poisot, E.; Sismeiro, O.; Coppée, J-Y.; Théodore, L.; Voinnet, O.; Antoniewski, C. The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. Proc. Natl. Acad. Sci. USA, 2009, 106(50), 21258-21263.
[http://dx.doi.org/10.1073/pnas.0809208105] [PMID: 19948966]
[31]
Zhao, Y.; Sun, H.; Wang, H. Long noncoding RNAs in DNA methylation: new players stepping into the old game. Cell Biosci., 2016, 6(1), 45.
[http://dx.doi.org/10.1186/s13578-016-0109-3] [PMID: 27408682]
[32]
Jacinto, F.V.; Esteller, M. Mutator pathways unleashed by epigenetic silencing in human cancer. Mutagenesis, 2007, 22(4), 247-253.
[http://dx.doi.org/10.1093/mutage/gem009] [PMID: 17412712]
[33]
Yong, W-S.; Hsu, F-M.; Chen, P-Y. Profiling genome-wide DNA methylation. Epigenetics Chromatin, 2016, 9(1), 26.
[http://dx.doi.org/10.1186/s13072-016-0075-3] [PMID: 27358654]
[34]
Abdelfatah, E.; Kerner, Z.; Nanda, N.; Ahuja, N. Epigenetic therapy in gastrointestinal cancer: the right combination. Therap. Adv. Gastroenterol., 2016, 9(4), 560-579.
[http://dx.doi.org/10.1177/1756283X16644247] [PMID: 27366224]
[35]
Richter, S.; Morrison, S.; Connor, T.; Su, J.; Print, C.G.; Ronimus, R.S.; McGee, S.L.; Wilson, W.R. Zinc finger nuclease mediated knockout of ADP-dependent glucokinase in cancer cell lines: effects on cell survival and mitochondrial oxidative metabolism. PLoS One, 2013, 8(6)e65267
[http://dx.doi.org/10.1371/journal.pone.0065267] [PMID: 23799003]
[36]
Cui, C.; Song, Y.; Liu, J.; Ge, H.; Li, Q.; Huang, H.; Hu, L.; Zhu, H.; Jin, Y.; Zhang, Y. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk. Sci. Rep., 2015, 5, 10482.
[http://dx.doi.org/10.1038/srep10482] [PMID: 25994151]
[37]
Meng, X.; Noyes, M.B.; Zhu, L.J.; Lawson, N.D.; Wolfe, S.A. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat. Biotechnol., 2008, 26(6), 695-701.
[http://dx.doi.org/10.1038/nbt1398] [PMID: 18500337]
[38]
Koo, T.; Lee, J.; Kim, J-S. Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Mol. Cells, 2015, 38(6), 475-481.
[http://dx.doi.org/10.14348/molcells.2015.0103] [PMID: 25985872]
[39]
Tokuda, S.; Furuse, M. Claudin-2 knockout by TALEN-mediated gene targeting in MDCK cells: claudin-2 independently determines the leaky property of tight junctions in MDCK cells. PLoS One, 2015, 10(3)e0119869
[http://dx.doi.org/10.1371/journal.pone.0119869] [PMID: 25781928]
[40]
Butler, N.M.; Atkins, P.A.; Voytas, D.F.; Douches, D.S. Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One, 2015, 10(12)e0144591
[http://dx.doi.org/10.1371/journal.pone.0144591] [PMID: 26657719]
[41]
Savić, N.; Schwank, G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl. Res., 2016, 168, 15-21.
[http://dx.doi.org/10.1016/j.trsl.2015.09.008] [PMID: 26470680]
[42]
Unniyampurath, U.; Pilankatta, R.; Krishnan, M.N. RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi? Int. J. Mol. Sci., 2016, 17(3), 291.
[http://dx.doi.org/10.3390/ijms17030291] [PMID: 26927085]
[43]
Gratz, S.J.; Rubinstein, C.D.; Harrison, M.M.; Wildonger, J.; O'Connor‐Giles, K.M. CRISPR‐Cas9 Genome Editing in Drosophila. Current protocols in molecular biology, 2015. 31.32., 31-31, 32. 20..
[44]
Park, C-Y.; Halevy, T.; Lee, D.R.; Sung, J.J.; Lee, J.S.; Yanuka, O.; Benvenisty, N.; Kim, D-W. Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons. Cell Rep., 2015, 13(2), 234-241.
[http://dx.doi.org/10.1016/j.celrep.2015.08.084] [PMID: 26440889]
[45]
Kolniak, T.A.; Sullivan, J.M. Rapid, cell-based toxicity screen of potentially therapeutic post-transcriptional gene silencing agents. Exp. Eye Res., 2011, 92(5), 328-337.
[http://dx.doi.org/10.1016/j.exer.2011.01.004] [PMID: 21256844]
[46]
Studzińska, S.; Rola, R.; Buszewski, B. Development of a method based on ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry for studying the in vitro metabolism of phosphorothioate oligonucleotides. Anal. Bioanal. Chem., 2016, 408(6), 1585-1595.
[http://dx.doi.org/10.1007/s00216-015-9266-1] [PMID: 26758600]
[47]
Mastroyiannopoulos, N.P.; Uney, J.B.; Phylactou, L.A. The application of ribozymes and DNAzymes in muscle and brain. Molecules, 2010, 15(8), 5460-5472.
[http://dx.doi.org/10.3390/molecules15085460] [PMID: 20714308]
[48]
Vickers, T.A.; Crooke, S.T. The rates of the major steps in the molecular mechanism of RNase H1-dependent antisense oligonucleotide induced degradation of RNA. Nucleic Acids Res., 2015, 43(18), 8955-8963.
[http://dx.doi.org/10.1093/nar/gkv920] [PMID: 26384424]
[49]
Koo, T.; Wood, M.J. Clinical trials using antisense oligonucleotides in duchenne muscular dystrophy. Hum. Gene Ther., 2013, 24(5), 479-488.
[http://dx.doi.org/10.1089/hum.2012.234] [PMID: 23521559]
[50]
Juliano, R.L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res., 2016, 44(14), 6518-6548.
[http://dx.doi.org/10.1093/nar/gkw236] [PMID: 27084936]
[51]
Burel, S.A.; Hart, C.E.; Cauntay, P.; Hsiao, J.; Machemer, T.; Katz, M.; Watt, A.; Bui, H.H.; Younis, H.; Sabripour, M.; Freier, S.M.; Hung, G.; Dan, A.; Prakash, T.P.; Seth, P.P.; Swayze, E.E.; Bennett, C.F.; Crooke, S.T.; Henry, S.P. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res., 2016, 44(5), 2093-2109.
[http://dx.doi.org/10.1093/nar/gkv1210] [PMID: 26553810]
[52]
Phylactou, L.A.; Kilpatrick, M.W.; Wood, M.J. Ribozymes as therapeutic tools for genetic disease. Hum. Mol. Genet., 1998, 7(10), 1649-1653.
[http://dx.doi.org/10.1093/hmg/7.10.1649] [PMID: 9735387]
[53]
Scanlon, K.J. Anti-genes: siRNA, ribozymes and antisense. Curr. Pharm. Biotechnol., 2004, 5(5), 415-420.
[http://dx.doi.org/10.2174/1389201043376689] [PMID: 15544489]
[54]
Karami, H.; Baradaran, B.; Esfehani, A.; Sakhinia, M.; Sakhinia, E. Down-regulation of Mcl-1 by small interference RNA induces apoptosis and sensitizes HL-60 leukemia cells to etoposide. Asian Pac. J. Cancer Prev., 2014, 15(2), 629-635.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.629] [PMID: 24568469]
[55]
Bora, R.S.; Gupta, D.; Mukkur, T.K.S.; Saini, K.S. RNA interference therapeutics for cancer: challenges and opportunities. Mol. Med. Rep., 2012, 6(1), 9-15.
[http://dx.doi.org/10.3892/mmr.2012.871] [PMID: 22576734]
[56]
Ui-Tei, K. Is the efficiency of RNA silencing evolutionarily regulated? Int. J. Mol. Sci., 2016, 17(5), 719.
[http://dx.doi.org/10.3390/ijms17050719] [PMID: 27187367]
[57]
Nakanishi, K. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip. Rev. RNA, 2016, 7(5), 637-660.
[http://dx.doi.org/10.1002/wrna.1356] [PMID: 27184117]
[58]
Mahgoub, A.; Steer, C.J. MicroRNAs in the evaluation and potential treatment of liver diseases. J. Clin. Med., 2016, 5(5), 52.
[http://dx.doi.org/10.3390/jcm5050052] [PMID: 27171116]
[59]
Baulina, N.M.; Kulakova, O.G.; Favorova, O.O. MicroRNAs: the role in autoimmune inflammation. Acta Naturae, 2016, 8(1), 21-33.
[http://dx.doi.org/10.32607/20758251-2016-8-1-21-33] [PMID: 27099782]
[60]
Gurtner, A.; Falcone, E.; Garibaldi, F.; Piaggio, G. Dysregulation of microRNA biogenesis in cancer: the impact of mutant p53 on Drosha complex activity. J. Exp. Clin. Cancer Res., 2016, 35(1), 45.
[http://dx.doi.org/10.1186/s13046-016-0319-x] [PMID: 26971015]
[61]
Yao, S. MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation. Biol. Proced. Online, 2016, 18(1), 8.
[http://dx.doi.org/10.1186/s12575-016-0037-y] [PMID: 26966421]
[62]
Ohtsuka, M.; Ling, H.; Doki, Y.; Mori, M.; Calin, G.A. MicroRNA processing and human cancer. J. Clin. Med., 2015, 4(8), 1651-1667.
[http://dx.doi.org/10.3390/jcm4081651] [PMID: 26308063]
[63]
Kim, Y.J.; Maizel, A.; Chen, X. Traffic into silence: endomembranes and post-transcriptional RNA silencing. EMBO J., 2014, 33(9), 968-980.
[http://dx.doi.org/10.1002/embj.201387262] [PMID: 24668229]
[64]
Pecot, C.V.; Calin, G.A.; Coleman, R.L.; Lopez-Berestein, G.; Sood, A.K. RNA interference in the clinic: challenges and future directions. Nat. Rev. Cancer, 2011, 11(1), 59-67.
[http://dx.doi.org/10.1038/nrc2966] [PMID: 21160526]
[65]
Riquelme, I.; Letelier, P.; Riffo-Campos, A.L.; Brebi, P.; Roa, J.C. Emerging role of miRNAs in the drug resistance of gastric cancer. Int. J. Mol. Sci., 2016, 17(3), 424.
[http://dx.doi.org/10.3390/ijms17030424] [PMID: 27011182]
[66]
Guo, J.; Jiang, X.; Gui, S. RNA interference-based nanosystems for inflammatory bowel disease therapy. Int. J. Nanomedicine, 2016, 11, 5287-5310.
[http://dx.doi.org/10.2147/IJN.S116902] [PMID: 27789943]
[67]
Li, B-P.; Liu, J-L.; Chen, J-Q.; Wang, Z.; Mao, Y-T.; Chen, Y-Y. Effects of siRNA-mediated silencing of myeloid cell leukelia-1 on the biological behaviors and drug resistance of gastric cancer cells. Am. J. Transl. Res., 2015, 7(11), 2397-2411.
[PMID: 26807186]
[68]
Patil, V.S.; Zhou, R.; Rana, T.M. Gene regulation by non-coding RNAs. Crit. Rev. Biochem. Mol. Biol., 2014, 49(1), 16-32.
[http://dx.doi.org/10.3109/10409238.2013.844092] [PMID: 24164576]
[69]
Weick, E-M.; Miska, E.A. piRNAs: from biogenesis to function. Development, 2014, 141(18), 3458-3471.
[http://dx.doi.org/10.1242/dev.094037] [PMID: 25183868]
[70]
El-Tanani, M.; Dakir, H.; Raynor, B.; Morgan, R. Mechanisms of nuclear export in cancer and resistance to chemotherapy. Cancers (Basel), 2016, 8(3), 35.
[http://dx.doi.org/10.3390/cancers8030035] [PMID: 26985906]
[71]
Gu, S.; Hu, Z.; Ngamcherdtrakul, W.; Castro, D.J.; Morry, J.; Reda, M.M.; Gray, J.W.; Yantasee, W. Therapeutic siRNA for drug-resistant HER2-positive breast cancer. Oncotarget, 2016, 7(12), 14727-14741.
[http://dx.doi.org/10.18632/oncotarget.7409] [PMID: 26894975]
[72]
Hafsi, S.; Pezzino, F.M.; Candido, S.; Ligresti, G.; Spandidos, D.A.; Soua, Z.; McCubrey, J.A.; Travali, S.; Libra, M. Gene alterations in the PI3K/PTEN/AKT pathway as a mechanism of drug-resistance. Int. J. Oncol., 2012, 40(3), 639-644.
[http://dx.doi.org/10.3892/ijo.2011.1312] [PMID: 22200790]
[73]
Pao, W.; Miller, V.A.; Politi, K.A.; Riely, G.J.; Somwar, R.; Zakowski, M.F.; Kris, M.G.; Varmus, H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med., 2005, 2(3)e73
[http://dx.doi.org/10.1371/journal.pmed.0020073] [PMID: 15737014]
[74]
Liu, C.; Armstrong, C.; Zhu, Y.; Lou, W.; Gao, A.C. Niclosamide enhances abiraterone treatment via inhibition of androgen receptor variants in castration resistant prostate cancer. Oncotarget, 2016, 7(22), 32210-32220.
[http://dx.doi.org/10.18632/oncotarget.8493] [PMID: 27049719]
[75]
Johnson, K.R.; Fan, W. Reduced expression of p53 and p21WAF1/CIP1 sensitizes human breast cancer cells to paclitaxel and its combination with 5-fluorouracil. Anticancer Res., 2002, 22(6A), 3197-3204.
[PMID: 12530065]
[76]
Garofalo, M.; Croce, C.M. MicroRNAs as therapeutic targets in chemoresistance. Drug Resist. Updat., 2013, 16(3-5), 47-59.
[http://dx.doi.org/10.1016/j.drup.2013.05.001] [PMID: 23757365]
[77]
Oronsky, B.T.; Oronsky, A.L.; Lybeck, M.; Oronsky, N.C.; Scicinski, J.J.; Carter, C.; Day, R.M.; Rodriguez Orengo, J.F.; Rodriguez-Torres, M.; Fanger, G.F.; Reid, T.R. Episensitization: defying time’s arrow. Front. Oncol., 2015, 5, 134.
[http://dx.doi.org/10.3389/fonc.2015.00134] [PMID: 26125013]
[78]
Trimarchi, M.P.; Mouangsavanh, M.; Huang, T.H-M. Cancer epigenetics: a perspective on the role of DNA methylation in acquired endocrine resistance. Chin. J. Cancer, 2011, 30(11), 749-756.
[http://dx.doi.org/10.5732/cjc.011.10128] [PMID: 22035855]
[79]
Ganapathi, R.N.; Ganapathi, M.K. Mechanisms regulating resistance to inhibitors of topoisomerase II. Front. Pharmacol., 2013, 4, 89.
[http://dx.doi.org/10.3389/fphar.2013.00089] [PMID: 23914174]
[80]
Szöllősi, D.; Rose-Sperling, D.; Hellmich, U.A.; Stockner, T. Comparison of mechanistic transport cycle models of ABC exporters. Biochimica et Biophysica Acta (BBA)-. Biomembranes, 2018, 1860(4), 818-832.
[http://dx.doi.org/10.1016/j.bbamem.2017.10.028] [PMID: 29097275]
[81]
Pokharel, D.; Roseblade, A.; Oenarto, V.; Lu, J.F.; Bebawy, M. Proteins regulating the intercellular transfer and function of P-glycoprotein in multidrug-resistant cancer ecancermedicalscience, 2017, 11.
[82]
Kachalaki, S.; Baradaran, B.; Majidi, J.; Yousefi, M.; Shanehbandi, D.; Mohammadinejad, S.; Mansoori, B. Reversal of chemoresistance with small interference RNA (siRNA) in etoposide resistant acute myeloid leukemia cells (HL-60). Biomed. Pharmacother., 2015, 75, 100-104.
[http://dx.doi.org/10.1016/j.biopha.2015.08.032] [PMID: 26463638]
[83]
Leung, A.W.; Dragowska, W.H.; Ricaurte, D.; Kwok, B.; Mathew, V.; Roosendaal, J.; Ahluwalia, A.; Warburton, C.; Laskin, J.J.; Stirling, P.C.; Qadir, M.A.; Bally, M.B. 3′-Phosphoadenosine 5′-phosphosulfate synthase 1 (PAPSS1) knockdown sensitizes non-small cell lung cancer cells to DNA damaging agents. Oncotarget, 2015, 6(19), 17161-17177.
[http://dx.doi.org/10.18632/oncotarget.3635] [PMID: 26220590]
[84]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 2016, 8(4), 603-619.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[85]
Huang, D.; Duan, H.; Huang, H.; Tong, X.; Han, Y.; Ru, G.; Qu, L.; Shou, C.; Zhao, Z. Cisplatin resistance in gastric cancer cells is associated with HER2 upregulation-induced epithelial-mesenchymal transition. Sci. Rep., 2016, 6, 20502.
[http://dx.doi.org/10.1038/srep20502] [PMID: 26846307]
[86]
Suda, K.; Tomizawa, K.; Fujii, M.; Murakami, H.; Osada, H.; Maehara, Y.; Yatabe, Y.; Sekido, Y.; Mitsudomi, T. Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib. J. Thorac. Oncol., 2011, 6(7), 1152-1161.
[http://dx.doi.org/10.1097/JTO.0b013e318216ee52] [PMID: 21597390]
[87]
Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 2010, 29(34), 4741-4751.
[http://dx.doi.org/10.1038/onc.2010.215] [PMID: 20531305]
[88]
Haslehurst, A.M.; Koti, M.; Dharsee, M.; Nuin, P.; Evans, K.; Geraci, J.; Childs, T.; Chen, J.; Li, J.; Weberpals, J.; Davey, S.; Squire, J.; Park, P.C.; Feilotter, H. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer, 2012, 12(1), 91.
[http://dx.doi.org/10.1186/1471-2407-12-91] [PMID: 22429801]
[89]
Zhao, Y.; Alakhova, D.Y.; Kabanov, A.V. Can nanomedicines kill cancer stem cells? Adv. Drug Deliv. Rev., 2013, 65(13-14), 1763-1783.
[http://dx.doi.org/10.1016/j.addr.2013.09.016] [PMID: 24120657]
[90]
Giuffrida, R.; Adamo, L.; Iannolo, G.; Vicari, L.; Giuffrida, D.; Eramo, A.; Gulisano, M.; Memeo, L.; Conticello, C. Resistance of papillary thyroid cancer stem cells to chemotherapy. Oncol. Lett., 2016, 12(1), 687-691.
[http://dx.doi.org/10.3892/ol.2016.4666] [PMID: 27347201]
[91]
Canter, R.J.; Grossenbacher, S.K.; Ames, E.; Murphy, W.J. Immune targeting of cancer stem cells in gastrointestinal oncology. J. Gastrointest. Oncol., 2016, 7(Suppl. 1), S1-S10.
[http://dx.doi.org/10.3978/j.issn.2078-6891.2015.066] [PMID: 27034806]
[92]
Heiler, S.; Wang, Z.; Zöller, M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J. Gastroenterol., 2016, 22(26), 5971-6007.
[http://dx.doi.org/10.3748/wjg.v22.i26.5971] [PMID: 27468191]
[93]
Aminuddin, A.; Ng, P.Y. Promising Druggable Target in Head and Neck Squamous Cell Carcinoma: Wnt Signaling. Front. Pharmacol., 2016, 7, 244.
[http://dx.doi.org/10.3389/fphar.2016.00244] [PMID: 27570510]
[94]
Huang, F.; Wang, B-R.; Wu, Y-Q.; Wang, F-C.; Zhang, J.; Wang, Y-G. Oncolytic viruses against cancer stem cells: A promising approach for gastrointestinal cancer. World J. Gastroenterol., 2016, 22(35), 7999-8009.
[http://dx.doi.org/10.3748/wjg.v22.i35.7999] [PMID: 27672294]
[95]
Yoon, C.; Park, D.J.; Schmidt, B.; Thomas, N.J.; Lee, H-J.; Kim, T.S.; Janjigian, Y.Y.; Cohen, D.J.; Yoon, S.S. CD44 expression denotes a subpopulation of gastric cancer cells in which Hedgehog signaling promotes chemotherapy resistance. Clin. Cancer Res., 2014, 20(15), 3974-3988.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0011] [PMID: 24947926]
[96]
Liebelt, B.D.; Shingu, T.; Zhou, X.; Ren, J.; Shin, S.A.; Hu, J. Glioma stem cells: signaling, microenvironment, and therapy. Stem Cells Int., 2016, 20167849890
[http://dx.doi.org/10.1155/2016/7849890] [PMID: 26880988]
[97]
Liu, H.; Wang, H.; Li, C.; Zhang, T.; Meng, X.; Zhang, Y.; Qian, H. Spheres from cervical cancer cells display stemness and cancer drug resistance. Oncol. Lett., 2016, 12(3), 2184-2188.
[http://dx.doi.org/10.3892/ol.2016.4893] [PMID: 27602161]
[98]
Lyakhovich, A.; Lleonart, M.E. Bypassing mechanisms of mitochondria-mediated cancer stem cells resistance to chemo-and radiotherapy. Oxid. Med.and Cell. Longev., 2016, 20161716341
[http://dx.doi.org/10.1155/2016/1716341] [PMID: 26697128]
[99]
Kakar, S.S.; Worth, C.A.; Wang, Z.; Carter, K.; Ratajczak, M.; Gunjal, P. DOXIL when combined with Withaferin A (WFA) targets ALDH1 positive cancer stem cells in ovarian cancer. J. Cancer Stem Cell Res., 2016, 4e1002
[http://dx.doi.org/10.14343/JCSCR.2016.4e1002] [PMID: 27668267]
[100]
Bandhavkar, S. Cancer stem cells: a metastasizing menace! Cancer Med., 2016, 5(4), 649-655.
[http://dx.doi.org/10.1002/cam4.629] [PMID: 26773710]
[101]
Codony-Servat, J.; Rosell, R. Cancer stem cells and immunoresistance: clinical implications and solutions. Transl. Lung Cancer Res., 2015, 4(6), 689-703.
[PMID: 26798578]
[102]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[103]
Deng, Q.F.; Su, B.O.; Zhao, Y.M.; Tang, L.; Zhang, J.; Zhou, C.C. Integrin β1-mediated acquired gefitinib resistance in non-small cell lung cancer cells occurs via the phosphoinositide 3-kinase-dependent pathway. Oncol. Lett., 2016, 11(1), 535-542.
[http://dx.doi.org/10.3892/ol.2015.3945] [PMID: 26870244]
[104]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[105]
Minchinton, A.I.; Tannock, I.F. Drug penetration in solid tumours. Nat. Rev. Cancer, 2006, 6(8), 583-592.
[http://dx.doi.org/10.1038/nrc1893] [PMID: 16862189]
[106]
Zhao, M.; Sun, J.; Zhao, Z. TSGene: a web resource for tumor suppressor genes. Nucleic Acids Res., 2013, 41(Database issue), D970-D976.
[http://dx.doi.org/10.1093/nar/gks937] [PMID: 23066107]
[107]
Raghav, K.P.S.; Gonzalez-Angulo, A.M.; Blumenschein, G.R. Jr. Role of HGF/MET axis in resistance of lung cancer to contemporary management. Transl. Lung Cancer Res., 2012, 1(3), 179-193.
[http://dx.doi.org/10.3978/j.issn.2218-6751.2012.09.04] [PMID: 25806180]
[108]
Martinez, L.; Arnaud, O.; Henin, E.; Tao, H.; Chaptal, V.; Doshi, R.; Andrieu, T.; Dussurgey, S.; Tod, M.; Di Pietro, A.; Zhang, Q.; Chang, G.; Falson, P. Understanding polyspecificity within the substrate-binding cavity of the human multidrug resistance P-glycoprotein. FEBS J., 2014, 281(3), 673-682.
[http://dx.doi.org/10.1111/febs.12613] [PMID: 24219411]
[109]
Kimura, Y.; Morita, S.Y.; Matsuo, M.; Ueda, K. Mechanism of multidrug recognition by MDR1/ABCB1. Cancer Sci., 2007, 98(9), 1303-1310.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00538.x] [PMID: 17608770]
[110]
Wang, W-B.; Yang, Y.; Zhao, Y-P.; Zhang, T-P.; Liao, Q.; Shu, H. Recent studies of 5-fluorouracil resistance in pancreatic cancer. World J. Gastroenterol., 2014, 20(42), 15682-15690.
[http://dx.doi.org/10.3748/wjg.v20.i42.15682] [PMID: 25400452]
[111]
Nakamura, Y.; Oka, M.; Soda, H.; Shiozawa, K.; Yoshikawa, M.; Itoh, A.; Ikegami, Y.; Tsurutani, J.; Nakatomi, K.; Kitazaki, T.; Doi, S.; Yoshida, H.; Kohno, S. Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res., 2005, 65(4), 1541-1546.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2417] [PMID: 15735043]
[112]
Zhao, X.M.; Pan, S.Y.; Huang, Q.L.; Lu, Y.N.; Wu, X.H.; Chang, J.H.; Liu, Z.B.; Cai, X.W.; Liu, Q.; Wang, J.L.; Fu, X.L. PA-MSHA in combination with EGFR tyrosine kinase inhibitor: A new strategy to overcome the drug resistance of non-small cell lung cancer cells. Oncotarget, 2016, 7(31), 49384-49396.
[http://dx.doi.org/10.18632/oncotarget.9891] [PMID: 27283902]
[113]
Yan, D.; An, G.; Kuo, M.T. C-Jun N-terminal kinase signalling pathway in response to cisplatin. J. Cell. Mol. Med., 2016, 20(11), 2013-2019.
[http://dx.doi.org/10.1111/jcmm.12908] [PMID: 27374471]
[114]
Bai, X-Y.; Zhang, X-C.; Yang, S-Q.; An, S-J.; Chen, Z-H.; Su, J.; Xie, Z.; Gou, L-Y.; Wu, Y-L. Blockade of hedgehog signaling synergistically increases sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer cell lines. PLoS One, 2016, 11(3)e0149370
[http://dx.doi.org/10.1371/journal.pone.0149370] [PMID: 26943330]
[115]
Rondón-Lagos, M.; Villegas, V.E.; Rangel, N.; Sánchez, M.C.; Zaphiropoulos, P.G. Tamoxifen resistance: emerging molecular targets. Int. J. Mol. Sci., 2016, 17(8), 1357.
[http://dx.doi.org/10.3390/ijms17081357] [PMID: 27548161]
[116]
Youn, C-K.; Kim, M-H.; Cho, H-J.; Kim, H-B.; Chang, I-Y.; Chung, M-H.; You, H.J. Oncogenic H-Ras up-regulates expression of ERCC1 to protect cells from platinum-based anticancer agents. Cancer Res., 2004, 64(14), 4849-4857.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0348] [PMID: 15256455]
[117]
Amaral, C.L.; Freitas, L.B.; Tamura, R.E.; Tavares, M.R.; Pavan, I.C.; Bajgelman, M.C.; Simabuco, F.M. S6Ks isoforms contribute to viability, migration, docetaxel resistance and tumor formation of prostate cancer cells. BMC Cancer, 2016, 16(1), 602.
[http://dx.doi.org/10.1186/s12885-016-2629-y] [PMID: 27491285]
[118]
Martin, M.; Wei, H.; Lu, T. Targeting microenvironment in cancer therapeutics. Oncotarget, 2016, 7(32), 52575-52583.
[http://dx.doi.org/10.18632/oncotarget.9824] [PMID: 27270649]
[119]
Haga, A.; Funasaka, T.; Niinaka, Y.; Raz, A.; Nagase, H. Autocrine motility factor signaling induces tumor apoptotic resistance by regulations Apaf-1 and Caspase-9 apoptosome expression. Int. J. Cancer, 2003, 107(5), 707-714.
[http://dx.doi.org/10.1002/ijc.11449] [PMID: 14566819]
[120]
Drozd, E.; Gruber, B.; Marczewska, J.; Drozd, J.; Anuszewska, E. Intracellular glutathione level and efflux in human melanoma and cervical cancer cells differing in doxorubicin resistance. Postepy Hig. Med. Dosw., 2016, 70, 319-328.
[http://dx.doi.org/10.5604/17322693.1199712] [PMID: 27117108]
[121]
Wickström, M.; Dyberg, C.; Milosevic, J.; Einvik, C.; Calero, R.; Sveinbjörnsson, B.; Sandén, E.; Darabi, A.; Siesjö, P.; Kool, M.; Kogner, P.; Baryawno, N.; Johnsen, J.I. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance. Nat. Commun., 2015, 6, 8904.
[http://dx.doi.org/10.1038/ncomms9904] [PMID: 26603103]
[122]
Cabrini, G.; Fabbri, E.; Lo Nigro, C.; Dechecchi, M.C.; Gambari, R. Regulation of expression of O6-methylguanine-DNA methyltransferase and the treatment of glioblastoma (Review). Int. J. Oncol., 2015, 47(2), 417-428.
[http://dx.doi.org/10.3892/ijo.2015.3026] [PMID: 26035292]
[123]
Chang, I.; Mitsui, Y.; Fukuhara, S.; Gill, A.; Wong, D.K.; Yamamura, S.; Shahryari, V.; Tabatabai, Z.L.; Dahiya, R.; Shin, D.M.; Tanaka, Y. Loss of miR-200c up-regulates CYP1B1 and confers docetaxel resistance in renal cell carcinoma. Oncotarget, 2015, 6(10), 7774-7787.
[http://dx.doi.org/10.18632/oncotarget.3484] [PMID: 25860934]
[124]
Wang, T-L.; Diaz, L.A., Jr; Romans, K.; Bardelli, A.; Saha, S.; Galizia, G.; Choti, M.; Donehower, R.; Parmigiani, G.; Shih, IeM.; Iacobuzio-Donahue, C.; Kinzler, K.W.; Vogelstein, B.; Lengauer, C.; Velculescu, V.E. Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 3089-3094.
[http://dx.doi.org/10.1073/pnas.0308716101] [PMID: 14970324]
[125]
Zhang, X.; Yashiro, M.; Qiu, H.; Nishii, T.; Matsuzaki, T.; Hirakawa, K. Establishment and characterization of multidrug-resistant gastric cancer cell lines. Anticancer Res., 2010, 30(3), 915-921.
[PMID: 20393015]
[126]
Meng, X.; Qi, X.; Guo, H.; Cai, M.; Li, C.; Zhu, J.; Chen, F.; Guo, H.; Li, J.; Zhao, Y.; Liu, P.; Jia, X.; Yu, J.; Zhang, C.; Sun, W.; Yu, Y.; Jin, Y.; Bai, J.; Wang, M.; Rosales, J.; Lee, K.Y.; Fu, S. Novel role for non-homologous end joining in the formation of double minutes in methotrexate-resistant colon cancer cells. J. Med. Genet., 2015, 52(2), 135-144.
[http://dx.doi.org/10.1136/jmedgenet-2014-102703] [PMID: 25537274]
[127]
McNeil, E.M.; Melton, D.W. DNA repair endonuclease ERCC1-XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy. Nucleic Acids Res., 2012, 40(20), 9990-10004.
[http://dx.doi.org/10.1093/nar/gks818] [PMID: 22941649]
[128]
Stewart, D.J. Tumor and host factors that may limit efficacy of chemotherapy in non-small cell and small cell lung cancer. Crit. Rev. Oncol. Hematol., 2010, 75(3), 173-234.
[http://dx.doi.org/10.1016/j.critrevonc.2009.11.006] [PMID: 20047843]
[129]
Liu, C.L.; Chen, S.F.; Wu, M.Z.; Jao, S.W.; Lin, Y.S.; Yang, C.Y.; Lee, T.Y.; Wen, L.W.; Lan, G.L.; Nieh, S. The molecular and clinical verification of therapeutic resistance via the p38 MAPK-Hsp27 axis in lung cancer. Oncotarget, 2016, 7(12), 14279-14290.
[http://dx.doi.org/10.18632/oncotarget.7306] [PMID: 26872057]
[130]
Kimura, A.; Ogata, K.; Altan, B.; Yokobori, T.; Ide, M.; Mochiki, E.; Toyomasu, Y.; Kogure, N.; Yanoma, T.; Suzuki, M.; Bai, T.; Oyama, T.; Kuwano, H. Nuclear heat shock protein 110 expression is associated with poor prognosis and chemotherapy resistance in gastric cancer. Oncotarget, 2016, 7(14), 18415-18423.
[http://dx.doi.org/10.18632/oncotarget.7821] [PMID: 26943774]
[131]
Trieb, K.; Sulzbacher, I.; Kubista, B. Recurrence rate and progression of chondrosarcoma is correlated with heat shock protein expression. Oncol. Lett., 2016, 11(1), 521-524.
[http://dx.doi.org/10.3892/ol.2015.3926] [PMID: 26870241]
[132]
Hopkins, T.G.; Mura, M.; Al-Ashtal, H.A.; Lahr, R.M.; Abd-Latip, N.; Sweeney, K.; Lu, H.; Weir, J.; El-Bahrawy, M.; Steel, J.H.; Ghaem-Maghami, S.; Aboagye, E.O.; Berman, A.J.; Blagden, S.P. The RNA-binding protein LARP1 is a post-transcriptional regulator of survival and tumorigenesis in ovarian cancer. Nucleic Acids Res., 2016, 44(3), 1227-1246.
[http://dx.doi.org/10.1093/nar/gkv1515] [PMID: 26717985]
[133]
Wang, J.; Guo, Y.; Chu, H.; Guan, Y.; Bi, J.; Wang, B. Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis. Int. J. Mol. Sci., 2013, 14(5), 10015-10041.
[http://dx.doi.org/10.3390/ijms140510015] [PMID: 23665903]
[134]
Teng, R.; Hu, Y.; Zhou, J.; Seifer, B.; Chen, Y.; Shen, J.; Wang, L. Overexpression of Lin28 decreases the chemosensitivity of gastric cancer cells to oxaliplatin, paclitaxel, doxorubicin, and fluorouracil in part via microRNA-107. PLoS One, 2015, 10(12)e0143716
[http://dx.doi.org/10.1371/journal.pone.0143716] [PMID: 26636340]
[135]
Jiang, P.; Wang, P.; Sun, X.; Yuan, Z.; Zhan, R.; Ma, X.; Li, W. Knockdown of long noncoding RNA H19 sensitizes human glioma cells to temozolomide therapy. OncoTargets Ther., 2016, 9, 3501-3509.
[http://dx.doi.org/10.2147/OTT.S96278] [PMID: 27366087]
[136]
Cheng, N.; Cai, W.; Ren, S.; Li, X.; Wang, Q.; Pan, H.; Zhao, M.; Li, J.; Zhang, Y.; Zhao, C.; Chen, X.; Fei, K.; Zhou, C.; Hirsch, F.R. Long non-coding RNA UCA1 induces non-T790M acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway in EGFR-mutant non-small cell lung cancer. Oncotarget, 2015, 6(27), 23582-23593.
[http://dx.doi.org/10.18632/oncotarget.4361] [PMID: 26160838]
[137]
Liu, E.; Liu, Z.; Zhou, Y.; Mi, R.; Wang, D. Overexpression of long non-coding RNA PVT1 in ovarian cancer cells promotes cisplatin resistance by regulating apoptotic pathways. Int. J. Clin. Exp. Med., 2015, 8(11), 20565-20572.
[PMID: 26884974]
[138]
Pan, J-J.; Xie, X-J.; Li, X.; Chen, W. Long Non-coding RNAs and Drug Resistance. Asian Pacific journal of cancer prevention. Asian Pac. J. Cancer Prev., 2015, 16(18), 8067-8073.
[http://dx.doi.org/10.7314/APJCP.2015.16.18.8067] [PMID: 26745040]
[139]
Zhou, X.; Chen, J.; Tang, W. The molecular mechanism of HOTAIR in tumorigenesis, metastasis, and drug resistance. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(12), 1011-1015.
[http://dx.doi.org/10.1093/abbs/gmu104] [PMID: 25385164]
[140]
Yang, Y.; Jiang, C.; Yang, Y.; Guo, L.; Huang, J.; Liu, X.; Wu, C.; Zou, J. Silencing of LncRNA-HOTAIR decreases drug resistance of non-small cell lung cancer cells by inactivating autophagy via suppressing the phosphorylation of ULK1. Biochem. Biophys. Res. Commun., 2018, 497(4), 1003-1010.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.141] [PMID: 29470986]
[141]
Yang, S.Z.; Xu, F.; Zhou, T.; Zhao, X.; McDonald, J.M.; Chen, Y. The long non-coding RNA HOTAIR enhances pancreatic cancer resistance to TNF-related apoptosis-inducing ligand. J. Biol. Chem., 2017, 292(25), 10390-10397.
[http://dx.doi.org/10.1074/jbc.M117.786830] [PMID: 28476883]
[142]
Worku, T.; Bhattarai, D.; Ayers, D.; Wang, K.; Wang, C.; Rehman, Z.U.; Talpur, H.S.; Yang, L. Long non-coding RNAs: The new horizon of gene regulation in ovarian cancer. Cell. Physiol. Biochem., 2017, 44(3), 948-966.
[http://dx.doi.org/10.1159/000485395] [PMID: 29179183]
[143]
Li, L-J.; Chai, Y.; Guo, X-J.; Chu, S-L.; Zhang, L-S. The effects of the long non-coding RNA MALAT-1 regulated autophagy-related signaling pathway on chemotherapy resistance in diffuse large B-cell lymphoma. Biomed. Pharmacother., 2017, 89, 939-948.
[http://dx.doi.org/10.1016/j.biopha.2017.02.011] [PMID: 28292022]
[144]
Yuan, P.; Cao, W.; Zang, Q.; Li, G.; Guo, X.; Fan, J. The HIF-2α-MALAT1-miR-216b axis regulates multi-drug resistance of hepatocellular carcinoma cells via modulating autophagy. Biochem. Biophys. Res. Commun., 2016, 478(3), 1067-1073.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.065] [PMID: 27524242]
[145]
Valeri, N.; Gasparini, P.; Braconi, C.; Paone, A.; Lovat, F.; Fabbri, M.; Sumani, K.M.; Alder, H.; Amadori, D.; Patel, T.; Nuovo, G.J.; Fishel, R.; Croce, C.M. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc. Natl. Acad. Sci. USA, 2010, 107(49), 21098-21103.
[http://dx.doi.org/10.1073/pnas.1015541107] [PMID: 21078976]
[146]
Allen, K.E.; Weiss, G.J. Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol. Cancer Ther., 2010, 9(12), 3126-3136.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0397] [PMID: 20940321]
[147]
Wei, X.; Wang, W.; Wang, L.; Zhang, Y.; Zhang, X.; Chen, M.; Wang, F.; Yu, J.; Ma, Y.; Sun, G. MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4. Cancer Med., 2016, 5(4), 693-702.
[http://dx.doi.org/10.1002/cam4.626] [PMID: 26864640]
[148]
Chen, J.; Tian, W.; Cai, H.; He, H.; Deng, Y. Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer. Med. Oncol., 2012, 29(4), 2527-2534.
[http://dx.doi.org/10.1007/s12032-011-0117-4] [PMID: 22101791]
[149]
Xiang, Y.; Ma, N.; Wang, D.; Zhang, Y.; Zhou, J.; Wu, G.; Zhao, R.; Huang, H.; Wang, X.; Qiao, Y.; Li, F.; Han, D.; Wang, L.; Zhang, G.; Gao, X. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: A novel epigenetic therapy independent of decitabine. Oncogene, 2014, 33(3), 378-386.
[http://dx.doi.org/10.1038/onc.2012.575] [PMID: 23318422]
[150]
Li, T.; Gao, F.; Zhang, X-P. miR-203 enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer. Oncol. Rep., 2015, 33(2), 607-614.
[http://dx.doi.org/10.3892/or.2014.3646] [PMID: 25482885]
[151]
Li, J.; Zhang, Y.; Zhao, J.; Kong, F.; Chen, Y. Overexpression of miR-22 reverses paclitaxel-induced chemoresistance through activation of PTEN signaling in p53-mutated colon cancer cells. Mol. Cell. Biochem., 2011, 357(1-2), 31-38.
[http://dx.doi.org/10.1007/s11010-011-0872-8] [PMID: 21594648]
[152]
Yin, J.; Zheng, G.; Jia, X.; Zhang, Z.; Zhang, W.; Song, Y.; Xiong, Y.; He, Z.A. Bmi1-miRNAs cross-talk modulates chemotherapy response to 5-fluorouracil in breast cancer cells. PLoS One, 2013, 8(9)e73268
[http://dx.doi.org/10.1371/journal.pone.0073268] [PMID: 24039897]
[153]
Gotanda, K.; Hirota, T.; Matsumoto, N.; Ieiri, I. MicroRNA-433 negatively regulates the expression of thymidylate synthase (TYMS) responsible for 5-fluorouracil sensitivity in HeLa cells. BMC Cancer, 2013, 13(1), 369.
[http://dx.doi.org/10.1186/1471-2407-13-369] [PMID: 23915286]
[154]
Zhang, Y.; Geng, L.; Talmon, G.; Wang, J. MicroRNA-520g confers drug resistance by regulating p21 expression in colorectal cancer. J. Biol. Chem., 2015, 290(10), 6215-6225.
[http://dx.doi.org/10.1074/jbc.M114.620252] [PMID: 25616665]
[155]
Zhang, Y.; Talmon, G.; Wang, J. MicroRNA-587 antagonizes 5-FU-induced apoptosis and confers drug resistance by regulating PPP2R1B expression in colorectal cancer. Cell Death Dis., 2015, 6(8)e1845
[http://dx.doi.org/10.1038/cddis.2015.200] [PMID: 26247730]
[156]
Li, Z.; Hu, S.; Wang, J.; Cai, J.; Xiao, L.; Yu, L.; Wang, Z. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol. Oncol., 2010, 119(1), 125-130.
[http://dx.doi.org/10.1016/j.ygyno.2010.06.004] [PMID: 20624637]
[157]
Karaayvaz, M.; Zhai, H.; Ju, J. miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis., 2013, 4(6)e659
[http://dx.doi.org/10.1038/cddis.2013.193] [PMID: 23744359]
[158]
Sui, C.; Meng, F.; Li, Y.; Jiang, Y. miR-148b reverses cisplatin-resistance in non-small cell cancer cells via negatively regulating DNA (cytosine-5)-methyltransferase 1(DNMT1) expression. J. Transl. Med., 2015, 13(1), 132.
[http://dx.doi.org/10.1186/s12967-015-0488-y] [PMID: 25927928]
[159]
Mansoori, B.; Mohammadi, A.; Goldar, S.; Shanehbandi, D.; Mohammadnejad, L.; Baghbani, E.; Kazemi, T.; Kachalaki, S.; Baradaran, B. Silencing of high mobility group isoform IC (HMGI-C) enhances paclitaxel chemosensitivity in breast adenocarci-noma cells (MDA-MB-468). Adv. Pharm. Bull., 2016, 6(2), 171-177.
[http://dx.doi.org/10.15171/apb.2016.024] [PMID: 27478778]
[160]
Shen, Q.; Liu, S.; Chen, Y.; Yang, L.; Chen, S.; Wu, X.; Li, B.; Lu, Y.; Zhu, K.; Li, Y. Proliferation inhibition and apoptosis induction of imatinib-resistant chronic myeloid leukemia cells via PPP2R5C down-regulation. J. Hematol. Oncol., 2013, 6(1), 64.
[http://dx.doi.org/10.1186/1756-8722-6-64] [PMID: 24004697]
[161]
Zhang, X.; Cheng, X.; Lai, Y.; Zhou, Y.; Cao, W.; Hua, Z-C. Salmonella VNP20009-mediated RNA interference of ABCB5 moderated chemoresistance of melanoma stem cell and suppressed tumor growth more potently. Oncotarget, 2016, 7(12), 14940-14950.
[http://dx.doi.org/10.18632/oncotarget.7496] [PMID: 26910836]
[162]
Yang, L.; Wei, L.; Zhao, W.; Wang, X.; Zheng, G.; Zheng, M.; Song, X.; Zuo, W. Down-regulation of osteopontin expression by RNA interference affects cell proliferation and chemotherapy sensitivity of breast cancer MDA-MB-231 cells. Mol. Med. Rep., 2012, 5(2), 373-376.
[http://dx.doi.org/10.3892/mmr.2011.679] [PMID: 22143930]
[163]
Pang, H.; Cai, L.; Yang, Y.; Chen, X.; Sui, G.; Zhao, C. Knockdown of osteopontin chemosensitizes MDA-MB-231 cells to cyclophosphamide by enhancing apoptosis through activating p38 MAPK pathway. Cancer Biother. Radiopharm., 2011, 26(2), 165-173.
[http://dx.doi.org/10.1089/cbr.2010.0838] [PMID: 21539449]
[164]
Wang, W.; Zhang, L.; Liu, L.; Zheng, Y.; Zhang, Y.; Yang, S.; Shi, R.; Wang, S. Chemosensitizing effect of shRNA-mediated ERCC1 silencing on a Xuanwei lung adenocarcinoma cell line and its clinical significance. Oncol. Rep., 2017, 37(4), 1989-1997.
[http://dx.doi.org/10.3892/or.2017.5443] [PMID: 28260069]
[165]
Meng, H.; Liong, M.; Xia, T.; Li, Z.; Ji, Z.; Zink, J.I.; Nel, A.E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano, 2010, 4(8), 4539-4550.
[http://dx.doi.org/10.1021/nn100690m] [PMID: 20731437]
[166]
Li, J-M.; Zhang, W.; Su, H.; Wang, Y-Y.; Tan, C-P.; Ji, L-N.; Mao, Z-W. Reversal of multidrug resistance in MCF-7/Adr cells by codelivery of doxorubicin and BCL2 siRNA using a folic acid-conjugated polyethylenimine hydroxypropyl-β-cyclodextrin nanocarrier. Int. J. Nanomedicine, 2015, 10, 3147-3162.
[http://dx.doi.org/10.2147/IJN.S67146] [PMID: 25960653]
[167]
Zou, S.; Cao, N.; Cheng, D.; Zheng, R.; Wang, J.; Zhu, K.; Shuai, X. Enhanced apoptosis of ovarian cancer cells via nanocarrier-mediated codelivery of siRNA and doxorubicin. Int. J. Nanomedicine, 2012, 7, 3823-3835.
[PMID: 22888237]
[168]
Gao, X.; Dai, M.; Li, Q.; Wang, Z.; Lu, Y.; Song, Z. HMGA2 regulates lung cancer proliferation and metastasis. Thorac. Cancer, 2017, 8(5), 501-510.
[http://dx.doi.org/10.1111/1759-7714.12476] [PMID: 28752530]
[169]
Chen, W.; Yuan, Y.; Cheng, D.; Chen, J.; Wang, L.; Shuai, X. Co-delivery of doxorubicin and siRNA with reduction and pH dually sensitive nanocarrier for synergistic cancer therapy. Small, 2014, 10(13), 2678-2687.
[http://dx.doi.org/10.1002/smll.201303951] [PMID: 24668891]
[170]
Jang, M.; Han, H.D.; Ahn, H.J. A RNA nanotechnology platform for a simultaneous two-in-one siRNA delivery and its application in synergistic RNAi therapy. Sci. Rep., 2016, 6, 32363.
[http://dx.doi.org/10.1038/srep32363] [PMID: 27562435]
[171]
Bäumer, S.; Bäumer, N.; Appel, N.; Terheyden, L.; Fremerey, J.; Schelhaas, S.; Wardelmann, E.; Buchholz, F.; Berdel, W.E.; Müller-Tidow, C. Antibody-mediated delivery of anti-KRAS-siRNA in vivo overcomes therapy resistance in colon cancer. Clin. Cancer Res., 2015, 21(6), 1383-1394.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2017] [PMID: 25589625]
[172]
Xue, W.; Dahlman, J.E.; Tammela, T.; Khan, O.F.; Sood, S.; Dave, A.; Cai, W.; Chirino, L.M.; Yang, G.R.; Bronson, R.; Crowley, D.G.; Sahay, G.; Schroeder, A.; Langer, R.; Anderson, D.G.; Jacks, T. Small RNA combination therapy for lung cancer. Proc. Natl. Acad. Sci. USA, 2014, 111(34), E3553-E3561.
[http://dx.doi.org/10.1073/pnas.1412686111] [PMID: 25114235]
[173]
Meng, H.; Mai, W.X.; Zhang, H.; Xue, M.; Xia, T.; Lin, S.; Wang, X.; Zhao, Y.; Ji, Z.; Zink, J.I.; Nel, A.E. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano, 2013, 7(2), 994-1005.
[http://dx.doi.org/10.1021/nn3044066] [PMID: 23289892]
[174]
Gu, J.; Li, Y.; Zeng, J.; Wang, B.; Ji, K.; Tang, Y.; Sun, Q. Knockdown of HIF-1α by siRNA-expressing plasmid delivered by attenuated Salmonella enhances the antitumor effects of cisplatin on prostate cancer. Sci. Rep., 2017, 7(1), 7546.
[http://dx.doi.org/10.1038/s41598-017-07973-4]
[175]
Bobbin, M.L.; Rossi, J.J. RNA interference (RNAi)-based therapeutics: delivering on the promise? Annu. Rev. Pharmacol. Toxicol., 2016, 56, 103-122.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103633] [PMID: 26738473]
[176]
Gandhi, N.S.; Tekade, R.K.; Chougule, M.B. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. J. Control. Release, 2014, 194, 238-256.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.001] [PMID: 25204288]
[177]
Burnett, J.C.; Rossi, J.J.; Tiemann, K. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol. J., 2011, 6(9), 1130-1146.
[http://dx.doi.org/10.1002/biot.201100054] [PMID: 21744502]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy