[1]
Fokin, A.V.; Kumzerov, Yu.A.; Okuneva, N.M.; Naberezhnov, A.A.; Vakhrushev, S.B.; Golosovsky, I.V.; Kurbakov, A.I. Temperature evolution of sodium nitrite structure in a restricted geometry. Phys. Rev. Lett., 2002, 89(17), 175503-175504.
[2]
Vakhrushev, S.B.; Kumzerov, Yu.A.; Fokin, A.; Naberezhnov, A.A.; Zalar, B.; Lebar, A.; Blinc, R. 23Na spin-lattice relaxation of sodium nitrite in confined geometry. Phys. Rev. B, 2004, 70(13), 132102-132103.
[3]
Yadlovker, D.; Berger, S. Uniform orientation and size of ferroelectric domains. Phys. Rev. B, 2005, 71(18), 184112-184116.
[4]
Baryshnikov, S.V.; Charnaya, E.V.; Tien, C.; Michel, D.; Andriyanova, N.P.; Stukova, E.V. Dielectric parameters of mesoporous sieves filled with NaNO2. Phys. Solid State, 2007, 49(4), 791-795.
[5]
Martin, Ch.R. Nanomaterials: A membrane-based synthetic approach. Science, 1994, 266(5193), 1961-1966.
[6]
Steinhart, M.; Liang, Ch.; Lynn, G.W.; Gsele, U.; Dai, S. Direct synthesis of mesoporous carbon microwires and nanowires. Chem. Mater., 2007, 19(10), 2383-2385.
[7]
Rogazinskaya, O.V.; Milovidova, S.D.; Sidorkin, A.S.; Chernyshev, V.V.; Babicheva, N.G. Dielectric properties of porous aluminum and silicon oxides with inclusions of triglycine sulfate and its modified analogs. Phys. Solid State, 2009, 51(7), 1518-1520.
[8]
Baryshnikov, S.V.; Stukova, E.V.; Milinskiy, A.Yu.; Charnaya, E.V.; Tien, C. Ferroelectricity in Rochelle salt nanoparticles confined to porous alumina. Ferroelectrics, 2010, 396(1), 3-9.
[9]
Golitsyna, O.M.; Drozhdin, S.N.; Nechaev, V.N.; Viskovatykh, A.V.; Kashkarov, V.M.; Gridnev, A.E.; Chernyshev, V.V. Dielectric properties of porous aluminum and silicon oxides with inclusions of triglycine sulfate and its modified analogs. Phys. Solid State, 2013, 55(3), 529-535.
[10]
Tien, C.; Charnaya, E.V.; Lee, M.K.; Baryshnikov, S.V. Ferroelectricity and gradual melting in NaNO2 particles confined within porous alumina. Phys. Status Solidi., 2009, 246(10), 2346-2351.
[11]
Milinskii, A.Yu.; Baryshnikov, S.V.; Antonov, A.A. Phase transitions of SC(NH2)2 ferroelectrics in Al2O3-based nanoporous matrices. Phys. Solid State, 2017, 59(9), 1783-1788.
[12]
Poprawski, R.; Rysiakiewicz-Pasek, E.; Sieradzki, A.; Cizman, A.; Polanska, J. Ferroelectric phase transitions in KNO3 embedded into porous glasses. J. Non-Cryst. Solids, 2007, 353(47), 4457-4461.
[13]
Baryshnikov, S.V.; Charnaya, E.V.; Milinskiy, A.Yu.; Shatskaya, Yu.A.; Tien, C.; Michel, D. Stabilization of ferroelectricity in KNO3 embedded into MCM-41 molecular sieves. Physica B, 2010, 405(16), 3299-3302.
[14]
Baryshnikov, S.V.; Charnaya, E.V.; Milinskii, A.Yu.; Shatskaya, Yu.A.; Michel, D. Dielectric and calorimetric investigations of KNO3 in pores of nanoporous silica matrices MCM-41. Phys. Solid State, 2012, 54(3), 636-641.
[15]
Baryshnikov, S.V.; Charnaya, E.V.; Milinskiy, A.Yu.; Stukova, E.V.; Tien, C.; Michel, D. Phase transitions in K1-xNaxNO3 embedded into molecular sieves. J. Phys. Cond. Matter, 2009, 21(32), 325902.
[16]
Baryshnikov, S.V.; Charnaya, E.V.; Milinskiy, A.Y.; Patrushev, Y.V. Phase transitions in KNO3 embedded in MCM-41 films with regular nanopores. Phys. Solid State, 2013, 55(12), 2566-2570.
[17]
Chen, A.; Chernow, A. Nature of ferroelectricity in KNO3. Phys. Rev., 1967, 154(2), 493-505.
[18]
Deshpande, V.V.; Karkhanavala, M.D.; Rao, U.R.K. Phase transitions in potassium nitrate. J. Therm. Anal. Calorim., 1974, 6(6), 613-621.
[19]
Nimmo, J.K.; Lucas, B.W. The crystal structures of γ- and β-KNO3 and the α←γ←β phase transformations. Acta Cryst. B, 1976, 32(7), 1968-1971.
[20]
Ikeda, S.; Kominami, H.; Koyama, K.; Wada, I. Nonlinear dielectric constant and ferroelectric to paraelectric phase transition in copolymers of vinylidene fluoride and trifluoroethylene. J. Appl. Phys., 1987, 62(8), 3339-3342.
[21]
Zhong, W.L.; Wang, Y.G.; Zhang, P.L.; Qu, B.D. Phenomenological study of the size effect on phase transitions in ferroelectric particles. Phys. Rev. B, 1994, 50(2), 698-703.
[22]
Wang, C.L.; Xin, Y.; Wang, X.S.; Zhong, W.L. Size effects of ferroelectric particles described by the transverse Ising model. Phys. Rev. B, 2000, 62(17), 11423-11427.
[23]
Charnaya, E.V.; Pirozerskii, A.L.; Tien, C.; Lee, M.K. Ferroelectricity in an array of electrically coupled confined small particles. Ferroelectrics, 2007, 350(1), 75-80.
[24]
Morozovska, A.N.; Eliseev, E.A.; Glinchuk, M.D. Ferroelectricity enhancement in confined nanorods: Direct variational method. Phys. Rev. B, 2006, 73(21), 214106-214113.