[1]
Kouzarides T. Chromatin modifications and their function. Cell 2007; 128: 693-705.
[2]
Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293: 1074-80.
[3]
Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403: 41-5.
[4]
Watson JD. Celebrating the genetic jubilee: a conversation with James D. Watson. Interviewed by John Rennie. Sci Am 2003; 288: 66-9.
[5]
Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 2011; 12: 7-18.
[6]
Millar CB, Grunstein M. Genome-wide patterns of histone modifications in yeast. Nat Rev Mol Cell Biol 2006; 7: 657-66.
[7]
Liu CL, Kaplan T, Kim M, et al. Single nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 2005; 3: e328.
[8]
Pokholok DK, Harbison CT, Levine S, et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 2005; 122: 517-27.
[9]
Heintzman ND, Stuart RK, Hon G, et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 2007; 39: 311-8.
[10]
Won KJ, Chepelev I, Ren B, Wang W. Prediction of regulatory elements in mammalian genomes using chromatin signatures. BMC Bioinformatics 2008; 9: 547.
[11]
Wang X, Xuan Z, Zhao X, Li Y, Zhang MQ. High-resolution human core- promoter prediction with CoreBoost_HM. Genome Res 2009; 19: 266-75.
[12]
Hon G, Ren B, Wang W. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. PLOS Comput Biol 2008; 4: e1000201.
[13]
Schreiber SL, Bernstein BE. Signaling network model of chromatin. Cell 2000; 111: 771-8.
[14]
Ernst J, Kellis M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol 2010; 28: 817-25.
[15]
Ernst J, Kheradpour P, Mikkelsen TS, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011; 473: 43-9.
[16]
Hoffman MM, Buske OJ, Wang J, Weng Z, Bilmes JA, Noble WS. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat Methods 2012; 9(5): 473-6.
[17]
Roudier F, Ahmed I, Bérard C, et al. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 2011; 30: 1928-38.
[18]
Liu T, Rechtsteiner A, Egelhofer TA, et al. Broad chromosomal domains of histone modification patterns in C.elegans. Genome Res 2011; 21: 227-36.
[19]
Gerstein MB, Lu ZJ, Van Nostrand EL, et al. Integrative Analysis of the Caenorhabditis elegans Genome by the modENCODE project. Science 2010; 330: 1775-87.
[20]
Roy S, Ernst J, Kharchenko PV, et al. Identification of Functional Elements and Regulatory Circuits by Drosophila modENCODE. Science 2011; 330: 1787-97.
[21]
Riddle NC, Minoda A, Kharchenko PV, et al. Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res 2011; 21: 147-63.
[22]
Kharchenko PV, Alekseyenko AA, Schwartz YB, et al. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 2010; 471: 480-6.
[23]
Filion GJ, Bemmel GJV, Braunschweig U, et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 2010; 143: 212-24.
[24]
Larson JL, Yuan GC. Chromatin states accurately classify cell differentiation stages. PLoS One 2012; 7(2): e31414.
[25]
Larson JL, Yuan GC. Epigenetic domains found in mouse embryonic stem cells via a hidden Markov model. BMC Bioinformatics 2010; 11: 557.
[26]
Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chromatin state in pluripotent and lineage- committed cells. Nature 2007; 448(7153): 553-60.
[27]
Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 2012; 9: 215-6.
[28]
Schwarz G. Estimating the dimension of a model. Ann Stat 1978; 6: 461-4.
[29]
Akaike H. Information theory and an extension of the maximum likelihood principle Proceeding of 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR. Budapest: Akadémiai Kiadó 1973; pp. 267-281
[30]
Arlot S, Celisse A. Survey of cross-validation procedures for model selection. Stat Surv 2010; 4: 40-79.
[31]
Dalton L, Ballarin V, Brun M. Clustering Algorithms: On learning, validation, performance, and applications to genomics. Curr Genomics 2009; 10: 430-45.
[32]
Kirk P, Griffin JE, Savage RS, Ghahramani Z, Wild DL. Bayesian correlated clustering to integrate multiple datasets. Bioinformatics 2012; 28(24): 3290-7.
[33]
Baillie M, Jose JM, van Rijsbergen CJ. HMM model selection issues for soccer video. Proceedings of Springer-Verlag, Berlin, Heidelberg. CIVR LNCS 3115, 2004; 3115: pp. 70-78.
[34]
Hoon de MJL. Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics 2004; 20(9): 1453-4.
[35]
Liang K, Keles S. Normalization of ChIP-Seq data with control. BMC Bioinformatics 2012; 13: 199.
[36]
Przytycka TM, Zheng J. Hidden Markov Models eLS John Wiley & Sons, Ltd: Chichester 2011 DOI:101002/9780470015902a0005267pub2.
[37]
Noureen N, Touseef M, Fazal S, Qadir MA. ChromClust: A semi-supervised chromatin clustering toolkit for mining histone modifications interplay. Genomics 2015; 106(6): 355-9.
[38]
Noureen N, Zohaib HM, Qadir MA, Fazal S. ChromBiSim: Interactive chromatin biclustering using a simple approach. Genomics 2017; 109: 353-61.