[1]
Becerra JC, Bildstein LS, Gach JS. Recent Insights into the HIV/ AIDS Pandemic. Microb Cell 2016; 3: 451-75.
[2]
Korber B, Gaschen B, Yusim K, Thakallapally R, Kesmir C, Detours V. Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull 2001; 58: 19-42.
[3]
Kiwanuka N, Laeyendecker O, Quinn TC, et al. HIV-1 subtypes and differences in heterosexual HIV transmission among HIV-discordant couples in Rakai, Uganda. AIDS 2009; 23: 2479-84.
[4]
Kantor R, Katzenstein DA, Efron B, et al. Impact of HIV-1 subtype and antiretroviral therapy on protease and reverse transcriptase genotype: results of a global collaboration. PLoS Med 2005; 2: e112.
[5]
Baeten JM, Chohan B, Lavreys L, et al. HIV-1 subtype D infection is associated with faster disease progression than subtype A in spite of similar plasma HIV-1 loads. J Infect Dis 2007; 195: 1177-80.
[6]
Kiwanuka N, Laeyendecker O, Robb M, et al. Effect of human immunodeficiency virus Type 1 (HIV-1) subtype on disease progression in persons from Rakai, Uganda, with incident HIV-1 infection. J Infect Dis 2008; 197: 707-13.
[7]
Butler IF, Pandrea I, Marx PA, Apetrei C. HIV genetic diversity: biological and public health consequences. Curr HIV Res 2007; 5: 23-45.
[8]
Carlson JM, Le AQ, Shahid A. Brumme ZL. HIV-1 adaptation to HLA: A window into virus–host immune interactions. Trends Microbiol 2015; 23(4): 212-24.
[9]
Gao F, Korber BT, Weaver E, Liao H-X, Hahn BH, Haynes BF. Centralized immunogens as a vaccine strategy to overcome HIV-1 diversity. Expert Rev Vaccines 2004; 3: S161-8.
[10]
Brumme ZL, Brumme CJ, Heckerman D, et al. Evidence of differential HLA class I-mediated viral evolution in functional and accessory/regulatory genes of HIV-1. PLoS Pathog 2007; 3: e94.
[11]
Pan C, Kim J, Chen L, Wang Q, Lee C. The HIV positive selection mutation database. Nucleic Acids Res 2007; 35: D371-5.
[12]
Liang B, Luo M, Ball TB, Jones SJM, Plummer FA. QUASI analysis of host immune responses to Gag polyproteins of human immunodeficiency virus type 1 by a systematic bioinformatics approach. Biochem Cell Biol 2010; 88: 671-81.
[13]
Liang B, Luo M, Ball TB, Plummer FA. QUASI analysis of the HIV-1 envelope sequences in the Los Alamos National Laboratory HIV sequence database: pattern and distribution of positive selection sites and their frequencies over years. Biochem Cell Biol 2007; 85: 259-64.
[14]
Geyer M, Fackler OT, Peterlin BM. Structure--function relationships in HIV-1 Nef. EMBO Rep 2001; 2: 580-5.
[15]
Ren X, Park SY, Bonifacino JS, Hurley JH. How HIV-1 Nef hijacks the AP-2 clathrin adaptor to downregulate CD4. eLife 2014; 3: e01754.
[16]
Mwimanzi P, Markle TJ, Ueno T, Brockman MA. Human Leukocyte Antigen (HLA) Class I Down-Regulation by Human Immunodeficiency Virus Type 1 Negative Factor (HIV-1 Nef): What Might We Learn From Natural Sequence Variants? Viruses 2012; 4: 1711-30.
[17]
Saksela K, Cheng G, Baltimore D. Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J 1995; 14: 484-91.
[18]
Stolp B, Abraham L, Rudolph JM, Fackler OT. Lentiviral Nef proteins utilize PAK2-mediated deregulation of cofilin as a general strategy to interfere with actin remodeling. J Virol 2010; 84: 3935-48.
[19]
Das SR, Jameel S. Biology of the HIV Nef protein. Indian J Med Res 2005; 121: 315-32.
[20]
Adland E, Carlson JM, Paioni P, et al. Nef-specific CD8+ T cell responses contribute to HIV-1 immune control. PLoS One 2013; 8: e73117.
[21]
Brumme ZL, John M, Carlson JM, et al. HLA-associated immune escape pathways in HIV-1 subtype B Gag, Pol and Nef proteins. PLoS One 2009; 4: e6687.
[22]
Price DA, Goulder PJ, Klenerman P, et al. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc Natl Acad Sci USA 1997; 94: 1890-5.
[23]
Stewart JJ, Watts P, Litwin S. An algorithm for mapping positively selected members of quasispecies-type viruses. BMC Bioinformatics 2001; 2: 1.
[24]
Merani S, Petrovic D, James I, et al. Effect of immune pressure on hepatitis C virus evolution: Insights from a single-source outbreak. Hepatology 2011; 53: 396-405.
[25]
Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512-26.
[26]
Raney A, Shaw AY, Foster JL, Garcia JV. Structural constraints on human immunodeficiency virus type 1 Nef function. J Virol 2007; 368: 7-16.
[27]
Khan IH, Sawai ET, Antonio E, et al. Role of the SH3-ligand domain of simian immunodeficiency virus Nef in interaction with Nef-associated kinase and simian AIDS in rhesus macaques. J Virol 1998; 72: 5820-30.
[28]
Agopian K, Wei BL, Garcia JV, Gabuzda D. A Hydrophobic Binding Surface on the Human Immunodeficiency Virus Type 1 Nef Core Is Critical for Association with p21-Activated Kinase 2. J Virol 2006; 80: 3050-61.
[29]
Bordo D, Argos P. Suggestions for “safe” residue substitutions in site-directed mutagenesis. J Mol Biol 1991; 217: 721-9.
[30]
Buonaguro L, Tornesello ML, Buonaguro FM. Human immunodeficiency virus type 1 subtype distribution in the worldwide epidemic: pathogenetic and therapeutic implications. J Virol 2007; 81: 10209-19.
[31]
Lee CH, Saksela K, Mirza UA, Chait BT, Kuriyan J. Crystal Structure of the Conserved Core ofHIV-1 Nef Complexed with a Src Family SH3 Domain 1997. 1-12.
[32]
Mwimanzi P, Hasan Z, Tokunaga M, Gatanaga H, Oka S, Ueno T. Naturally arising HIV-1 Nef variants conferring escape from cytotoxic T lymphocytes influence viral entry co-receptor expression and susceptibility to superinfection. Biochem Biophys Res Commun 2010; 403: 422-7.
[33]
Piguet V, Gu F, Foti M, et al. Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes. Cell 1999; 97: 63-73.
[34]
Carl S, Iafrate AJ, Lang SM, et al. Simian immunodeficiency virus containing mutations in N-terminal tyrosine residues and in the PxxP motif in Nef replicates efficiently in rhesus macaques. J Virol 2000; 74: 4155-64.
[35]
Lang SM, Iafrate AJ, Stahl-Hennig C, et al. Association of simian immunodeficiency virus Nef with cellular serine/threonine kinases is dispensable for the development of AIDS in rhesus macaques. Nat Med 1997; 3: 860-5.
[36]
Moore CB, John M, James IR, Christiansen FT, Witt CS, Mallal SA. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Sci 2002; 296: 1439-43.
[37]
Pereyra F, Addo MM, Kaufmann DE, et al. Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J Infect Dis 2008; 197: 563-71.
[38]
Chikata T, Carlson JM, Tamura Y, et al. Host-Specific Adaptation of HIV-1 Subtype B in the Japanese Population. J Virol 2014; 88: 4764-75.
[39]
Roider J, Kalteis A-L, Vollbrecht T, et al. Adaptation of CD8 T cell responses to changing HIV-1 sequences in a cohort of HIV-1 infected individuals not selected for a certain HLA allele. PLoS One 2013; 8: e80045.
[40]
Kløverpris HN, Leslie A, Goulder P. Role of HLA Adaptation in HIV Evolution. Front Immunol 2015; 6: 665.
[41]
Martinez-Picado J, Prado JG, Fry EE, et al. Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J Virol 2006; 80: 3617-23.
[42]
Troyer RM, McNevin J, Liu Y, Zhang SC, Krizan RW, Abraha A, et al. Variable fitness impact of HIV-1 escape mutations to cytotoxic T lymphocyte (CTL) response. PLoS Pathog 2009; 5: e1000365.
[43]
Gijsbers EF, Feenstra KA, van Nuenen AC, et al. HIV-1 Replication Fitness of HLA-B*57/58:01 CTL Escape Variants Is Restored by the Accumulation of Compensatory Mutations in Gag. PLoS One 2013; 8: e81235-10.
[44]
Alter I, Gragert L, Fingerson S, Maiers M, Louzoun Y. HLA class I haplotype diversity is consistent with selection for frequent existing haplotypes. PLOS Comput Biol 2017; 13: e1005693.
[45]
Isitman G, Stratov I, Kent SJ. Antibody-Dependent Cellular Cytotoxicity and NK Cell-Driven Immune Escape in HIV Infection: Implications for HIV Vaccine Development. Adv Virol 2012; 2012: 637208-8.
[46]
Apps R, Qi Y, Carlson JM, Chen H, Gao X, Thomas R, et al. Influence of HLA-C Expression Level on HIV Control. Sci 2013; 340: 87-91.
[47]
Wang Z, Liu H-W, Hong K-X, Yu Z-J, Chen J-P, Ruan Y-H, et al. Complete human immunodeficiency virus-1 specific T lymphocyte response to Chinese human immunodeficiency virus-1 B/C chronic infectors. Biomed Environ Sci 2009; 22: 522-8.
[48]
Mothe B, Llano A, Ibarrondo J, Daniels M, Miranda C, Zamarreño J, et al. Definition of the viral targets of protective HIV-1-specific T cell responses. J Transl Med 2011; 9: 208.
[49]
Kunwar P, Hawkins N, Dinges WL, Liu Y, Gabriel EE, Swan DA, et al. Superior control of HIV-1 replication by CD8+ T cells targeting conserved epitopes: implications for HIV vaccine design. PLoS One 2013; 8: e64405.
[50]
Bernardin F, Kong D, Peddada L, Baxter-Lowe LA, Delwart E. Human immunodeficiency virus mutations during the first month of infection are preferentially found in known cytotoxic T-lymphocyte epitopes. J Virol 2005; 79: 11523-8.
[51]
Ranki A, Nyberg M, Ovod V, et al. Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. AIDS 1995; 9: 1001-8.
[52]
Kaufmann DE, Bailey PM, Sidney J, et al. Comprehensive analysis of human immunodeficiency virus type 1-specific CD4 responses reveals marked immunodominance of gag and nef and the presence of broadly recognized peptides. J Virol 2004; 78: 4463-77.
[53]
Fonseca SG, Coutinho-Silva A, Fonseca LAM, et al. Identification of novel consensus CD4 T-cell epitopes from clade B HIV-1 whole genome that are frequently recognized by HIV-1 infected patients. AIDS 2006; 20: 2263-73.
[54]
Altfeld M, Rosenberg ES, Shankarappa R, et al. Cellular immune responses and viral diversity in individuals treated during acute and early HIV-1 infection. J Exp Med 2001; 193: 169-80.
[55]
Kitano M, Kobayashi N, Kawashima Y, et al. Identification and characterization of HLA-B*5401-restricted HIV-1-Nef and Pol-specific CTL epitopes. Microbes Infect 2008; 10: 764-72.
[56]
Piguet V, Trono D. The Nef protein of primate lentiviruses. Rev Med Virol 1999; 9: 111-20.
[57]
Li T, Steede NK, Nguyen H-NP, et al. Comprehensive analysis of contributions from protein conformational stability and major histocompatibility complex class II-peptide binding affinity to CD4+ epitope immunogenicity in HIV-1 envelope glycoprotein. J Virol 2014; 88: 9605-15.