General Review Article

来自丝状子囊菌的颜料用于组合治疗

卷 26, 期 20, 2019

页: [3812 - 3834] 页: 23

弟呕挨: 10.2174/0929867325666180330091933

价格: $65

conference banner
摘要

丝状子囊菌(神经孢子菌和红曲菌)已经被研究了很长时间,因为它们产生了次级代谢产物,例如微生物色素。子囊菌代表了一组有趣的化合物,具有很高的药用潜力。最近的许多研究表明它们在治疗严重病理状态如肿瘤疾病,神经退行性疾病和高脂血症中的功效。尽管如此,子囊菌的临床实用性仍然有限。然而,可以通过将这些化合物与其他治疗剂组合使用来解决该问题。这种策略可以抑制它们的副作用并提高其治疗效果。而且,它们的共同应用可以显着增强所使用的常规疗法。这篇综述总结并讨论了这种方法的一般原理,并通过许多示例进行了介绍和支持。此外,还包括对该方法的未来潜在应用的预测。

关键词: 丝状子囊菌,神经孢菌和红曲霉,微生物色素,丝状真菌,HMGCoA还原酶,肿瘤疾病,高脂血症。

« Previous
[1]
Gmoser, R.; Ferreira, J.A.; Lennartsson, P.R.; Taherzadeh, M.J. Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biol. Biotechnol., 2017, 4(1), 4.
[http://dx.doi.org/10.1186/s40694-017-0033-2] [PMID: 28955473]
[2]
Martínková, L.; Patáková-Jůzlová, P.; Krent, V.; Kucerová, Z.; Havlícek, V.; Olsovský, P.; Hovorka, O.; Ríhová, B.; Veselý, D.; Veselá, D.; Ulrichová, J.; Prikrylová, V. Biological activities of oligoketide pigments of Monascus purpureus. Food Addit. Contam., 1999, 16(1), 15-24.
[http://dx.doi.org/10.1080/026520399284280] [PMID: 11565571]
[3]
Schreiberova, O., Ed.; Patrovský M. and P. P., Produkce sekundárních metabolitů houbou Monascus purpureus, in 12. seminář PIVOVARSTVÍ A KVASNÉ TECHNOLOGIE 2015; Prague, Czech republic, , 2015.
[4]
Patakova, P. Monascus secondary metabolites: production and biological activity. J. Ind. Microbiol. Biotechnol., 2013, 40(2), 169-181.
[http://dx.doi.org/10.1007/s10295-012-1216-8] [PMID: 23179468]
[5]
Avalos, J.; Prado-Cabrero, A.; Estrada, A.F. Neurosporaxanthin production by Neurospora and Fusarium. Methods Mol. Biol., 2012, 898, 263-274.
[http://dx.doi.org/10.1007/978-1-61779-918-1_18] [PMID: 22711132]
[6]
Sandmann, G.; Takaichi, S.; Fraser, P.D.C. (35)-apocarotenoids in the yellow mutant Neurospora crassa YLO. Phytochemistry, 2008, 69(17), 2886-2890.
[http://dx.doi.org/10.1016/j.phytochem.2008.09.016] [PMID: 19007949]
[7]
Xu, N.; Shen, N.; Wang, X.; Jiang, S.; Xue, B.; Li, C. Protein prenylation and human diseases: a balance of protein farnesylation and geranylgeranylation. Sci. China Life Sci., 2015, 58(4), 328-335.
[http://dx.doi.org/10.1007/s11427-015-4836-1] [PMID: 25862656]
[8]
Thapa, A.; Carroll, N.J. Dietary modulation of oxidative stress in alzheimer’s disease. Int. J. Mol. Sci., 2017, 18(7)E1583
[http://dx.doi.org/10.3390/ijms18071583] [PMID: 28753984]
[9]
Limon-Miro, A.T.; Lopez-Teros, V.; Astiazaran-Garcia, H. Dietary guidelines for breast cancer patients: a critical review. Adv. Nutr., 2017, 8(4), 613-623.
[PMID: 28710147]
[10]
Wu, L.; Guo, X.; Wang, W.; Medeiros, D.M.; Clarke, S.L.; Lucas, E.A.; Smith, B.J.; Lin, D. Molecular aspects of β, β-carotene-9′, 10′-oxygenase 2 in carotenoid metabolism and diseases. Exp. Biol. Med. (Maywood), 2016, 241(17), 1879-1887.
[http://dx.doi.org/10.1177/1535370216657900] [PMID: 27390265]
[11]
Bonet, M.L.; Canas, J.A.; Ribot, J.; Palou, A. Carotenoids in adipose tissue biology and obesity. Subcell. Biochem., 2016, 79, 377-414.
[http://dx.doi.org/10.1007/978-3-319-39126-7_15] [PMID: 27485231]
[12]
Bahonar, A.; Saadatnia, M.; Khorvash, F.; Maracy, M.; Khosravi, A. Carotenoids as potential antioxidant agents in stroke prevention: a systematic review. Int. J. Prev. Med., 2017, 8, 70.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_112_17] [PMID: 28983399]
[13]
Kejík, Z.; Bříza, T.; Králová, J.; Poučková, P.; Král, A.; Martásek, P.; Král, V. Coordination conjugates of therapeutic proteins with drug carriers: a new approach for versatile advanced drug delivery. Bioorg. Med. Chem. Lett., 2011, 21(18), 5514-5520.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.101] [PMID: 21784635]
[14]
Králová, J.; Kejík, Z.; Bríza, T.; Poucková, P.; Král, A.; Martásek, P.; Král, V. Porphyrin-cyclodextrin conjugates as a nanosystem for versatile drug delivery and multimodal cancer therapy. J. Med. Chem., 2010, 53(1), 128-138.
[http://dx.doi.org/10.1021/jm9007278] [PMID: 19950899]
[15]
Kejik, Z. Cyclodextrin dimer with porphyrin core for target transport and combined therapy. J. Control. Release, 2008, 132(3), E27-E28.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.016]
[16]
Záruba, K.; Králová, J.; Rezanka, P.; Poucková, P.; Veverková, L.; Král, V. Modified porphyrin-brucine conjugated to gold nanoparticles and their application in photodynamic therapy. Org. Biomol. Chem., 2010, 8(14), 3202-3206.
[http://dx.doi.org/10.1039/c002823a] [PMID: 20485822]
[17]
Tocci, G. How to improve effectiveness and adherence to antihypertensive drug therapy: central role of dihydropyridinic calcium channel blockers in hypertension. High Blood Press. Cardiovasc. Prev., 2018, 25(1), 25-34.
[http://dx.doi.org/10.1007/s40292-017-0242-z] [PMID: 29197935]
[18]
Bhattacharjee, S.; Nandi, S. Synthetic lethality in DNA repair network: a novel avenue in targeted cancer therapy and combination therapeutics. IUBMB Life, 2017, 69(12), 929-937.
[http://dx.doi.org/10.1002/iub.1696] [PMID: 29171189]
[19]
Gugliandolo, A.; Bramanti, P.; Mazzon, E. Role of Vitamin E in the treatment of Alzheimer’s Disease: evidence from animal models. Int. J. Mol. Sci., 2017, 18(12), 2504.
[http://dx.doi.org/10.3390/ijms18122504] [PMID: 29168797]
[20]
Matsunaga, S.; Kishi, T.; Iwata, N. Combination therapy with cholinesterase inhibitors and memantine for Alzheimer’s disease: a systematic review and meta-analysis. Int. J. Neuropsychopharmacol., 2014, 18(5)pyu115
[PMID: 25548104]
[21]
Lee, H-Y.; Kim, S.Y.; Choi, K.J.; Yoo, B.S.; Cha, D.H.; Jung, H.O.; Ryu, D.R.; Choi, J.H.; Lee, K.J.; Park, T.H.; Oh, J.H.; Kim, S.M.; Choi, J.Y.; Kim, K.H.; Shim, J.; Kim, W.S.; Choi, S.W.; Park, D.G.; Song, P.S.; Hong, T.J.; Rhee, M.Y.; Rha, S.W.; Park, S.W.A. Randomized, multicenter, double-blind, placebo-controlled study to evaluate the efficacy and the tolerability of a triple combination of amlodipine/losartan/rosuvastatin in patients with comorbid essential hypertension and hyperlipidemia. Clin. Ther., 2017, 39(12), 2366-2379.
[http://dx.doi.org/10.1016/j.clinthera.2017.10.013] [PMID: 29150250]
[22]
Simons, L.A.; Chung, E.; Ortiz, M. Long-term persistence with single-pill, fixed-dose combination therapy versus two pills of amlodipine and perindopril for hypertension: Australian experience. Curr. Med. Res. Opin., 2017, 33(10), 1783-1787.
[http://dx.doi.org/10.1080/03007995.2017.1367275] [PMID: 28805468]
[23]
Herrando-Grabulosa, M.; Mulet, R.; Pujol, A.; Mas, J.M.; Navarro, X.; Aloy, P.; Coma, M.; Casas, C. Novel Neuroprotective Multicomponent Therapy for Amyotrophic Lateral Sclerosis Designed by Networked Systems. PLoS One, 2016, 11(1)e0147626
[http://dx.doi.org/10.1371/journal.pone.0147626] [PMID: 26807587]
[24]
Kejik, Z. Supramolecular approach for target transport of photodynamic anticancer agents. Supramol. Chem., 2012, 24(2), 106-116.
[http://dx.doi.org/10.1080/10610278.2011.631705]
[25]
Brogi, S.; Ramunno, A.; Savi, L.; Chemi, G.; Alfano, G.; Pecorelli, A.; Pambianchi, E.; Galatello, P.; Compagnoni, G.; Focher, F.; Biamonti, G.; Valacchi, G.; Butini, S.; Gemma, S.; Campiani, G.; Brindisi, M. First dual AK/GSK-3β inhibitors endowed with antioxidant properties as multifunctional, potential neuroprotective agents. Eur. J. Med. Chem., 2017, 138, 438-457.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.017] [PMID: 28689095]
[26]
Liu, J.; Qian, C.; Zhu, Y.; Cai, J.; He, Y.; Li, J.; Wang, T.; Zhu, H.; Li, Z.; Li, W.; Hu, L. Design, Synthesis and Evaluate of novel dual FGFR1 and HDAC inhibitors bearing an indazole scaffold. Bioorg. Med. Chem., 2018, 26(3), 747-757.
[http://dx.doi.org/10.1016/j.bmc.2017.12.041] [PMID: 29317150]
[27]
Monastyrskyi, A.; Nilchan, N.; Quereda, V.; Noguchi, Y.; Ruiz, C.; Grant, W.; Cameron, M.; Duckett, D.; Roush, W. Development of dual casein kinase 1δ/1ε (CK1δ/ε) inhibitors for treatment of breast cancer. Bioorg. Med. Chem., 2018, 26(3), 590-602.
[http://dx.doi.org/10.1016/j.bmc.2017.12.020] [PMID: 29289448]
[28]
Chen, W.; Huang, Z.; Wang, W.; Mao, F.; Guan, L.; Tang, Y.; Jiang, H.; Li, J.; Huang, J.; Jiang, L.; Zhu, J. Discovery of new antimalarial agents: Second-generation dual inhibitors against FP-2 and PfDHFR via fragments assembely. Bioorg. Med. Chem., 2017, 25(24), 6467-6478.
[http://dx.doi.org/10.1016/j.bmc.2017.10.017] [PMID: 29111368]
[29]
Wang, C.; Yang, D.; Jiang, L.; Wang, S.; Wang, J.; Zhou, K.; Shi, X.; Chang, L.; Liu, Y.; Ke, Y.; Liu, H. Jesridonin in combination with paclitaxel demonstrates synergistic anti-tumor activity in human esophageal carcinoma cells. Bioorg. Med. Chem. Lett., 2017, 27(9), 2058-2062.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.008] [PMID: 28285918]
[30]
Tunc, D.; Dere, E.; Karakas, D.; Cevatemre, B.; Yilmaz, V.T.; Ulukaya, E. Cytotoxic and apoptotic effects of the combination of palladium (II) 5,5-diethylbarbiturate complex with bis(2-pyridylmethyl)amine and curcumin on non small lung cancer cell lines. Bioorg. Med. Chem., 2017, 25(5), 1717-1723.
[http://dx.doi.org/10.1016/j.bmc.2017.01.043] [PMID: 28187956]
[31]
Byun, J.S.; Sohn, J.M.; Leem, D.G.; Park, B.; Nam, J.H.; Shin, D.H.; Shin, J.S.; Kim, H.J.; Lee, K.T.; Lee, J.Y. In vitro synergistic anticancer activity of the combination of T-type calcium channel blocker and chemotherapeutic agent in A549 cells. Bioorg. Med. Chem. Lett., 2016, 26(3), 1073-1079.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.010] [PMID: 26739776]
[32]
Bayomy, N.A.; Elbakary, R.H.; Ibrahim, M.A.A.; Abdelaziz, E.Z. Effect of lycopene and rosmarinic acid on gentamicin induced renal cortical oxidative stress, apoptosis, and autophagy in adult male albino rat. Anat. Rec. (Hoboken), 2017, 300(6), 1137-1149.
[http://dx.doi.org/10.1002/ar.23525] [PMID: 27884046]
[33]
Kumar, V.; Sharma, S.K.; Nagarajan, K.; Dixit, P.K. Effects of lycopene and sodium valproate on pentylenetetrazol-induced kindling in mice. Iran. J. Med. Sci., 2016, 41(5), 430-436.
[PMID: 27582593]
[34]
Banji, D.; Banji, O.J.; Reddy, M.; Annamalai, A.R. Impact of zinc, selenium and lycopene on capsaicin induced mutagenicity and oxidative damage in mice. J. Trace Elem. Med. Biol., 2013, 27(3), 230-235.
[http://dx.doi.org/10.1016/j.jtemb.2013.01.001] [PMID: 23380154]
[35]
Yang, S.H.; Lin, H.Y.; Chang, V.H.; Chen, C.C.; Liu, Y.R.; Wang, J.; Zhang, K.; Jiang, X.; Yen, Y. Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo. Oncotarget, 2015, 6(27), 23857-23873.
[http://dx.doi.org/10.18632/oncotarget.4408] [PMID: 26160843]
[36]
Wali, V.B.; Sylvester, P.W. Synergistic antiproliferative effects of gamma-tocotrienol and statin treatment on mammary tumor cells. Lipids, 2007, 42(12), 1113-1123.
[http://dx.doi.org/10.1007/s11745-007-3102-0] [PMID: 17701065]
[37]
Roelofs, A.J.; Edwards, C.M.; Russell, R.G.; Ebetino, F.H.; Rogers, M.J.; Hulley, P.A. Apomine enhances the antitumor effects of lovastatin on myeloma cells by down-regulating 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Pharmacol. Exp. Ther., 2007, 322(1), 228-235.
[http://dx.doi.org/10.1124/jpet.106.116467] [PMID: 17412884]
[38]
Park, I.H.; Kim, J.Y.; Jung, J.I.; Han, J.Y. Lovastatin overcomes gefitinib resistance in human non-small cell lung cancer cells with K-Ras mutations. Invest. New Drugs, 2010, 28(6), 791-799.
[http://dx.doi.org/10.1007/s10637-009-9319-4] [PMID: 19760159]
[39]
Mantha, A.J.; Hanson, J.E.; Goss, G.; Lagarde, A.E.; Lorimer, I.A.; Dimitroulakos, J. Targeting the mevalonate pathway inhibits the function of the epidermal growth factor receptor. Clin. Cancer Res., 2005, 11(6), 2398-2407.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1951] [PMID: 15788691]
[40]
Liu, P.C. Inhibition of NF-kappa B Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL) Combination Therapy. PLoS One, 2017, 12(1)e0171157
[http://dx.doi.org/10.1371/journal.pone.0171157] [PMID: 28135339]
[41]
Chiu, H.W.; Fang, W.H.; Chen, Y.L.; Wu, M.D.; Yuan, G.F.; Ho, S.Y.; Wang, Y.J. Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS One, 2012, 7(7)e40462
[http://dx.doi.org/10.1371/journal.pone.0040462] [PMID: 22802963]
[42]
Chen, R.J.; Hung, C.M.; Chen, Y.L.; Wu, M.D.; Yuan, G.F.; Wang, Y.J. Monascuspiloin induces apoptosis and autophagic cell death in human prostate cancer cells via the Akt and AMPK signaling pathways. J. Agric. Food Chem., 2012, 60(29), 7185-7193.
[http://dx.doi.org/10.1021/jf3016927] [PMID: 22738037]
[43]
Chen, R.J. Monascuspiloin: A monascin analogue induces apoptosis and autophagic cell death in human prostate cancer cells via the Akt and AMPK signaling pathways. Free Radic. Biol. Med., 2012, 53, S116-S117.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.08.243]
[44]
Giermasz, A.; Makowski, M.; Kozłowska, E.; Nowis, D.; Maj, M.; Jalili, A.; Feleszko, W.; Wójcik, C.; Dabrowska, A.; Jakóbisiak, M.; Gołab, J. Potentiating antitumor effects of a combination therapy with lovastatin and butyrate in the Lewis lung carcinoma model in mice. Int. J. Cancer, 2002, 97(6), 746-750.
[http://dx.doi.org/10.1002/ijc.10119] [PMID: 11857349]
[45]
Cemeus, C.; Zhao, T.T.; Barrett, G.M.; Lorimer, I.A.; Dimitroulakos, J. Lovastatin enhances gefitinib activity in glioblastoma cells irrespective of EGFRvIII and PTEN status. J. Neurooncol., 2008, 90(1), 9-17.
[http://dx.doi.org/10.1007/s11060-008-9627-0] [PMID: 18566746]
[46]
Zhang, Y.; Zhu, X.; Huang, T.; Chen, L.; Liu, Y.; Li, Q.; Song, J.; Ma, S.; Zhang, K.; Yang, B.; Guan, F. β-Carotene synergistically enhances the anti-tumor effect of 5-fluorouracil on esophageal squamous cell carcinoma in vivo and in vitro. Toxicol. Lett., 2016, 261, 49-58.
[http://dx.doi.org/10.1016/j.toxlet.2016.08.010] [PMID: 27586268]
[47]
Rozados, V.R.; Hinrichsen, L.I.; Binda, M.M.; Gervasoni, S.I.; Matar, P.; Bonfil, R.D.; Scharovsky, O.G. Lovastatin enhances the antitumoral and apoptotic activity of doxorubicin in murine tumor models. Oncol. Rep., 2008, 19(5), 1205-1211.
[http://dx.doi.org/10.3892/or.19.5.1205] [PMID: 18425377]
[48]
Moriceau, G.; Roelofs, A.J.; Brion, R.; Redini, F.; Ebetion, F.H.; Rogers, M.J.; Heymann, D. Synergistic inhibitory effect of apomine and lovastatin on osteosarcoma cell growth. Cancer, 2012, 118(3), 750-760.
[http://dx.doi.org/10.1002/cncr.26336] [PMID: 21751201]
[49]
McAnally, J.A.; Gupta, J.; Sodhani, S.; Bravo, L.; Mo, H. Tocotrienols potentiate lovastatin-mediated growth suppression in vitro and in vivo. Exp. Biol. Med. (Maywood), 2007, 232(4), 523-531.
[PMID: 17392488]
[50]
Hus, M.; Grzasko, N.; Szostek, M.; Pluta, A.; Helbig, G.; Woszczyk, D.; Adamczyk-Cioch, M.; Jawniak, D.; Legiec, W.; Morawska, M.; Kozinska, J.; Waciński, P.; Dmoszynska, A. Thalidomide, dexamethasone and lovastatin with autologous stem cell transplantation as a salvage immunomodulatory therapy in patients with relapsed and refractory multiple myeloma. Ann. Hematol., 2011, 90(10), 1161-1166.
[http://dx.doi.org/10.1007/s00277-011-1276-2] [PMID: 21698395]
[51]
Paintlia, A.S.; Paintlia, M.K.; Singh, I.; Skoff, R.B.; Singh, A.K. Combination therapy of lovastatin and rolipram provides neuroprotection and promotes neurorepair in inflammatory demyelination model of multiple sclerosis. Glia, 2009, 57(2), 182-193.
[http://dx.doi.org/10.1002/glia.20745] [PMID: 18720408]
[52]
Paintlia, A.S.; Paintlia, M.K.; Singh, I.; Singh, A.K. Immunomodulatory effect of combination therapy with lovastatin and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside alleviates neurodegeneration in experimental autoimmune encephalomyelitis. Am. J. Pathol., 2006, 169(3), 1012-1025.
[http://dx.doi.org/10.2353/ajpath.2006.051309] [PMID: 16936274]
[53]
Paintlia, A.S.; Paintlia, M.K.; Singh, I.; Singh, A.K. Combined medication of lovastatin with rolipram suppresses severity of experimental autoimmune encephalomyelitis. Exp. Neurol., 2008, 214(2), 168-180.
[http://dx.doi.org/10.1016/j.expneurol.2008.07.024] [PMID: 18775426]
[54]
Paintlia, A.S.; Mohan, S.; Singh, I. Combinatorial effect of metformin and lovastatin impedes T-cell autoimmunity and neurodegeneration in experimental autoimmune encephalomyelitis. J. Clin. Cell. Immunol., 2013, 4, 4.
[http://dx.doi.org/10.4172/2155-9899.1000149] [PMID: 24324917]
[55]
Zambón, D.; Ros, E.; Rodriguez-Villar, C.; Laguna, J.C.; Vázquez, M.; Sanllehy, C.; Casals, E.; Sol, J.M.; Hernández, G. Randomized crossover study of gemfibrozil versus lovastatin in familial combined hyperlipidemia: additive effects of combination treatment on lipid regulation. Metabolism, 1999, 48(1), 47-54.
[http://dx.doi.org/10.1016/S0026-0495(99)90009-4] [PMID: 9920144]
[56]
Hunninghake, D.B.; McGovern, M.E.; Koren, M.; Brazg, R.; Murdock, D.; Weiss, S.; Pearson, T. A dose-ranging study of a new, once-daily, dual-component drug product containing niacin extended-release and lovastatin. Clin. Cardiol., 2003, 26(3), 112-118.
[http://dx.doi.org/10.1002/clc.4960260304] [PMID: 12685616]
[57]
Kashyap, M.L.; McGovern, M.E.; Berra, K.; Guyton, J.R.; Kwiterovich, P.O.; Harper, W.L.; Toth, P.D.; Favrot, L.K.; Kerzner, B.; Nash, S.D.; Bays, H.E.; Simmons, P.D. Long-term safety and efficacy of a once-daily niacin/lovastatin formulation for patients with dyslipidemia. Am. J. Cardiol., 2002, 89(6), 672-678.
[http://dx.doi.org/10.1016/S0002-9149(01)02338-4] [PMID: 11897208]
[58]
Insull, W., Jr; McGovern, M.E.; Schrott, H.; Thompson, P.; Crouse, J.R.; Zieve, F.; Corbelli, J. Efficacy of extended-release niacin with lovastatin for hypercholesterolemia: assessing all reasonable doses with innovative surface graph analysis. Arch. Intern. Med., 2004, 164(10), 1121-1127.
[http://dx.doi.org/10.1001/archinte.164.10.1121] [PMID: 15159270]
[59]
Davidson, M.H.; Toth, P.; Weiss, S.; McKenney, J.; Hunninghake, D.; Isaacsohn, J.; Donovan, J.M.; Burke, S.K. Low-dose combination therapy with colesevelam hydrochloride and lovastatin effectively decreases low-density lipoprotein cholesterol in patients with primary hypercholesterolemia. Clin. Cardiol., 2001, 24(6), 467-474.
[http://dx.doi.org/10.1002/clc.4960240610] [PMID: 11403509]
[60]
Orekhov, A.N.; Tertov, V.V.; Sobenin, I.A.; Akhmedzhanov, N.M.; Pivovarova, E.M. Antiatherosclerotic and antiatherogenic effects of a calcium antagonist plus statin combination: amlodipine and lovastatin. Int. J. Cardiol., 1997, 62(Suppl. 2), S67-S77.
[http://dx.doi.org/10.1016/S0167-5273(97)00243-X] [PMID: 9488197]
[61]
Assis, R.P.; Arcaro, C.A.; Gutierres, V.O.; Oliveira, J.O.; Costa, P.I.; Baviera, A.M.; Brunetti, I.L. Combined Effects of Curcumin and Lycopene or Bixin in Yoghurt on inhibition of LDL Oxidation and increases in HDL and paraoxonase levels in streptozotocin-diabetic rats. Int. J. Mol. Sci., 2017, 18(4)E332
[http://dx.doi.org/10.3390/ijms18040332] [PMID: 28333071]
[62]
Gerards, M.C.; Terlou, R.J.; Yu, H.; Koks, C.H.; Gerdes, V.E. Traditional Chinese lipid-lowering agent red yeast rice results in significant LDL reduction but safety is uncertain - a systematic review and meta-analysis. Atherosclerosis, 2015, 240(2), 415-423.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.04.004] [PMID: 25897793]
[63]
Childress, L.; Gay, A.; Zargar, A.; Ito, M.K. Review of red yeast rice content and current Food and Drug Administration oversight. J. Clin. Lipidol., 2013, 7(2), 117-122.
[http://dx.doi.org/10.1016/j.jacl.2012.09.003] [PMID: 23415430]
[64]
Peng, D.; Fong, A.; Pelt, A.V. Original research: The effects of red yeast rice supplementation on cholesterol levels in adults. Am. J. Nurs., 2017, 117(8), 46-54.
[http://dx.doi.org/10.1097/01.NAJ.0000521973.38717.2e] [PMID: 28749884]
[65]
Rajasekaran, A.; Kalaivani, M. Protective effect of Monascus fermented rice against STZ-induced diabetic oxidative stress in kidney of rats. J. Food Sci. Technol., 2015, 52(3), 1434-1443.
[http://dx.doi.org/10.1007/s13197-013-1191-8] [PMID: 25745211]
[66]
Handa, C.L.; de Lima, F.S.; Guelfi, M.F.; Georgetti, S.R.; Ida, E.I. Multi-response optimisation of the extraction solvent system for phenolics and antioxidant activities from fermented soy flour using a simplex-centroid design. . Food Chem, 2016, 197(Pt A), 175-184.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.124] [PMID: 26616938]
[67]
Tseng, W.T.; Hsu, Y.W.; Pan, T.M. Neuroprotective effects of dimerumic acid and deferricoprogen from Monascus purpureus NTU 568-fermented rice against 6-hydroxydopamine-induced oxidative stress and apoptosis in differentiated pheochromocytoma PC-12 cells. Pharm. Biol., 2016, 54(8), 1434-1444.
[http://dx.doi.org/10.3109/13880209.2015.1104698] [PMID: 26794209]
[68]
Tseng, W.T.; Hsu, Y.W.; Pan, T.M. The ameliorative effect of Monascus purpureus NTU 568-fermented rice extracts on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells and the rat model of Parkinson’s disease. Food Funct., 2016, 7(2), 752-762.
[http://dx.doi.org/10.1039/C5FO00976F] [PMID: 26809317]
[69]
Shi, Y.C.; Pan, T.M.; Liao, V.H. Monascin from monascus-fermented products reduces oxidative stress and amyloid-β toxicity via DAF-16/FOXO in Caenorhabditis elegans. J. Agric. Food Chem., 2016, 64(38), 7114-7120.
[http://dx.doi.org/10.1021/acs.jafc.6b02779] [PMID: 27554775]
[70]
Pyo, Y.H.; Seong, K.S. Effects of Monascus-fermented grain extracts on plasma antioxidant status and tissue levels of ubiquinones and α-tocopherol in hyperlipidemic rats. Food Chem., 2013, 141(1), 428-435.
[http://dx.doi.org/10.1016/j.foodchem.2013.02.110] [PMID: 23768376]
[71]
Huang, C.S.; Hu, H.H.; Tsai, Y.M.; Chang, W.T. In vitro effects of Monascus purpureus on antioxidation activity during fermentation of Kinmen sorghum liquor waste. J. Biosci. Bioeng., 2013, 115(4), 418-423.
[http://dx.doi.org/10.1016/j.jbiosc.2012.11.003] [PMID: 23266115]
[72]
Wang, P.; Chen, D.; Jiang, D.; Dong, X.; Chen, P.; Lin, Y. Alkali extraction and in vitro antioxidant activity of Monascus mycelium polysaccharides. J. Food Sci. Technol., 2014, 51(7), 1251-1259.
[http://dx.doi.org/10.1007/s13197-012-0618-y] [PMID: 24966417]
[73]
Hromadka, R. Example of successful industrial partnership with Charles University and Academy of Science of Czech Republic in Collaboration of academic and application sphere; Vestec: Czech Republic, 2016.
[74]
Chen, F.; Hu, J.; Liu, P.; Li, J.; Wei, Z.; Liu, P. Carotenoid intake and risk of non-Hodgkin lymphoma: a systematic review and dose-response meta-analysis of observational studies. Ann. Hematol., 2017, 96(6), 957-965.
[http://dx.doi.org/10.1007/s00277-016-2898-1] [PMID: 28011986]
[75]
Chen, J.; Jiang, W.; Shao, L.; Zhong, D.; Wu, Y.; Cai, J. Association between intake of antioxidants and pancreatic cancer risk: a meta-analysis. Int. J. Food Sci. Nutr., 2016, 67(7), 744-753.
[http://dx.doi.org/10.1080/09637486.2016.1197892] [PMID: 27356952]
[76]
Murai, T. Cholesterol lowering: role in cancer prevention and treatment. Biol. Chem., 2015, 396(1), 1-11.
[http://dx.doi.org/10.1515/hsz-2014-0194] [PMID: 25205720]
[77]
Sanfilippo, K.M.; Keller, J.; Gage, B.F.; Luo, S.; Wang, T.F.; Moskowitz, G.; Gumbel, J.; Blue, B.; O’Brian, K.; Carson, K.R. Statins Are Associated With Reduced Mortality in Multiple Myeloma. J. Clin. Oncol., 2016, 34(33), 4008-4014.
[http://dx.doi.org/10.1200/JCO.2016.68.3482] [PMID: 27646948]
[78]
Zhuang, L.; Kim, J.; Adam, R.M.; Solomon, K.R.; Freeman, M.R. Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J. Clin. Invest., 2005, 115(4), 959-968.
[http://dx.doi.org/10.1172/JCI200519935] [PMID: 15776112]
[79]
Yeganeh, B.; Wiechec, E.; Ande, S.R.; Sharma, P.; Moghadam, A.R.; Post, M.; Freed, D.H.; Hashemi, M.; Shojaei, S.; Zeki, A.A.; Ghavami, S. Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacol. Ther., 2014, 143(1), 87-110.
[http://dx.doi.org/10.1016/j.pharmthera.2014.02.007] [PMID: 24582968]
[80]
Bathaie, S.Z.; Ashrafi, M.; Azizian, M.; Tamanoi, F. Mevalonate pathway and human cancers. Curr. Mol. Pharmacol., 2017, 10(2), 77-85.
[http://dx.doi.org/10.2174/1874467209666160112123205] [PMID: 26758953]
[81]
Gibbs, J.B.; Oliff, A.; Kohl, N.E. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell, 1994, 77(2), 175-178.
[http://dx.doi.org/10.1016/0092-8674(94)90308-5] [PMID: 8168127]
[82]
Berndt, N.; Sebti, S.M. Measurement of protein farnesylation and geranylgeranylation in vitro, in cultured cells and in biopsies, and the effects of prenyl transferase inhibitors. Nat. Protoc., 2011, 6(11), 1775-1791.
[http://dx.doi.org/10.1038/nprot.2011.387] [PMID: 22036881]
[83]
Wei, N.; Mi, M.T.; Zhou, Y. Influences of lovastatin on membrane ion flow and intracellular signaling in breast cancer cells. Cell. Mol. Biol. Lett., 2007, 12(1), 1-15.
[http://dx.doi.org/10.2478/s11658-006-0050-2] [PMID: 17103090]
[84]
Khaidakov, M.; Wang, W.; Khan, J.A.; Kang, B.Y.; Hermonat, P.L.; Mehta, J.L. Statins and angiogenesis: is it about connections? Biochem. Biophys. Res. Commun., 2009, 387(3), 543-547.
[http://dx.doi.org/10.1016/j.bbrc.2009.07.057] [PMID: 19615978]
[85]
Matusewicz, L.; Meissner, J.; Toporkiewicz, M.; Sikorski, A.F. The effect of statins on cancer cells--review. Tumour Biol., 2015, 36(7), 4889-4904.
[http://dx.doi.org/10.1007/s13277-015-3551-7] [PMID: 26002574]
[86]
Chen, C.C.; Liu, T.Y.; Huang, S.P.; Ho, C.T.; Huang, T.C. Differentiation and apoptosis induction by lovastatin and γ-tocotrienol in HL-60 cells via Ras/ERK/NF-κB and Ras/Akt/NF-κB signaling dependent down-regulation of glyoxalase 1 and HMG-CoA reductase. Cell. Signal., 2015, 27(11), 2182-2190.
[http://dx.doi.org/10.1016/j.cellsig.2015.07.014] [PMID: 26208883]
[87]
Detterbeck, F.C.; Boffa, D.J.; Tanoue, L.T. The new lung cancer staging system. Chest, 2009, 136(1), 260-271.
[http://dx.doi.org/10.1378/chest.08-0978] [PMID: 19584208]
[88]
Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc., 2008, 83(5), 584-594.
[http://dx.doi.org/10.1016/S0025-6196(11)60735-0] [PMID: 18452692]
[89]
Cui, S.; Jiang, L. Factors associated with efficacy of first-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Tumour Biol., 2017, 39(5)1010428317705340
[http://dx.doi.org/10.1177/1010428317705340] [PMID: 28468578]
[90]
Clapéron, A.; Mergey, M.; Nguyen Ho-Bouldoires, T.H.; Vignjevic, D.; Wendum, D.; Chrétien, Y.; Merabtene, F.; Frazao, A.; Paradis, V.; Housset, C.; Guedj, N.; Fouassier, L. EGF/EGFR axis contributes to the progression of cholangiocarcinoma through the induction of an epithelial-mesenchymal transition. J. Hepatol., 2014, 61(2), 325-332.
[http://dx.doi.org/10.1016/j.jhep.2014.03.033] [PMID: 24704591]
[91]
Nakajima, Y.; Takagi, H.; Kakizaki, S.; Horiguchi, N.; Sato, K.; Sunaga, N.; Mori, M. Gefitinib and gemcitabine coordinately inhibited the proliferation of cholangiocarcinoma cells. Anticancer Res., 2012, 32(12), 5251-5262.
[PMID: 23225424]
[92]
Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet, 2014, 383(9935), 2168-2179.
[http://dx.doi.org/10.1016/S0140-6736(13)61903-0] [PMID: 24581682]
[93]
Pahan, K.; Sheikh, F.G.; Namboodiri, A.M.; Singh, I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J. Clin. Invest., 1997, 100(11), 2671-2679.
[http://dx.doi.org/10.1172/JCI119812] [PMID: 9389730]
[94]
Daher, A.; de Groot, J. Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex vivo-in vivo pharmaco-omic model. Exp. Neurol., 2018, 299(Pt B), 281-288.
[http://dx.doi.org/10.1016/j.expneurol.2017.09.006] [PMID: 28923369]
[95]
Smith, J.S.; Tachibana, I.; Passe, S.M.; Huntley, B.K.; Borell, T.J.; Iturria, N.; O’Fallon, J.R.; Schaefer, P.L.; Scheithauer, B.W.; James, C.D.; Buckner, J.C.; Jenkins, R.B. PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J. Natl. Cancer Inst., 2001, 93(16), 1246-1256.
[http://dx.doi.org/10.1093/jnci/93.16.1246] [PMID: 11504770]
[96]
Bianco, R.; Shin, I.; Ritter, C.A.; Yakes, F.M.; Basso, A.; Rosen, N.; Tsurutani, J.; Dennis, P.A.; Mills, G.B.; Arteaga, C.L. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene, 2003, 22(18), 2812-2822.
[http://dx.doi.org/10.1038/sj.onc.1206388] [PMID: 12743604]
[97]
Kuijlen, J.M.; Bremer, E.; Mooij, J.J.; den Dunnen, W.F.; Helfrich, W. Review: on TRAIL for malignant glioma therapy? Neuropathol. Appl. Neurobiol., 2010, 36(3), 168-182.
[http://dx.doi.org/10.1111/j.1365-2990.2010.01069.x] [PMID: 20102513]
[98]
Nakanishi, M.; Goldstein, J.L.; Brown, M.S. Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mevalonate-derived product inhibits translation of mRNA and accelerates degradation of enzyme. J. Biol. Chem., 1988, 263(18), 8929-8937.
[PMID: 3379053]
[99]
Mo, H.; Elson, C.E. Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp. Biol. Med. (Maywood), 2004, 229(7), 567-585.
[http://dx.doi.org/10.1177/153537020422900701] [PMID: 15229351]
[100]
Fernandes, N.V.; Guntipalli, P.K.; Mo, H. d-δ-Tocotrienol-mediated cell cycle arrest and apoptosis in human melanoma cells. Anticancer Res., 2010, 30(12), 4937-4944.
[PMID: 21187473]
[101]
Hussein, D.; Mo, H. d-δ-Tocotrienol-mediated suppression of the proliferation of human PANC-1, MIA PaCa-2, and BxPC-3 pancreatic carcinoma cells. Pancreas, 2009, 38(4), e124-e136.
[http://dx.doi.org/10.1097/MPA.0b013e3181a20f9c] [PMID: 19346993]
[102]
Iliskovic, N.; Li, T.; Khaper, N.; Palace, V.; Singal, P.K. Modulation of adriamycin-induced changes in serum free fatty acids, albumin and cardiac oxidative stress. Mol. Cell. Biochem., 1998, 188(1-2), 161-166.
[http://dx.doi.org/10.1023/A:1006845120287] [PMID: 9823021]
[103]
Zhong, W. Systematic review of decision aids for the management of men with localized prostate cancer. Urology, 2018, 114, 1-7.
[http://dx.doi.org/10.1016/j.urology.2017.10.022] [PMID: 29101005]
[104]
Donovan, J.L.; Hamdy, F.C.; Lane, J.A.; Mason, M.; Metcalfe, C.; Walsh, E.; Blazeby, J.M.; Peters, T.J.; Holding, P.; Bonnington, S.; Lennon, T.; Bradshaw, L.; Cooper, D.; Herbert, P.; Howson, J.; Jones, A.; Lyons, N.; Salter, E.; Thompson, P.; Tidball, S.; Blaikie, J.; Gray, C.; Bollina, P.; Catto, J.; Doble, A.; Doherty, A.; Gillatt, D.; Kockelbergh, R.; Kynaston, H.; Paul, A.; Powell, P.; Prescott, S.; Rosario, D.J.; Rowe, E.; Davis, M.; Turner, E.L.; Martin, R.M.; Neal, D.E. Patient-reported outcomes after monitoring, surgery, or radiotherapy for prostate cancer. N. Engl. J. Med., 2016, 375(15), 1425-1437.
[http://dx.doi.org/10.1056/NEJMoa1606221] [PMID: 27626365]
[105]
Ho, B.Y.; Pan, T.M. The Monascus metabolite monacolin K reduces tumor progression and metastasis of Lewis lung carcinoma cells. J. Agric. Food Chem., 2009, 57(18), 8258-8265.
[http://dx.doi.org/10.1021/jf901619w] [PMID: 19754167]
[106]
Hsu, L.C.; Hsu, Y.W.; Liang, Y.H.; Kuo, Y.H.; Pan, T.M. Anti-tumor and anti-inflammatory properties of ankaflavin and monaphilone A from monascus purpureus NTU 568. J. Agric. Food Chem., 2011, 59(4), 1124-1130.
[http://dx.doi.org/10.1021/jf103652n] [PMID: 21261255]
[107]
Simonini, G.; Pignone, A.; Generini, S.; Falcini, F.; Cerinic, M.M. Emerging potentials for an antioxidant therapy as a new approach to the treatment of systemic sclerosis. Toxicology, 2000, 155(1-3), 1-15.
[http://dx.doi.org/10.1016/S0300-483X(00)00272-9] [PMID: 11154792]
[108]
Ciurleo, R.; Bramanti, P.; Marino, S. Role of statins in the treatment of multiple sclerosis. Pharmacol. Res., 2014, 87, 133-143.
[http://dx.doi.org/10.1016/j.phrs.2014.03.004] [PMID: 24657241]
[109]
Ulivieri, C.; Baldari, C.T. Statins: from cholesterol-lowering drugs to novel immunomodulators for the treatment of Th17-mediated autoimmune diseases. Pharmacol. Res., 2014, 88, 41-52.
[http://dx.doi.org/10.1016/j.phrs.2014.03.001] [PMID: 24657239]
[110]
Zhang, F.L.; Casey, P.J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem., 1996, 65, 241-269.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.001325] [PMID: 8811180]
[111]
Bartosik-Psujek, H.; Tabarkiewicz, J.; Pocinska, K.; Radej, S.; Stelmasiak, Z.; Rolinski, J. Immunomodulatory effects of IFN-beta and lovastatin on immunophenotype of monocyte-derived dendritic cells in multiple sclerosis. Arch. Immunol. Ther. Exp. (Warsz.), 2010, 58(4), 313-319.
[http://dx.doi.org/10.1007/s00005-010-0084-z] [PMID: 20526818]
[112]
Giri, S.; Nath, N.; Smith, B.; Viollet, B.; Singh, A.K.; Singh, I. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase. J. Neurosci., 2004, 24(2), 479-487.
[http://dx.doi.org/10.1523/JNEUROSCI.4288-03.2004] [PMID: 14724246]
[113]
Negrotto, L.; Farez, M.F.; Correale, J. Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis. JAMA Neurol., 2016, 73(5), 520-528.
[http://dx.doi.org/10.1001/jamaneurol.2015.4807] [PMID: 26953870]
[114]
Sun, Y.; Tian, T.; Gao, J.; Liu, X.; Hou, H.; Cao, R.; Li, B.; Quan, M.; Guo, L. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J. Neuroimmunol., 2016, 292, 58-67.
[http://dx.doi.org/10.1016/j.jneuroim.2016.01.014] [PMID: 26943960]
[115]
Chan, K.M.; Gordon, T.; Zochodne, D.W.; Power, H.A. Improving peripheral nerve regeneration: from molecular mechanisms to potential therapeutic targets. Exp. Neurol., 2014, 261, 826-835.
[http://dx.doi.org/10.1016/j.expneurol.2014.09.006] [PMID: 25220611]
[116]
Pearse, D.D.; Pereira, F.C.; Marcillo, A.E.; Bates, M.L.; Berrocal, Y.A.; Filbin, M.T.; Bunge, M.B. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med., 2004, 10(6), 610-616.
[http://dx.doi.org/10.1038/nm1056] [PMID: 15156204]
[117]
Zhu, J.; Mix, E.; Winblad, B. The antidepressant and antiinflammatory effects of rolipram in the central nervous system. CNS Drug Rev., 2001, 7(4), 387-398.
[http://dx.doi.org/10.1111/j.1527-3458.2001.tb00206.x] [PMID: 11830756]
[118]
Masuda, D.; Yamashita, S. Postprandial hyperlipidemia and remnant lipoproteins. J. Atheroscler. Thromb., 2017, 24(2), 95-109.
[http://dx.doi.org/10.5551/jat.RV16003] [PMID: 27829582]
[119]
Hohenstein, B. Lipoprotein(a) in nephrological patients. Clin. Res. Cardiol. Suppl., 2017, 12(Suppl. 1), 27-30.
[http://dx.doi.org/10.1007/s11789-017-0086-z] [PMID: 28181057]
[120]
Dallinga-Thie, G.M.; Kroon, J.; Borén, J.; Chapman, M.J. Triglyceride-rich lipoproteins and remnants: targets for therapy? Curr. Cardiol. Rep., 2016, 18(7), 67.
[http://dx.doi.org/10.1007/s11886-016-0745-6] [PMID: 27216847]
[121]
Becker, D.J. Red yeast rice for dyslipidemia in statin-intolerant patients: A randomized trial. Ann Intern Med,, 2009, 150, (12), 830-9, W147-9..
[http://dx.doi.org/10.7326/0003-4819-150-12-200906160-00006]
[122]
Halbert, S.C.; French, B.; Gordon, R.Y.; Farrar, J.T.; Schmitz, K.; Morris, P.B.; Thompson, P.D.; Rader, D.J.; Becker, D.J. Tolerability of red yeast rice (2,400 mg twice daily) versus pravastatin (20 mg twice daily) in patients with previous statin intolerance. Am. J. Cardiol., 2010, 105(2), 198-204.
[http://dx.doi.org/10.1016/j.amjcard.2009.08.672] [PMID: 20102918]
[123]
Roy, A.; Pahan, K. Gemfibrozil, stretching arms beyond lipid lowering. Immunopharmacol. Immunotoxicol., 2009, 31(3), 339-351.
[http://dx.doi.org/10.1080/08923970902785253] [PMID: 19694602]
[124]
Hossain, M.A.; Tsujita, M.; Gonzalez, F.J.; Yokoyama, S. Effects of fibrate drugs on expression of ABCA1 and HDL biogenesis in hepatocytes. J. Cardiovasc. Pharmacol., 2008, 51(3), 258-266.
[http://dx.doi.org/10.1097/FJC.0b013e3181624b22] [PMID: 18356690]
[125]
Jana, M.; Jana, A.; Liu, X.; Ghosh, S.; Pahan, K. Involvement of phosphatidylinositol 3-kinase-mediated up-regulation of I kappa B alpha in anti-inflammatory effect of gemfibrozil in microglia. J. Immunol., 2007, 179(6), 4142-4152.
[http://dx.doi.org/10.4049/jimmunol.179.6.4142] [PMID: 17785853]
[126]
Jin, F.Y.; Kamanna, V.S.; Chuang, M.Y.; Morgan, K.; Kashyap, M.L. Gemfibrozil stimulates apolipoprotein A-I synthesis and secretion by stabilization of mRNA transcripts in human hepatoblastoma cell line (Hep G2). Arterioscler. Thromb. Vasc. Biol., 1996, 16(8), 1052-1062.
[http://dx.doi.org/10.1161/01.ATV.16.8.1052] [PMID: 8696946]
[127]
Saku, K.; Gartside, P.S.; Hynd, B.A.; Kashyap, M.L. Mechanism of action of gemfibrozil on lipoprotein metabolism. J. Clin. Invest., 1985, 75(5), 1702-1712.
[http://dx.doi.org/10.1172/JCI111879] [PMID: 3923042]
[128]
Zaki, N.F.; Sulaiman, A.S.; Gillani, W.S. Clinical evaluation of Dyslipidemia among type II diabetic patients at Public hospital Penang, Malaysia. Int. Arch. Med., 2010, 3(1), 34.
[http://dx.doi.org/10.1186/1755-7682-3-34] [PMID: 21092333]
[129]
Zeman, M.; Vecka, M.; Perlík, F.; Staňková, B.; Hromádka, R.; Tvrzická, E.; Širc, J.; Hrib, J.; Žák, A. Pleiotropic effects of niacin: Current possibilities for its clinical use. Acta Pharm., 2016, 66(4), 449-469.
[http://dx.doi.org/10.1515/acph-2016-0043] [PMID: 27749252]
[130]
Chai, J.T.; Digby, J.E.; Choudhury, R.P. GPR109A and vascular inflammation. Curr. Atheroscler. Rep., 2013, 15(5), 325.
[http://dx.doi.org/10.1007/s11883-013-0325-9] [PMID: 23526298]
[131]
Dayer-Berenson, L.; Finckenor, M. Expanded colesevelam administration options with oral suspension formulation for patients with diabetes and hypercholesterolemia. Postgrad. Med., 2014, 126(3), 126-134.
[http://dx.doi.org/10.3810/pgm.2014.05.2762] [PMID: 24918798]
[132]
Cowie, M.R. Simultaneous treatment of hypertension and dyslipidaemia may help to reduce overall cardiovascular risk: focus on amlodipine/atorvastatin single-pill therapy. Int. J. Clin. Pract., 2005, 59(7), 839-846.
[http://dx.doi.org/10.1111/j.1368-5031.2005.00601.x] [PMID: 15963213]
[133]
Derosa, G.; Maffioli, P. Effects of amlodipine plus atorvastatin association in hypertensive hypercholesterolemic patients. Expert Rev. Cardiovasc. Ther., 2010, 8(6), 835-843.
[http://dx.doi.org/10.1586/erc.10.51] [PMID: 20528641]
[134]
Farkhondeh, T.; Samarghandian, S.; Borji, A. An overview on cardioprotective and anti-diabetic effects of thymoquinone. Asian Pac. J. Trop. Med., 2017, 10(9), 849-854.
[http://dx.doi.org/10.1016/j.apjtm.2017.08.020] [PMID: 29080612]
[135]
Panahi, Y.; Ahmadi, Y.; Teymouri, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J. Cell. Physiol., 2018, 233(1), 141-152.
[http://dx.doi.org/10.1002/jcp.25756] [PMID: 28012169]
[136]
Johnson-Arbor, K.; Dubey, R. Doxorubicin, in StatPearls In: Treasure Island (FL); , 2017.
[137]
Renu, K. v G, A.; P B, T.P.; Arunachalam, S. Molecular mechanism of doxorubicin-induced cardiomyopathy - An update. Eur. J. Pharmacol., 2018, 818, 241-253.
[http://dx.doi.org/10.1016/j.ejphar.2017.10.043] [PMID: 29074412]
[138]
Arunachalam, S.; Tirupathi Pichiah, P.B.; Achiraman, S. Doxorubicin treatment inhibits PPARγ and may induce lipotoxicity by mimicking a type 2 diabetes-like condition in rodent models. FEBS Lett., 2013, 587(2), 105-110.
[http://dx.doi.org/10.1016/j.febslet.2012.11.019] [PMID: 23219922]
[139]
Arunachalam, S.; Kim, S.Y.; Kim, M.S.; Yi, H.K.; Yun, B.S.; Lee, D.Y.; Hwang, P.H. Adriamycin inhibits adipogenesis through the modulation of PPARγ and restoration of adriamycin-mediated inhibition of adipogenesis by PPARγ over-expression. Toxicol. Mech. Methods, 2012, 22(7), 540-546.
[http://dx.doi.org/10.3109/15376516.2012.692110] [PMID: 22563975]
[140]
Angsutararux, P.; Luanpitpong, S.; Issaragrisil, S. Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative Stress. Oxid. Med. Cell. Longev., 2015.2015795602
[http://dx.doi.org/10.1155/2015/795602] [PMID: 26491536]
[141]
Wang, H.L.; Cui, X.H.; Yu, H.L.; Wu, R.; Xu, X.; Gao, J.P. Synergistic effects of polydatin and vitamin C in inhibiting cardiotoxicity induced by doxorubicin in rats. Fundam. Clin. Pharmacol., 2017, 31(3), 280-291.
[http://dx.doi.org/10.1111/fcp.12258] [PMID: 27891661]
[142]
Iliskovic, N.; Singal, P.K. Lipid lowering: an important factor in preventing adriamycin-induced heart failure. Am. J. Pathol., 1997, 150(2), 727-734.
[PMID: 9033285]
[143]
Zhou, X.; Li, Y.; Shi, X.; Ma, C. An overview on therapeutics attenuating amyloid β level in Alzheimer’s disease: targeting neurotransmission, inflammation, oxidative stress and enhanced cholesterol levels. Am. J. Transl. Res., 2016, 8(2), 246-269.
[PMID: 27158324]
[144]
Gupta, A.; Goyal, R. Amyloid beta plaque: a culprit for neurodegeneration. Acta Neurol. Belg., 2016, 116(4), 445-450.
[http://dx.doi.org/10.1007/s13760-016-0639-9] [PMID: 27118573]
[145]
Area-Gomez, E.; Schon, E.A. On the pathogenesis of Alzheimer’s Disease: The MAM hypothesis. FASEB J., 2017, 31(3), 864-867.
[http://dx.doi.org/10.1096/fj.201601309] [PMID: 28246299]
[146]
Lockhart, C.; Klimov, D.K. Cholesterol changes the mechanisms of Aβ peptide binding to the DMPC bilayer. J. Chem. Inf. Model., 2017, 57(10), 2554-2565.
[http://dx.doi.org/10.1021/acs.jcim.7b00431] [PMID: 28910085]
[147]
Summers, K.L.; Fimognari, N.; Hollings, A.; Kiernan, M.; Lam, V.; Tidy, R.J.; Paterson, D.; Tobin, M.J.; Takechi, R.; George, G.N.; Pickering, I.J.; Mamo, J.C.; Harris, H.H.; Hackett, M.J. A Multimodal spectroscopic imaging method to characterize the metal and macromolecular content of proteinaceous aggregates (“amyloid plaques”). Biochemistry, 2017, 56(32), 4107-4116.
[http://dx.doi.org/10.1021/acs.biochem.7b00262] [PMID: 28718623]
[148]
Granzotto, A.; Suwalsky, M.; Zatta, P. Physiological cholesterol concentration is a neuroprotective factor against β-amyloid and β-amyloid-metal complexes toxicity. J. Inorg. Biochem., 2011, 105(8), 1066-1072.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.05.013] [PMID: 21726769]
[149]
Lee, C.L. Monascus-fermented monascin and ankaflavin improve the memory and learning ability in amyloid beta-protein intracerebroventricular-infused rat via the suppression of Alzheimer’s disease risk factors. J. Funct. Foods, 2015, 18, 387-399.
[http://dx.doi.org/10.1016/j.jff.2015.08.002]
[150]
Asai, M.; Iwata, N.; Tomita, T.; Iwatsubo, T.; Ishiura, S.; Saido, T.C.; Maruyama, K. Efficient four-drug cocktail therapy targeting amyloid-β peptide for Alzheimer’s disease. J. Neurosci. Res., 2010, 88(16), 3588-3597.
[http://dx.doi.org/10.1002/jnr.22503] [PMID: 20890992]
[151]
Schrott, H.G.; Stein, E.A.; Dujovne, C.A.; Davidson, M.H.; Goris, G.B.; Oliphant, T.H.; Phillips, J.C.; Shawaryn, G.G. Enhanced low-density lipoprotein cholesterol reduction and cost-effectiveness by low-dose colestipol plus lovastatin combination therapy. Am. J. Cardiol., 1995, 75(1), 34-39.
[http://dx.doi.org/10.1016/S0002-9149(99)80523-2] [PMID: 7801861]
[152]
Le Lay, S.; Simard, G.; Martinez, M.C.; Andriantsitohaina, R. Oxidative stress and metabolic pathologies: from an adipocentric point of view. Oxid. Med. Cell. Longev., 2014.2014908539
[http://dx.doi.org/10.1155/2014/908539] [PMID: 25143800]
[153]
Tunsophon, S.; Chootip, K. Comparative effects of piperine and simvastatin in fat accumulation and antioxidative status in high fat-induced hyperlipidemic rats. Can. J. Physiol. Pharmacol., 2016, 94(12), 1344-1348.
[http://dx.doi.org/10.1139/cjpp-2016-0193] [PMID: 27718606]
[154]
Kesh, S.B.; Sikder, K.; Manna, K.; Das, D.K.; Khan, A.; Das, N.; Dey, S. Promising role of ferulic acid, atorvastatin and their combination in ameliorating high fat diet-induced stress in mice. Life Sci., 2013, 92(17-19), 938-949.
[http://dx.doi.org/10.1016/j.lfs.2013.03.015] [PMID: 23567805]
[155]
Lee, C.L.; Pan, T.M. Red mold fermented products and Alzheimer’s disease: a review. Appl. Microbiol. Biotechnol., 2011, 91(3), 461-469.
[http://dx.doi.org/10.1007/s00253-011-3413-1] [PMID: 21687963]
[156]
Dujovne, C.A. Red Yeast Rice Preparations: Are They Suitable Substitutions for Statins? Am. J. Med., 2017, 130(10), 1148-1150.
[http://dx.doi.org/10.1016/j.amjmed.2017.05.013] [PMID: 28601545]
[157]
Venhuis, B.J.; van Hunsel, F.; van de Koppel, S.; Keizers, P.H.; Jeurissen, S.M.; De Kaste, D. Pharmacologically effective red yeast rice preparations marketed as dietary supplements illustrated by a case report. Drug Test. Anal., 2016, 8(3-4), 315-318.
[http://dx.doi.org/10.1002/dta.1929] [PMID: 26810781]
[158]
Gayathri, L.; Dhivya, R.; Dhanasekaran, D.; Periasamy, V.S.; Alshatwi, A.A.; Akbarsha, M.A. Hepatotoxic effect of ochratoxin A and citrinin, alone and in combination, and protective effect of vitamin E: In vitro study in HepG2 cell. Food Chem. Toxicol., 2015, 83, 151-163.
[http://dx.doi.org/10.1016/j.fct.2015.06.009] [PMID: 26111808]
[159]
Chen, C.C.; Chan, W.H. Inhibition of citrinin-induced apoptotic biochemical signaling in human hepatoma G2 cells by resveratrol. Int. J. Mol. Sci., 2009, 10(8), 3338-3357.
[http://dx.doi.org/10.3390/ijms10083338] [PMID: 20111678]
[160]
Hsu, L.C.; Hsu, Y.W.; Liang, Y.H.; Lin, Z.H.; Kuo, Y.H.; Pan, T.M. Protective effect of deferricoprogen isolated from Monascus purpureus NTU 568 on citrinin-induced apoptosis in HEK-293 cells. J. Agric. Food Chem., 2012, 60(32), 7880-7885.
[http://dx.doi.org/10.1021/jf301889q] [PMID: 22835031]
[161]
Lee, C.L.; Wen, J.Y.; Hsu, Y.W.; Pan, T.M. Monascus-fermented yellow pigments monascin and ankaflavin showed antiobesity effect via the suppression of differentiation and lipogenesis in obese rats fed a high-fat diet. J. Agric. Food Chem., 2013, 61(7), 1493-1500.
[http://dx.doi.org/10.1021/jf304015z] [PMID: 23360447]
[162]
Yang, C.W.; Mousa, S.A. The effect of red yeast rice (Monascus purpureus) in dyslipidemia and other disorders. Complement. Ther. Med., 2012, 20(6), 466-474.
[http://dx.doi.org/10.1016/j.ctim.2012.07.004] [PMID: 23131380]
[163]
Gordon, R.Y.; Cooperman, T.; Obermeyer, W.; Becker, D.J. Marked variability of monacolin levels in commercial red yeast rice products: buyer beware! Arch. Intern. Med., 2010, 170(19), 1722-1727.
[http://dx.doi.org/10.1001/archinternmed.2010.382] [PMID: 20975018]
[164]
EFSA Panel on Dietetic Products.Nutrition and Allergies (NDA). Scientific Opinion on the substantiation of health claims related to monacolin K from red yeast rice and maintenance of normal blood LDL-cholesterol concentrations (ID 1648, 1700) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J., 2011, 9(7), 2304.
[http://dx.doi.org/10.2903/j.efsa.2011.2304]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy