[1]
Salas, E.M.; Saiz, M.; Sobrino, F. Foot-and-mouth disease virus.In Animal viruses: Molecular biology; Mettenleiter, T.C.; Sobrino, F., Eds.; Caister Academic Press: Norfolk, 2008, pp. 1-38.
[2]
Cottral, G.E. Persistence of foot and mouth disease virus in animals, their products and the environment. Bull. Office Int. Des-epizooties, 1969, 71, 549-568.
[3]
Alexandersen, S.; Zhang, Z.; Donaldson, A.I. Aspects of the persistence of foot-and-mouth disease virus in nimals â the carrier problem. Microbes Infect., 2002, 4, 1099-1010.
[4]
Brown, F. Foot-and-mouth disease: Vaccine design, past, present and future. Arch. Virol. Suppl., 1999, 15, 179-188.
[5]
Laporte, J. The structure of foot-and-mouth disease virus protein. J. Gen. Virol., 1969, 4, 631-634.
[6]
Rowlands, D.J.; Sangar, D.V.; Brown, F. Relationship of the antigenic structure of foot-and-mouth disease virus to the process of infection. J. Gen. Virol., 1971, 13, 85-93.
[7]
Bachrach, H.L.; Moore, D.M.; McKercher, P.D.; Polatnick, J. Immune and antibody responses to an isolated capsid protein of foot-and-mouth disease virus. J. Immunol., 1975, 115, 1636-1641.
[8]
Dimarchi, R.; Brooke, G.; Gale, C.; Cracknell, V.; Doll, T.R.; Mowat, N. Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science, 1986, 232, 635-641.
[9]
Saiz, J.C.; Rodriguez, A.; Gonzalez, M.; Alonso, F.; Sobrino, F. Heterotypic lymphoproliferative response in pigs vaccinated with foot-and-mouth disease virus. Involvement of isolated capsid proteins. J. Gen. Virol., 1992, 73, 2601-2607.
[10]
Doel, T.R. FMD vaccines. Virus Res., 2003, 91, 81-89.
[11]
Rodriguez, L.L.; Barrera, J.; Kramer, E.; Lubroth, J.; Brown, F.; Golde, W.T. A synthetic peptide containing the consensus sequence of the G-H loop region of foot-and-mouth disease virus type-O VP1 and a promiscuous T-helper epitope induces peptide-specific antibodies but fails to protect cattle against viral challenge. Vaccine, 2003, 21, 3751-3756.
[12]
Balamurugan, V.; Renji, R.; Saha, S.N.; Reddy, G.R.; Gopalakrishna, S.; Suryanarayana, V.V.S. Protective immune response against foot-and-mouth disease virus challenge in guinea pigs vaccinated with recombinant P1 poly protein expressed in Pichia pastoris. Arch. Virol., 2005, 19, 513-516.
[13]
Pacheco, J.M.; Brum, M.C.; Moraes, M.P.; Golde, W.T.; Grubman, M.J. Rapid protection of cattle from direct challenge with foot-and-mouth disease virus (FMDV) by a single inoculation with an adenovirus-vectored FMDV subunit vaccine. Virology, 2005, 337, 205-209.
[14]
Eble, P.L.; de Bruin, M.G.; Bouma, A.; Kluitenberg, F.V.H.; Dekker, A. Comparison of immune responses after intra-typic heterologous and homologous vaccination against foot-and-mouth disease virus infection in pigs. Vaccine, 2006, 24, 1274-1281.
[15]
Lu, Z.; Bao, H.; Cao, Y.; Sun, P.; Guo, J.; Li, P. et al. Protection of guinea pigs and swine by a recombinant adenovirus expressing O serotype of foot-and-mouth disease virus whole capsid and 3C protease. Vaccine, 2008, 26, 48-53.
[16]
Li, Z.; Yi, Y.; Yin, X.; Zhang, Z.; Liu, J. Expression of foot-and-mouth disease virus capsid proteins in silkworm-baculovirus expression system and its utilization as a subunit vaccine. PLoS One, 2008, 3, 2273.
[17]
Yao, Q.; Qian, P.; Huang, Q.; Cao, Y.; Chen, H. Comparison of immune responses to different foot-and-mouth disease genetically engineered vaccines in guinea pigs. J. Virol. Methods, 2008, 147, 143-150.
[18]
Luis, L.R.; Marvin, J.G. Foot and mouth disease virus vaccines. Vaccine, 2009, 27, 90-94.
[19]
Zhang, L.; Zhang, J.; Chen, H.; Zhou, J.; Ma, L.; Ding, Y.; Liu, Y. Research in advance for FMD Novel Vaccines. Virol. J., 2011, 8, 268.
[20]
Volpina, O.M.; Yarov, A.V.; Zhmak, M.N.; Kuprianova, M.A.; Chepurkin, A.V.; Toloknov, A.S.; Ivanov, V.T. Synthetic vaccine against foot-and-mouth disease based on a palmitoyl derivative of the VP1 protein 135-159 fragment of the A22 virus strain. Vaccine, 1996, 14, 1375-1380.
[21]
Volpina, O.M.; Surovoy, A.Y.; Zhmak, M.N.; Kuprianova, M.A.; Koroev, D.O.; Chepurkin, A.V.; Toloknov, A.S.; Ivanov, V.T. A peptide construct containing B-cell and T-cell epitopes from the foot and mouth disease viral VP1 protein induces efficient antiviral protection. Vaccine, 1999, 17, 577-584.
[22]
Dykman, L.A.; Staroverov, S.A.; Mezhenny, P.V.; Fomin, A.S.; Kozlov, S.V.A.; Volkov, A.A.; Laskavy, V.N.; Shchyogolev, S.Y. Use of a synthetic foot-and-mouth disease virus peptide conjugated to gold nanoparticles for enhancing immunological response. Gold Bull., 2015, 48, 93-101.
[23]
Miller, M.A.; Leggat, G.; Berzofsky, J. Selective expansion of High or Low avidity Cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc. Natl. Acad. Sci. USA, 1996, 93, 4102-4107.
[24]
Fernandes, H.V.; Walter, U.; Bourgeois, C.; McLean, A.; Rocha, B. Response of Naïve and memory CD8+ T cells to antigen stimulation in vivo. Nat. Immunol., 2003, 1, 47-43.
[25]
Scheerlinck, J.P.; Gloster, S.; Gamvrellis, A.; Mottram, P.L.; Plebanski, M. Systemic immune responses in sheep, induced by a novel nano-bead adjuvant. Vaccine, 2006, 24, 1124-1131.
[26]
Manea, F.; Bindoli, C.; Fallarini, S.; Lombardi, G.; Polito, L.; Lay, L.; Bonomi, R.; Mancin, F.; Scrimin, P. Multivalent, saccharide functionalized gold nanoparticles as fully synthetic analogs of type A Neisseria meningitidis antigens. Adv. Mater., 2008, 20, 4348-4352.
[27]
Chen, Y.S.; Hung, Y.C.; Liau, I.; Huang, G.S. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett., 2009, 4, 858-864.
[28]
Dykman, L.A.; Staroverov, S.A.; Bogatyrev, V.A.; Shchyogolev, S.Y. Adjuvant properties of gold nanoparticles. Nanotechnol. Russ., 2010, 5, 748-761.
[29]
Staroverov, S.A.; Vidyasheva, I.V.; Gabalov, K.P.; Vasilenko, O.A.; Laskavyi, V.N.; Dykman, L.A. Immunostimulatory effect of gold nanoparticles conjugated with transmissible gastroenteritis virus. Bull. Exp. Biol. Med., 2011, 151, 436-439.
[30]
Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev., 2012, 41, 2256-2282.
[31]
Niikura, K.; Matsunaga, T.; Suzuki, T.; Kobayashi, S.; Yamaguchi, H.; Orba, Y.; Kawaguchi, A.; Hasegawa, H.; Kajino, K.; Ninomiya, T.; Ijiro, K.; Sawa, H. Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo. Am. Chem. Soc. Nano, 2013, 7, 3926-3938.
[32]
Stone, J.W.; Thornburg, N.J.; Blum, D.L.; Kuhn, S.J.; Wright, D.W.; Crowe, J.E. Jr. Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology, 2013, 24295102
[33]
Tao, W.; Ziemer, K.S.; Gill, H.S. Gold nanoparticle–M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine (Lond.), 2014, 9, 237-351.
[34]
Gregory, A.E.; Judy, B.M.; Qazi, O.; Blumentritt, C.A.; Brown, K.A.; Shaw, A.M.; Torres, A.G.; Titball, R.W. A gold nanoparticle-linked glycol conjugate vaccine against Burkholderia mallei. Nanomedicine., 2015, 11, 447-456.
[35]
Gao, W.; Fang, R.H.; Thamphiwatana, S.; Luk, B.T.; Li, J.; Angsantikul, P.; Zhang, Q.; Hu, C.M.; Zhang, L. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett., 2015, 15, 1403-1409.
[36]
Rimmelzwaan, G.F.; Claas, E.C.; Amerongen, G.V.; Jong, J.C.D.; Osterhaus, A.D. ISCOM vaccine induced protection against a lethal challenge with a human H5N1 influenza virus. Vaccine, 1999, 17, 1355-1358.
[37]
Pearse, M.J.; Drane, D. ISCOMATIX adjuvant for antigen delivery. Adv. Drug Deliv. Rev., 2005, 57, 465-474.
[38]
Christie, R.J.; Findley, D.J.; Dunfee, M.; Hansen, R.D.; Olsen, S.C.; Grainger, D.W. Photopolymerized hydrogel carriers for live vaccine ballistic delivery. Vaccine, 2006, 24, 1462-1469.
[39]
Olsen, S.C.; Christie, R.J.; Grainger, D.W.; Stoffregen, W.S. Immunologic responses of bison to vaccination with Brucella abortus strain RB51: Comparison of parenteral to ballistic delivery via compressed pellets or photopolymerized hydrogels. Vaccine, 2006, 24, 1346-1353.
[40]
Harpin, S.; Hurley, D.J.; Mbikay, M.; Talbot, B.; Elazhary, Y. Vaccination of cattle with a DNA plasmid encoding the bovine viral diarrhoea virus major glycoprotein E2. J. Gen. Virol., 1999, 80, 3137-3144.
[41]
Kersten, G.; Drane, D.; Pearse, M.; Jiskoot, W.; Coulter, A. Novel
vaccination strategies, SHE. Kaufmann (Ed.), Wiley-VCH Verlag
Gmb H & Co. KGaA: Weinheim, 2004; 173-196.
[42]
Mueller, R.S.; Veir, J.; Fieseler, K.V.; Dow, S.W. Use of immunostimulatory liposome-nucleic acid complexes in allergen-specific immunotherapy of dogs with refractory atopic dermatitis – a pilot study. Vet. Dermatol., 2005, 16, 61-68.
[43]
Gregory, A.E.; Williamson, E.D.; Prior, J.L.; Butcher, W.A. Thompson. I.J.; Shaw, A.M. Conjugation of Y. pestis F1-antigen to gold nanoparticles improves immunogenicity. Vaccine, 2012, 30, 6777-6782.
[44]
Safari, D.; Marradi, M.; Chiodo, F.; Dekker, H.A.T.; Shan, Y.; Adamo, R.; Oscarson, S.; Rijkers, G.T.; Lahmann, M.; Kamerling, J.P.; Penadés, S.; Snippe, H. Gold nanoparticles as carriers for a synthetic Streptococcus pneumoniae type 14 conjugate vaccine. Nanomedicine (Lond.), 2012, 5, 651-662.
[45]
Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sudhakar, S.R.; Khan, M.I.; Parishcha, R.; Ajaykumar, P.V.; Alam, M.; Kumar, R. Murali sastry fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett., 2001, 1, 515-519.
[46]
Chen, X.; Schluesener, H.J. Nanosilver: A nanoproduct in medical application. Toxicol. Lett., 2008, 176, 1-12.
[47]
Daniel, S.C.G.; Tharmaraj, V.; Sironmani, A.T.; Pitchumani, K. Toxicity and Immunological activity of Silver Nanoparticles. Appl. Clay Sci., 2010, 48, 547-551.
[48]
Sironmani, A.T.; Daniel, S.C.G. Silver Nanoparticles – Universal
Multifunctional Nanoparticles for Bio Sensing, Imaging for Diagnostics
and Targeted Drug Delivery for Therapeutic Applications., In: Drug Discovery and Development - Present and Future,
Kapetanovic, I.M. Ed., InTech publishers, 2011; ISBN 978-953-
307-615-7.
[49]
Sironmani, A.T.; Daniel, S.C.G. Silver Nano formulations for
diagnostics and therapeutics of foot and-mouth disease in animals.
2011: Patent Application No: 4337/CHE/2012.
[50]
Ananth, N.A.; Daniel, S.C.G.; Sironmani, A.T.; Umapathi, S. PVA and BSA stabilized silver nanoparticles based Surface-Enhanced Plasmon Resonance probes for protein detection. Colloids Surfaces B, 2011, 85, 138-144.
[51]
Daniel, S.C.G.; Sironmani, A.T.; Tharmaraj, V.; Pitchumani, K. Synthesis, characterization and in vivo studies of Fluorophore attached Silver Nanoparticles. Bull. Mater. Sci., 2011, 34, 639-644.
[52]
Golding, S.M.; Hedger, R.S.; Talbot, P.; Watson, J. Radial immunodiffusions and serum neutralization techniques for the assay of antibodies to swine vesicular disease. Res. Vet. Sci., 1976, 20, 142-147.
[53]
Bergmann, I.R.; Mello, P.A.; Neitzert, E.; Beck, E.; Gomes, I. Diagnosis of persistent aphtho virus infection and its differentiation from vaccination responses in cattle by use of enzyme-linked immunoelectrotransfer blot analysis with bioengineered nonstructural viral antigens. Am. J. Vet. Res., 1993, 54, 825-831.
[54]
Fondevila, N.; Sanchez, A.; Smitsaart, E.; Samuel, A.; Rodriguez, M.; Pratomurphy, M. et al. Studies in the persistence of Foot-and-
Mouth- Disease Virus in bovines, ovines and Llamas (Lama glama).
Session of the Research Group of the European Commission
for the Control of Foot and Mouth Disease. Ma’ale Hachmisha, Israel. 1996.
[55]
Cheung, W.H.; Chan, V.S.F.; Pang, H.W.; Wong, M.K.; Guo, Z.H.; Tam, P.K.H.; Che, C.M.; Lin, C.L.; Yu, W.Y. Conjugation of latent membrane protein (LMP)-2 epitope to gold nanoparticles as highly immunogenic multiple antigenic peptides for induction of Epstein- Barr virus-specific cytotoxic T-lymphocyte responses in vitro. Bioconjug. Chem., 2009, 20, 24-31.
[56]
Staroverov, S.A.; Aksinenko, N.M.; Gabalov, K.P.; Vasilenko, O.A.; Vidyasheva, I.V.; Shchyogolev, S.Y.; Dykman, L.A. Effect of gold nanoparticles on the respiratory activity of peritoneal macrophages. Gold Bull., 2009, 42, 153-156.
[57]
Belsham, G.J. Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family, and aspects of virus protein synthesis, protein processing and structure. Prog. Biophys. Mol. Biol., 1993, 60, 241-260.
[58]
Mason, P.W.; Grubman, M.J.; Baxt, B. Molecular basis of pathogenesis of FMDV. Virus Res., 2003, 91, 9-32.
[59]
Carrillo, C.; Tulman, E.R.; Delhon, G.; Lu, Z.; Carreno, A.; Vagnozzi, A.; Kutish, G.F.; Rock, D.L. Comparative genomics of foot and mouth disease virus. J. Virol., 2005, 79, 6487-6504.
[60]
Domingo, E.; Escarmis, C.; Baranowski, E.; Ruiz-Jarabo, C.M.; Carrillo, E.; Nunez, J.I.; Sobrino, F. Evolution of foot-and-mouth disease virus. Virus Res., 2003, 91, 47-63.
[61]
Pereira, H.G. Sub typing of foot and mouth disease virus. Dev. Biol. Stand., 1977, 35, 167-174.
[62]
Zhidkov, S.A.; Sergeev, V.A. A study of the properties of attenuated cold variant of type O foot-and-mouth disease virus. Veterinariia, 1969, 10, 29-31.
[63]
Barnett, P.V.; Carabin, H. A review of emergency foot-and-mouth disease (FMD) vaccines. Vaccine, 2002, 20, 1505-1514.
[64]
Sfiiz, J.C.; Rodriguez, T.A.; Gonzfilez, M.; Alonso, F.; Sobrino, F. Heterotypic lymphoproliferative response in pigs vaccinated with foot-and-mouth disease virus. Involvement of isolated capsid proteins. J. Gen. Virol., 1992, 73, 2601-2607.
[65]
Mulcahy, G.; Gale, C.; Robertson, P.; Iyishan, S.; Dimarchi, R.D.; Doel, T.R. Isotype responses of infected, virus-vaccinated and peptide-vaccinated cattle to foot-and-mouth disease virus. Vaccine, 1990, 8, 249-256.
[66]
Collen, T.; Doel, T.R. Analysis of specificity of T-cells reactive with foot-and-mouth disease (FMD) virus suggests that B cell presentation influences the memory repertoire in cattle. VIIth Meeting of the European Study Group on Picornaviruses (Europic 91), Canterbury, U.K.1991.
[67]
Zamvil, S.S.; Mitchell, D.J.; Lee, N.E.; Moore, A.C.; Waldors, M.K.; Sakai Rothbard, I.B.; McDevitt, H.O.; Steinman, L.; Acha-Orbea, H. Predominant expression of a T cell receptor V beta gene subfamily in autoimmune encephalomyelitis. J. Exp. Med., 1988, 167, 1586-1596.
[68]
Kobayashi, H.; Jo, S.K.; Kawamoto, S.; Yasuda, H.; Hu, X.; Knopp, M.V. Polyamine dendrimer-based MRI contrast agents for functional kidney imaging to diagnose acute renal failure. J. Magnet. Res. Imag, 2004, 20, 512-518.
[69]
Sukdeb Pal, T.; Kyung, Y.S.; Myong, J. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gramnegative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, 73, 1712-1720.
[70]
Chen, Y.S.; Hung, Y.C.; Lin, W.H.; Huang, G.S. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology, 2010, 21195101
[71]
Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C.X.; Mitter, N.; Yu, C.; Middelberg, A.P. Nanoparticle vaccines. Vaccine, 2014, 32, 327-337.
[72]
Liu, Y.; Xu, Y.; Tian, Y.; Chen, C.; Wang, C.; Jiang, X. Functional nanomaterials can optimize the efficacy of vaccines. Small, 2014, 10, 4505-4520.