[1]
Sano, N.; Ishii, T.; Tamon, H. Transformation from single-walled carbon nanotubes to nanohorns by simple heating with Pd at 1600°C. Carbon, 2011, 49(11), 3698-3700.
[2]
Zobir, S.A.M.; Zainal, Z.; Keng, C.S.; Sarijo, S.H.; Yusop, M. Synthesis of carbon nanohorn-carbon nanotube hybrids using palm olein as a precursor. Carbon, 2013, 54, 492-494.
[3]
Ghosh, P.; Soga, T.; Ghosh, K.; Afre, R.A.; Jimbo, T.; Ando, Y. Vertically aligned N-doped carbon nanotubes by spray pyrolysis of turpentine oil and pyridine derivative with dissolved ferrocene. J. Non-Cryst. Solids, 2008, 354, 4101.
[4]
Irie, M.; Nakamura, M.; Zhang, M.; Yuge, R.; Iijima, S.; Yudasaka, M. Quantification of thin graphene sheets contained in spherical aggregates of single-walled carbon nanohorns. Chem. Phys. Lett., 2010, 500, 96.
[5]
Kuang-Ting, H.; Sadeghian, R.; Gangireddy, S.; Minaie, B. Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Compos. A., 2006, 37(10), 1787-1795.
[6]
Li, H.; Zhao, N.; Wang, L.; Shi, C.; Du, X.; Li, J. Synthesis of carbon nanohorns by the simple catalytic method. J. Alloys Compd., 2009, 473, 288.
[7]
Li, Y.; Hori, N.; Arai, M.; Hu, N.; Liu, Y.; Fukunaga, H. Improvement of interlaminar mechanical properties of CFRP laminates using VGCF. Compos. A, 2009, 40(12), 2004-2012.
[8]
Li, N.; Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Synthesis of single wall carbon nanohorns by arc-discharge in air and their formation mechanism. Carbon, 2010, 48, 1580.
[9]
Lim, C-S.; Rodriguez, A.J.; Guzman, M.E.; Schaefer, J.D.; Minaie, B. Processing and properties of polymer composites containing aligned functionalized carbon nanofibers. Carbon, 2011, 49(6), 1873-1883.
[10]
Sarkar, S.; Das, P.K.; Bysakh, S. Effect of heat treatment on morphology and thermal decomposition kinetics of multiwalled carbon nanotubes. Mater. Chem. Phys., 2011, 125, 161.
[11]
Rodriguez, A.J.; Guzman, M.E.; Lim, C-S.; Minaie, B. Mechanical properties of carbon nanofiber/fiber-reinforced hierarchical composites manufactured with multiscale-reinforcement fabrics. Carbon, 2011, 49(3), 937-948.
[12]
Iijima, S.; Yudasaka, M.; Yamada, R.; Bandow, S.; Suenaga, K.; Kokai, F.; Takahashic, K. Nano-aggregates of single-walled graphitic carbon nanohorns. Chem. Phys. Lett., 1999, 309(3-4), 165-170.
[13]
Garcia, E.J.; Wardle, B.L.; Hart, J.A.; Yamamoto, N. Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In situ. Compos. Sci. Technol., 2008, 68(9), 2034-2041.
[14]
Sano, N.; Nakano, J.; Kanki, T. Synthesis of single-walled carbon nanotubes with nanohorns by arc in liquid nitrogen. Carbon, 2004, 42(3), 686-688.
[15]
Fan, Z.; Santare, M.H.; Advani, S.G. Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multiwalled carbon nanotubes. Compos. A., 2008, 39(3), 540-554.
[16]
Sano, N. Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection. J. Phys. D Appl. Phys., 2004, 37(8), L17-L20.
[17]
Tibbetts, G.G.; Lake, M.L.; Strong, K.L.; Rice, B.P. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol., 2007, 67(7-8), 1709-1718.
[18]
Zobir, S.A.M.; Suriani, A.A.; Abdullah, S.; Zainal, Z.; Sarijo, S.H.; Rusop, M. Raman spectroscopic study of carbon nanotubes prepared using Fe/ZnO-palm plein-chemical vapour deposition. J. Nanomater., 2012.451473
[19]
Li, N.; Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Synthesis of single wall carbon nanohorns by arc-discharge in air and their formation mechanism. Carbon, 2010, 48(5), 1580-1585.
[20]
Bandow, S.; Kokai, F.; Takahashi, K.; Yudasaka, M.; Qin, L.C.; Iijima, S. Interlayer spacing anomaly of single-wall carbon nanohorn aggregate. Chem. Phys. Lett., 2000, 321, 514.
[21]
Yudasaka, M.; Ichihashi, T.; Kasuya, D.; Kataura, H.; Iijima, S. Structure changes of single-wall carbon nanotubes and singlewall carbon nanohorns caused by heat treatment. Carbon, 2003, 41(6), 1273-1280.
[22]
Glover, B.; Whites, K.W.; Hong, H.; Mukherjee, A.; Billups, W.E. Effective electrical conductivity of functional single-wall carbon nanotubes in aqueous fluids. Synth. Met., 2008, 158, 506.
[23]
Rachmadini, Y.; Tan, V.B.C.; Tay, T.E. Enhancement of mechanical properties of composites through incorporation of CNT in VARTM: A review. J. Reinf. Plast. Compos., 2010, 29(18), 2782-2807.
[24]
Sawant, S.Y.; Somani, R.S.; Bajaj, H.C. A solvothermal-reduction method for the production of horn shaped multi-wall carbon nanotubes. Carbon, 2010, 48, 668.
[25]
Zobir, S.A.M.; Abdullah, S.; Zainal, Z.; Sarijo, S.H.; Rusop, M. Synthesis of carbon nano- and microspheres using palm olein as the carbon source. Mater. Lett., 2012, 78, 205.
[26]
Marvin, B.; Dow, H.; Dexter, B. Development of stitched, braided
and woven composite structures in the ACT program and at Langley
Research Center. Hampton, Virginia; NASA/TP- 97-206234;
1997.
[27]
Takikawa, H.; Ikeda, M.; Hirahara, K.; Hibi, Y.; Tao, Y.; Ruiz, P.A., Jr Sakakibara, Itoh, S.; Iijim, S. Fabrication of single-walled carbon nanotubes and nanohorns by means of torch arc in open air. Phys. B., 2002, 323(1-4), 277-279.
[28]
Aoki, Y.; Urita, K.; Noguchi, D.; Itoh, T.; Kanoh, H.; Ohba, T.; Yudasaka, M.; Iijima, S.; Kaneko, K. Efficient production of H2 and carbon nanotube from CH4 over single wall carbon nanohorn. Chem. Phys. Lett., 2009, 482, 269.