[1]
Sabet, F.S.; Hosseini, M.; Khabbaz, H.; Dadmehr, M.; Ganjali, M.R. FRET-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice. Food Chem., 2017, 220, 527-532.
[2]
Zeeb, M.; Ganjali, M.R.; Norouzi, P. Preconcentration and trace determination of chromium using modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction: application to different water and food samples. Food Anal. Methods, 2013, 6, 1398-1406.
[3]
Bidari, A.; Ganjali, M.R.; Assadi, Y.; Kiani, A.; Norouzi, P. Assay of total mercury in commercial food supplements of marine origin by means of DLLME/ICP-AES. Food Anal. Methods, 2012, 5, 695-701.
[4]
Bidari, A.; Ganjali, M.R.; Norouzi, P.; Hosseini, M.R.M.; Assadi, Y. Sample preparation method for the analysis of some organophosphorus pesticides residues in tomato by ultrasound-assisted solvent extraction followed by dispersive liquid-liquid microextraction. Food Chem., 2011, 126, 1840-1844.
[5]
Zeeb, M.; Ganjali, M.R.; Norouzi, P.; Kalaee, M.R. Separation and preconcentration system based on microextraction with ionic liquid for determination of copper in water and food samples by stopped-flow injection spectrofluorimetry. Food Chem. Toxicol., 2011, 49, 1086-1091.
[6]
Hajiaghababaei, L.; Tajmiri, T.; Badiei, A.; Ganjali, M.R.; Khaniani, Y.; Ziarani, G.M. Heavy metals determination in water and food samples after preconcentration by a new nanoporous adsorbent. Food Chem., 2013, 141, 1916-1922.
[7]
Faridbod, F.; Ganjali, M.R.; Dinarvand, R.; Riahi, S.; Norouzi, P.; Olia, M.B.Z. Citalopram analysis in formulation and urine by a novel citalopram potentiometric membrane sensor. J. Food Drug. Anal.,, 2009, 17, 264-273.
[8]
Farahani, H.; Ganjali, M.R.; Dinarvand, R.; Norouzi, P. Study on the performance of the headspace liquid-phase microextraction, gas chromatography-mass spectrometry in the determination of sorbic and benzoic acids in soft drinks and environmental water samples. J. Agric. Food Chem., 2009, 57, 2633-2639.
[9]
Mo, Z.; Zhang, Y.; Zhao, F.; Xiao, F.; Guo, G.; Zeng, B. Sensitive voltammetric determination of Sudan I in food samples by using gemini surfactant–ionic liquid–multiwalled carbon nanotube composite film modified glassy carbon electrodes. Food Chem., 2010, 121, 233-237.
[10]
Fogg, A.G.; Bhanot, D. Voltammetric determination of synthetic food colouring matters at a stationary glassy carbon electrode. Analyst., 1980, 105, 868-872.
[11]
Yoshioka, N.; Ichihashi, K. Determination of 40 synthetic food colors in drinks and candies by high-performance liquid chromatography using a short column with photodiode array detection. Talanta, 2008, 74, 1408-1413.
[12]
Minioti, K.S.; Sakellariou, C.F.; Thomaidis, N.S. Determination of 13 synthetic food colorants in water-soluble foods by reversed-phase high-performance liquid chromatography coupled with diode-array detector. Anal. Chim. Acta, 2007, 583, 103-110.
[13]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact., 2018, 12, 634-640.
[14]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods, 2013, 6, 1639-1647.
[15]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. Simultaneous determination of amaranth and nitrite in foodstuffs via electrochemical sensor based on carbon paste electrode modified with CuO/SWCNTs and room temperature ionic liquid. Food Anal. Methods, 2017, 10, 3773-3780.
[16]
Gheibi, S.; Gharibi, G.; Khalilzadeh, M.A.; Pourfarzad, A. Electrochemical analysis of ascorbic acid in food and drug samples using a biosynthesized ag nanoparticle as a mediator in carbon paste matrix. Anal. Bioanal. Electrochem, 2017, 9, 365-373.
[17]
Tahernejade, R.; Sheikhshoaie, I. Kojic acid analysis in foodstuff using a reduced graphene Oxide/NiO nanocomposite modified electrode. Anal. Bioanal. Electrochem, 2017, 9, 784-792.
[18]
Najafi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem., 2014, 158, 125-131.
[19]
Elyasi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem., 2013, 141, 4311-4317.
[20]
Arabali, V.; Ebrahimi, M.; Gheibi, S.; Khaleghi, F.; Bijad, M.; Rudbaraki, A.; Abbasghorbani, M.; Ganjali, M.R. Bisphenol A analysis in food samples using modified nanostructure carbon paste electrode as a sensor. Food Anal. Methods, 2016, 9, 1763-1769.
[21]
Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z.; Hassankhani, A.; Abbasghorbani, M. A voltammetric sensor for simultaneous determination of Vitamin C and Vitamin B6 in food samples using ZrO2 Nanoparticle/Ionic liquids carbon paste electrode. Food Anal. Methods, 2015, 8, 549-557.
[22]
Jamali, T.; Karimi-Maleh, H.; Khalilzadeh, M.A. A novel nanosensor based on Pt:Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. LWT –
Food Sci. Technol., 2014, 57, 679-685.
[23]
Arteaga, J.F.; Ruiz-Montoya, M.; Palma, A.; Alonso-Garrido, G.; Pintado, S.; Rodríguez-Mellado, J. Comparison of the simple Cyclic Voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles. Molecules, 2012, 17, 5126-5138.
[24]
Ni, Y.; Wang, L.; Kokot, S. Voltammetric determination of butylated hydroxyanisole, butylated hydroxytoluene, propyl gallate and tert-butylhydroquinone by use of chemometric approaches. Anal. Chim. Acta, 2000, 412, 185-193.
[25]
Ahmed, S.; Shakeel, F. Voltammetric determination of antioxidant character in Berberis lycium Royel, Zanthoxylum armatum and Morus nigra Linn plants. Pak. J. Pharm. Sci., 2012, 25, 501-507.
[26]
Šeruga, M.; Novak, I.; Jakobek, L. Determination of polyphenols content and antioxidant activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric methods. Food Chem., 2011, 124, 1208-1216.
[27]
Yang, D.; Zhu, L.; Jiang, X.; Guo, L. Sensitive determination of Sudan I at an ordered mesoporous carbon modified glassy carbon electrode. Sens. Actuat. B., 2009, 141, 124-129.
[28]
Meiju, D.; Xiaogang, H.; Zihao, Z.; Shouguo, W. Determination of Sudan I in hot chili powder by using an activated glassy carbon electrode. Food Chem., 2007, 105, 883-888.
[29]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[30]
Shang, L.; Zhao, F.; Zeng, B. Sensitive voltammetric determination of vanillin with an AuPd nanoparticles-graphene composite modified electrode. Food Chem., 2014, 151, 53-57.
[31]
Ma, X.; Chao, M.; Wang, Z. Electrochemical determination of Sudan I in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulphonate. Food Chem., 2013, 138, 739-744.
[32]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Faghih-Mirzaei, E. A nanostructure label-free DNA biosensor for ciprofloxacin analysis as a chemotherapeutic agent; An experimental and theoretical investigation. New J. Chem., 2017, 41, 4985-4989.
[33]
Ashjari, M.; Karimi-Maleh, H.; Ahmadpour, F.; Shabani-Nooshabadi, M.; Sadrnia, A.; Khalilzadeh, M.A. Voltammetric analysis of mycophenolate mofetilin pharmaceutical samples via electrochemical nanostructure based sensor modified with ionic liquid and MgO/SWCNTs. J. Taiwan, Inst. Chem. Eng., 2017, 80, 989-996.
[34]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P. Electrochemical nanostructure platform for the analysis of glutathione in the presence of uric acid and tryptophan. Anal. Methods, 2017, 9, 6228-6234.
[35]
Karimi-Maleh, H.; Salehi, M.; Faghani, F. Application of novel Ni(II) complex and ZrO2 nanoparticle as mediators for electrocatalytic determination of N-acetylcysteine in drug samples. J. Food. Drug. Anal., 2017, 25, 1000-1007.
[36]
Özcan, A.; Gürbüz, M.; Özbal, A. Preparation of a double-step modified carbon paste electrode for the voltammetric determination of propham via bulk modification with fumed silica and drop-casting of maghemite-modified fumed silica nanocomposite. Sens. Actuat. B., 2018, 255, 1517-1524.
[37]
Venkataprasad, G.; Reddy, T.M.; Shaikshavali, P.; Gopal, P.; Narayana, P.V. Electrochemical Determination of 3,5-dinitrobenzoic acid in the presence and absence of CTAB at multi-walled carbon nanotubes modified glassy carbon electrode: A voltammetric study. Anal. Bioanal. Electrochem., 2017, 9, 400-411.
[38]
Jafari, S.; Faridbod, F.; Norouzi, P.; Dezfuli, A.S.; Ajloo, D.; Mohammadipanah, F.; Ganjali, M.R. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry. Anal. Chim. Acta, 2015, 895, 80-88.
[39]
Bananezhad, A.; Ganjali, M.R.; Karimi-Maleh, H.; Norouzi, P. Fabrication of amplified nanostructure based sensor for analysis of N-Acetylcysteine in Presence of High Concentration Folic Acid. Int. J. Electrochem. Sci., 2017, 12, 8045-8058.
[40]
Souza, C.D.; Braga, O.C.; Vieira, I.C.; Spinelli, A. Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode. Sens. Actuat. B., 2008, 135, 66-73.
[41]
Yola, M.L.; Atar, N. Functionalized graphene quantum dots with bi-metallic nanoparticles composite: Sensor application for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J. Electrochem. Soc., 2016, 163(14), B718-B725.
[42]
Baghayeri, M.; Veisi, H.; Veisi, H.; Maleki, B.; Karimi-Maleh, H.; Beitollahi, H. Multi-walled carbon nanotubes decorated with palladium nanoparticles as a novel platform for electrocatalytic sensing applications. RSC Advances, 2014, 4(91), 49595-49604.
[43]
Bavandpour, R.; Karimi-Maleh, H.; Asif, M.; Gupta, V.K.; Atar, N.; Abbasghorbani, M. Liquid phase determination of adrenaline uses a voltammetric sensor employing CuFe2O4 nanoparticles and room temperature ionic liquids. J. Mol. Liq., 2016, 213, 369-373.
[44]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A sensitive amplified sensor based on improved carbon paste electrode with 1-methyl-3-octylimidazolium tetrafluoroborate and ZnO/CNTs nanocomposite for differential pulse voltammetric analysis of raloxifene. Appl. Surf. Sci., 2017, 420, 882-885.
[45]
Sanghavi, B.J.; Hirsch, G.; Karna, S.P.; Srivastava, A.K. Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal. Chim. Acta, 2012, 735, 37-45.
[46]
Norouzi, P.; Larijani, B.; Ganjali, M.R. Ochratoxin A sensor based on nanocomposite hybrid film of ionic liquid-graphene nano-sheets using coulometric FFT cyclic voltammetry. Int. J. Electrochem. Sci., 2012, 7(8), 7313-7324.
[47]
Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H.; Nasiri, V.; Khalilzadeh, M.A.; Biparva, P. Electrocatalytic determination of sulfite using a modified carbon nanotubes paste electrode: application for determination of sulfite in real samples. Ionics, 2012, 18, 687-694.
[48]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Atar, N.; Yola, M.L.; Gupta, V.K.; Ensafi, A.A. A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind. Eng. Chem. Res., 2015, 54, 3634-3639.
[49]
Karimi-Maleh, H.; Ganjali, M.R.; Norouzi, P.; Bananezhad, A. Amplified nanostructure electrochemical sensor for simultaneous determination of captopril, acetaminophen, tyrosine and hydrochlorothiazide. Mater. Sci. Eng. C, 2017, 73, 472-477.
[50]
Keivani, Z.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. An electrochemical strategy to determine thiosulfate, 4-chlorophenol and nitrite as three important pollutants in water samples via a nanostructure modified sensor. J. Colloid Interface Sci., 2017, 507, 11-17.
[51]
Karimi-Maleh, H.; Amini, F.; Akbari, A.; Shojaei, M. Amplified electrochemical sensor employing CuO/SWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate for selective analysis of sulfisoxazole in the presence of folic acid. J. Colloid Interface Sci., 2017, 495, 61-67.
[52]
Arabali, V.; Ebrahimi, M.; Abbasghorbani, M.; Gupta, V.K.; Farsi, M.; Ganjali, M.R.; Karimi, F. Electrochemical determination of vitamin C in the presence of NADH using a CdO nanoparticle/ionic liquid modified carbon paste electrode as a sensor. J. Mol. Liq., 2016, 213(1), 312-316.
[53]
Yola, M.L.; Atar, N. A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: Application to the simultaneous determination of quercetin and rutin. Electrochim. Acta, 2014, 119, 24-31.
[54]
Karimi-Maleh, H.; Shojaei, M.; Amini, F.; Akbari, A. Analysis of levodopa in the presence of Vitamin B6 using Carbon Paste Electrode Modified with1-Butyl-3 methylimidazolium Hexafluorophosphate and CuO nanoparticles. Electroanalysis, 2017, 29, 1854-1859.
[55]
Hajiaghababaei, L.; Tajmiri, T.; Badiei, A.; Ganjali, M.R.; Khaniani, Y.; Ziarani, G.M. Heavy metals determination in water and food samples after preconcentration by a new nanoporous adsorbent. Food Chem., 2013, 141, 1916-1922.
[56]
Asari-Bami, H.; Khalilzadeh, M.A.; Karimi-Maleh, H. Electrochemical determination of Tert-butylhydroxyanisole uses carbon paste electrode modified with ionic liquid and CdO nanoparticle. Anal. Bioanal. Electrochem, 2016, 8, 1033-1043.
[57]
Ruiz, M.A. CalvoJosé, M.P.; Pingarrón, M. Catalytic-voltammetric determination of the antioxidant tert-butylhydroxyanisole (BHA) at a nickel phthalocyanine modified carbon paste electrode. Talanta, 1994, 41, 289-294.
[58]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[59]
Karimi-Maleh, H.; Biparva, P.; Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens. Bioelectron., 2013, 48, 270-275.
[60]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite /N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[61]
Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate. Biosens. Bioelectron., 2016, 86, 879-884.
[62]
Rahmanifar, E.; Yoosefian, M.; Karimi-Maleh, H. Application of CdO/SWCNTs nanocomposite ionic liquids carbon paste electrode as a voltammetric sensor for determination of benserazide. Curr. Anal. Chem., 2017, 13, 46-51.