[1]
Arabali, V.; Ebrahimi, M.; Abbasghorbani, M.; Gupta, V.K.; Farsi, M.; Ganjali, M.R.; Karimi, F. Electrochemical determination of vitamin C in the presence of NADH using a CdO nanoparticle/ionic liquid modified carbon paste electrode as a sensor. J. Mol. Liq., 2016, 213(1), 312-316.
[2]
Karimi-Maleh, H.; Biparva, P.; Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens. Bioelectron., 2013, 48, 270-275.
[3]
Aghazadeh, M.; Asadi, M.; Ghannadi Maragheh, M.; Ganjali, M.R.; Norouzi, P.; Faridbod, F. Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics. Appl. Surf. Sci., 2016, 364, 726-731.
[4]
Yola, M.L.; Atar, N. Electrochemical detection of atrazine by platinum nanoparticles/carbon nitride nanotubes with molecularly imprinted polymer. Ind. Eng. Chem. Res., 2017, 56(27), 7631-7639.
[5]
Yola, M.L.; Atar, N.A. Review: Molecularly imprinted electrochemical sensors for determination of biomolecules/drug. Curr. Anal. Chem., 2017, 13(1), 13-17.
[6]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite /N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[7]
Aghazadeh, M.; Ghannadi Maragheh, M.; Ganjali, M.R.; Norouzi, P.; Faridbod, F. Electrochemical preparation of MnO2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance. Appl. Surf. Sci., 2016, 364, 141-147.
[8]
Çolak, A.T.; Eren, T.; Yola, M.L.; Beşli, E.; Şahin, O.; Atar, N. Novel 3D polyoxometalate-functionalized graphene quantum dots with mono-metallic and bi-metallic nanoparticles for application in direct methanol fuel cells. J. Electrochem. Soc., 2016, 163(10), F1237-F1244.
[9]
Yola, M.L.; Eren, T.; Atar, N. A Molecular imprinted voltammetric sensor based on carbon nitride nanotubes: Application to determination of melamine. J. Electrochem. Soc., 2016, 163(13), B588-B593.
[10]
Yola, M.L.; Atar, N. Functionalized graphene quantum dots with bi-metallic nanoparticles composite: Sensor application for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J. Electrochem. Soc., 2016, 163(14), B718-B725.
[11]
Wang, J. Stripping Analysis: Principle instrumentation and application; VCH Publication, 1985.
[12]
Heineman, W.R.; Mark, H.B.; Wise, J.A.; Roston, D.A. Laboratory techniques in electroanalytical chemistry,, P.T. Kissinger and
WW.R. Heineman, Eds., Dekker, New York,. 1984.
[13]
Moradi, R.; Sebt, S.A.; Karimi-Maleh, H.; Sadeghi, R.; Karimi, F.; Bahari, A. Synthesis and application of FePt/CNTs nanocomposite as a sensor and novel amide ligand as a mediator for simultaneous determination of glutathione, nicotinamide adenine dinucleotide and tryptophan. Phys. Chem. Chem. Phys., 2013, 15, 5888-5897.
[14]
Ensafi, A.A.; Karimi-Maleh, H.; Mallakpour, S.; Hatami, M. Simultaneous determination of N-acetylcysteine and acetaminophen by voltammetric method using N-(3, 4-dihydroxyphenethyl)-3, 5-dinitrobenzamide modified multiwall carbon nanotubes paste electrode. Sens. Actuat. B., 2011, 155, 464-472.
[15]
Yokuş, Ö.A.; Kardaş, F.; Akyıldırım, O.; Eren, T.; Atar, N.; Yola, M.L. Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: Application to the simultaneous determination of L-tyrosine and L-tryptophan. Sens. Actuat. B., 2016, 233, 47-54.
[16]
Ertan, B.; Eren, T.; Ermiş, İ.; Saral, H.; Atar, N.; Yola, M.L. Sensitive analysis of simazine based on platinium nanoparticles on polyoxometalate/multi-walled carbon nanotubes. J. Colloid Interface Sci., 2016, 470, 14-21.
[17]
Farghaly, O.A.; Abdel Hameed, R.S.; Abu-Nawwas, A.A.H. Analytical application using modern electrochemical techniques. Int. J. Electrochem. Sci., 2014, 9, 3287-3318.
[18]
Brainina, Kh.Z. Film stripping voltammetry. Talanta, 1971, 18, 513-539.
[19]
Batley, G.E.; Florence, T.M. Determination of thallium in natural waters by anodic stripping voltammetry. J. Electroanal. Chem., 1975, 61, 205-211.
[20]
Holak, W. Determination of heavy metals in foods by ASV after sample decomposition with sodium and potassium nitrate fusion. J. Assoc. Off. Anal. Chem., 1975, 58, 777-780.
[21]
Sanghavi, B.J.; Srivastava, A.K. Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion–carbon nanotube composite glassy carbon electrode. Electrochim. Acta, 2011, 56, 4188-4196.
[22]
Sanghavi, B.J.; Srivastava, A.K. Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst ., 2013, 138, 1395-1404.
[23]
Han, X.J.; Zhou, S.F.; Fan, H.L.; Zhang, Q.X.; Liu, Y.Q. Mesoporous MnFe2O4 nanocrystal clusters for electrochemistry detection of lead by stripping voltammetry. J. Electroanal. Chem., 2015, 755, 203-209.
[24]
Najafi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem., 2014, 158, 125-131.
[25]
Yola, M.L.; Gupta, V.K.; Atar, N. New molecular imprinted voltammetric sensor for determination of ochratoxin A. Mater. Sci. Eng. C, 2016, 61, 368-375.
[27]
Akyıldırım, O.; Kotan, G.; Yola, M.L.; Eren, T.; Atar, N. Fabrication of bimetallic Pt/Pd nanoparticles on 2-thiolbenzimidazole functionalized reduced graphene oxide for methanol oxidation. Ionics, 2016, 22, 593-600.
[28]
Yola, M.L.; Eren, T.; Atar, N.; Saral, H.; Ermiş, İ. Direct-methanol fuel cell based on functionalized graphene oxide with mono-metallic and bi-metallic nanoparticles: Electrochemical performances of nanomaterials for methanol oxidation. Electroanalysis, 2016, 28, 570-579.
[29]
Gupta, V.K.; Yola, M.L.; Özaltın, N.; Atar, N.; Üstündağ, Z.; Uzun, L. Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin. Electrochim. Acta, 2013, 112, 37-43.
[30]
Freitag, M.; Steiner, M.; Martin, Y.; Perebeinos, V.; Chen, Z.H.; Tsang, J.C.; Avouris, P. Energy dissipation in graphene field-effect transistors. Nano Lett., 2009, 9, 1883-1888.
[31]
Panzer, M.A.; Goodson, K.E. Thermal resistance between low-dimensional nanostructures and semi-infinite media. J. Appl. Phys., 2008, 103, 4301.
[32]
Veerapandian, M.; Lee, M.H.; Krishnamoorthy, K.; Yun, K. Synthesis, characterization and electrochemical properties of functionalized graphene oxide. Carbon, 2012, 50, 4228-4238.
[33]
Seger, B.; Kamat, P.V. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM Fuel cells. J. Phys. Chem. C, 2009, 113, 7990-7995.
[34]
Yola, M.L.; Atar, N.; Eren, T.; Maleh, H.K.; Wang, S. Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Advances, 2015, 5, 65953-65962.
[35]
Yola, M.L.; Eren, T.; Atar, N. A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: Application to selective determination of tyrosine in milk. Sens. Actuat. B., 2015, 210, 149-157.
[36]
Chen, J.H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M.S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol., 2008, 3, 206-209.
[37]
Geim, A.K.; Kim, P. Carbon wonderland. Sci. Am., 2008, 298, 90-97.
[38]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666-669.
[39]
Katsnelson, M.I. Graphene: Carbon in two dimensions. Mater. Today, 2007, 10, 20-27.
[40]
Kuzmenko, A.B.; Heumen, E.V.; Carbone, F.; Marel, D.V.D. Universal optical conductance of graphite. Phys. Rev. Lett., 2008, 100, 117401-117404.
[41]
Atar, N.; Yola, M.L.; Eren, T. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor. Appl. Surf. Sci., 2016, 362, 315-322.
[42]
Yola, M.L.; Eren, T.; Atar, N. A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim. Acta, 2014, 125, 38-47.
[43]
Yola, M.L.; Atar, N.; Üstündağ, Z.; Solak, A.O. A novel voltammetric sensor based on p-Aminothiophenol functionalized graphene Oxide/Gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem., 2013, 698, 9-16.
[44]
Yola, M.L.; Gupta, V.K.; Eren, T.; Şen, A.E.; Atar, N. A Novel electroanalytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta, 2014, 120, 204-211.
[45]
Yola, M.L.; Atar, N. A highly efficient nanomaterial with molecular imprinting polymer: Carbon nitride nanotubes decorated with graphene quantum dots for sensitive electrochemical determination of chlorpyrifos. J. Electrochem. Soc., 2017, 164(6), B223-B229.
[46]
Kotan, G.; Kardaş, F.; Yokuş, Ö.A.; Akyıldırım, O.; Saral, H.; Eren, T.; Yola, M.L.; Atar, N. A novel determination of curcumin via Ru@Au nanoparticles decorated nitrogen and sulfur-functionalized reduced graphene oxide nanomaterials. Anal. Methods, 2016, 8, 401-408.
[47]
Tahernejad-Javazmi, F.; Nooshabadi, M.S.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[48]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[49]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A sensitive amplified sensor based on improved carbon paste electrode with 1-methyl-3-octylimidazolium tetrafluoroborate and ZnO/CNTs nanocomposite for differential pulse voltammetric analysis of raloxifene. Appl. Surf. Sci., 2017, 420, 882-885.
[50]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P. Electrochemical nanostructure platform for the analysis of glutathione in the presence of uric acid and tryptophan. Anal. Methods, 2017, 9, 6228-6234.
[51]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Mirzaei, E.F. A nanostructure label-free DNA biosensor for ciprofloxacin analysis as a chemotherapeutic agent: An experimental and theoretical investigation. New J. Chem., 2017, 41, 4985-4989.
[52]
Elyasi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem., 2013, 141, 4311-4317.
[53]
Raoof, J.B.; Ojani, R.; Karimi-Maleh, H.; Hajmohamadi, M.R.; Biparva, P. Multi-wall carbon nanotubes as a sensor and ferrocene dicarboxylic acid as a mediator for voltammetric determination of glutathione in hemolysed erythrocyte. Anal. Methods, 2011, 3, 2637-2643.
[54]
Ensafi, A.A.; Tehrani, S.D.; Karimi-Maleh, H. A voltammetric sensor for the simultaneous determination of L-Cysteine and Tryptophan using a p-Aminophenol-Multiwall carbon nanotube paste electrode. Anal. Sci., 2011, 27, 409.