Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Driving Maximal Frequency Content and Natural Slopes Sharpening for Image Amplification with High Scale Factor

Author(s): Leandro Morera Delfin*, Raul Pinto Elias, Humberto de Jesus Ochoa Dominguez and Osslan Osiris Vergara Villegas

Volume 16, Issue 1, 2020

Page: [36 - 49] Pages: 14

DOI: 10.2174/1573405614666180319160045

Price: $65

Abstract

Background: In this paper, a method for adaptive Pure Interpolation (PI) in the frequency domain, with gradient auto-regularization, is proposed.

Methods: The input image is transformed into the frequency domain and convolved with the Fourier Transform (FT) of a 2D sampling array (interpolation kernel) of initial size L × M. The Inverse Fourier Transform (IFT) is applied to the output coefficients and the edges are detected and counted. To get a denser kernel, the sampling array is interpolated in the frequency domain and convolved again with the transform coefficients of the original image of low resolution and transformed back into the spatial domain. The process is repeated until a maximum number of edges is reached in the output image, indicating that a locally optimal magnification factor has been attained. Finally, a maximum ascend–descend gradient auto-regularization method is designed and the edges are sharpened.

Results: For the gradient management, a new strategy is proposed, referred to as the Natural bi- Directional Gradient Field (NBGF). It uses a natural following of a pair of directional and orthogonal gradient fields.

Conclusion: The proposed procedure is comparable to novel algorithms reported in the state of the art with good results for high scales of amplification.

Keywords: Gradient management, optimal scales of amplification, high frequency conservation, NBGF, novel algorithms, SR.

Graphical Abstract

[1]
Wanga Y, et al. Sparse representation-based MRI super-resolution reconstruction. Measurement 2014; 47: 946-53.
[http://dx.doi.org/10.1016/j.measurement.2013.10.026]
[2]
Ashikaga H, Estner HL, Herzka DA, Mcveigh ER, Halperin HR. Quantitative assessment of single-image super-resolution in myocardial scar imaging. IEEE J Transl Eng Health Med 2014; 2: 1-12.
[http://dx.doi.org/10.1109/JTEHM.2014.2303806] [PMID: 25699223]
[3]
Lu X, Huang Z, Yuan Y. MR Image super-resolution via manifold regularized sparse learning. Neurocomputing 2015; 162: 96-104.
[http://dx.doi.org/10.1016/j.neucom.2015.03.065]
[4]
Frakes D, et al. A new method for registration-based medical image interpolation. IEEE Trans Med Imaging 2008; 27: 370-7.
[http://dx.doi.org/10.1109/TMI.2007.907324]
[5]
Calamante F, Tournier JD, Jackson GD, Connelly A. Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. Neuroimage 2010; 53(4): 1233-43.
[http://dx.doi.org/10.1016/j.neuroimage.2010.07.024] [PMID: 20643215]
[6]
Du B, Zhang L. Random-selection-based anomaly detector for hyperspectral imagery. IEEE Trans Geosci Remote 2011; 49: 1578-89.
[http://dx.doi.org/10.1109/TGRS.2010.2081677]
[7]
Carmi E, Liu S, Alon N, Fiat A, Fiat D. Resolution enhancement in MRI. Magn Reson Imaging 2006; 24(2): 133-54.
[http://dx.doi.org/10.1016/j.mri.2005.09.011] [PMID: 16455402]
[8]
Gholipour A, Estroff J, Warfield S. Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans Med Imaging 2010; 29: 1739-58.
[9]
Tao D, Lin X, Jin L, Li X. Principal component 2-D long short-term memory for font recognition on single chinese characters. IEEE Trans Cybern 2016; 46(3): 756-65.
[http://dx.doi.org/10.1109/TCYB.2015.2414920] [PMID: 25838536]
[10]
Chen S, et al. Sparse Modeling using Orthogonal Forward Regression with PRESS Statistic and Regularization. IEEE Trans Syst Man Cy B 2004; 34: 898-911.
[11]
Tao D, Li X, Wu X, et al. General tensor discriminant analysis and Gabor features for gait recognition. IEEE T Pattern Anal 2007; 29: 1700-15.
[12]
Zhi R, et al. Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition. IEEE Trans Syst Man Cybern B Cybern 2011; 41: 38-52.
[13]
Sun J, Sun J, Xu Z, Shum HY. Gradient profile prior and its applications in image super-resolution and enhancement. IEEE Trans Image Process 2011; 20(6): 1529-42.
[http://dx.doi.org/10.1109/TIP.2010.2095871] [PMID: 21118774]
[14]
Wang L, Xiang S, Meng G, et al. Edge-directed single-image super-resolution via adaptive gradient magnitude self-interpolation. IEEE Trans Circuits Syst Video Technol 2013; 238: 1289-99.
[http://dx.doi.org/10.1109/TCSVT.2013.2240915]
[15]
Rouseau F, Studholme C. A supervised patch-based image reconstruction tech- nique: application to brain MRI super- resolution.IEEE 10th International Symposium on Biomedical Imaging. San Francisco, CA, USA: 2013; pp. 346-9.
[16]
Lu X, Yuan Y. Image Super-resolution via double sparsity regularized manifold. IEEE Trans Circ Syst Video Tech 2013; 23(12): 2022-33.
[http://dx.doi.org/10.1109/TCSVT.2013.2244798]
[17]
Lu X, Zheng X, Li X. Latent semantic minimal hashing for image retrieval. IEEE Trans Image Process 2017; 26(1): 355-68.
[http://dx.doi.org/10.1109/TIP.2016.2627801] [PMID: 27849528]
[18]
Lu X, Yuan Y, Yan P. Alternatively constrained dictionary learning for image superresolution. IEEE Trans Cybern 2014; 44(3): 366-77.
[http://dx.doi.org/10.1109/TCYB.2013.2256347] [PMID: 23757556]
[19]
Leng J, Xu G, Zhang Y. Medical Image inter-polation based on multi-resolution registration. Comput Math Appl 2013; 66(1): 1-18.
[http://dx.doi.org/10.1016/j.camwa.2013.04.026]
[20]
Zhang K, Gao X, Li J, Xia H, et al. Single Image super-resolution using regularization of non-local steering kernel regression. Sign Process 2016; 123: 53-63.
[21]
Gunaseelan K, Seethalachmi E. Image resolution and contrast enhancement using singular value and discrete wavelet decomposition. J Sci Ind Res 2013; 72(1): 31-5.
[22]
Greenspan H. Super-resolution in medical imaging. Comput J 2009; 52(1): 43-63.
[http://dx.doi.org/10.1093/comjnl/bxm075]
[23]
Van E, et al. Super-resolution in magnetic resonance imaging: a review. Concept Magn Reson A 2012; 40: 306-25.
[24]
Rousseau F. A non-local approach for image super- resolution using intermodality priors In: Med Image Anal no 4: vol 14. 2010; : pp. 594-605.
[http://dx.doi.org/10.1016/j.media.2010.04.005]
[25]
Rousseau F, Kim K, Studholme C, Koob M, Dietemann J-L. On super-resolution for fetal brain MRI.Med Image Comput Comput Assist Interv. 2010; 13: pp. 355-62.
[26]
Rueda A, Malpica N, Romero E. Single-image super-resolution of brain MR images using overcomplete dictionaries. Med Image Anal 2013; 17: 113-32.
[27]
Papoulis A. Systems and transforms with applications in optics. 1st ed. New York, USA: McGraw-Hill 1966.
[28]
Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal 1986; PAMI-8: 679-98.
[29]
MIT. Second Derivative Test. 2010. Available from: https://ocw.mit.edu/courses/mathematics/
[30]
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004; 13(4): 600-12.
[http://dx.doi.org/10.1109/TIP.2003.819861] [PMID: 15376593]
[31]
Veldhuizen P. Measures of image quality 2016 Available from: http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/VELDHUIZEN/node18.html
[32]
Trinh D-H, Luong M, Dibos F, Rocchisani JM, Pham C-D, Nguyen TQ. Novel example-based method for super-resolution and denoising of medical images. IEEE Trans Image Process 2014; 23(4): 1882-95.
[http://dx.doi.org/10.1109/TIP.2014.2308422] [PMID: 24808354]
[33]
Ahmadi K, Salari E. Edge-preserving MRI super resolution using a high frequency regularization technique.Signal Processing in Medicine and Biology Symposium (SPMB). IEEE; 2015 Philadelphia PA, USA ; pp. 1-5.
[34]
Zhang Y, Liu J, Yang W, Guo Z. Image super-resolution based on structure-modulated sparse representation. IEEE Trans Image Process 2015; 24: 2797-810.
[http://dx.doi.org/10.1109/TIP.2015.2431435]
[35]
Sun Y, et al. Compressive superresolution imaging based on local and nonlocal regularizations. IEEE Photonics J 2016; 8(1): 1-12.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy