Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Graphene Quantum Dots in Electrochemical Sensors/Biosensors

Author(s): Farnoush Faridbod* and Afsaneh L. Sanati

Volume 15, Issue 2, 2019

Page: [103 - 123] Pages: 21

DOI: 10.2174/1573411014666180319145506

Price: $65

Abstract

Background: Graphene and its derivatives, as most promising carbonic nanomaterials have been widely used in design and making electrochemical sensors and biosensors. Graphene quantum dots are one of the members of this family which have been mostly known as fluorescent nanomaterials and found extensive applications due to their remarkable optical properties. Quantum confinement and edge effects in their structures also cause extraordinary electrochemical properties.

Objective: Recently, graphene quantum dots besides graphene oxides and reduced graphene oxides have been applied for modification of the electrodes too and exposed notable effects in electrochemical responses. Here, we are going to consider these significant effects through reviewing some of the recent published works.

Keywords: Graphene quantum dots, electrochemistry, sensors/biosensor, carbonic nanomaterials, fluorescent nanomaterials, graphene oxides.

Graphical Abstract

[1]
Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: buckminsterfullerene. Nature, 1985, 318, 162-163.
[2]
Novoselov, K.S. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666-669.
[3]
Novosolov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonov, S.V.; Firsov, A.A. Nature, 2005, 438, 197-200.
[4]
Eftekhari, A.; Garcia, H. The necessity of structural irregularities for the chemical applications of grapheme. Mater. Today Chem., 2017, 4, 1-16.
[5]
Beitollahi, H.; Movlaee, K.; Ganjali, M.R.; Norouzi, P. A sensitive graphene and ethyl 2-(4-ferrocenyl-[1,2,3]triazol-1-yl) acetate modified carbon paste electrode for the concurrent determination of isoproterenol, acetaminophen, tryptophan and theophylline in human biological fluids. J. Electroanal. Chem., 2017, 799, 576-582.
[6]
Dezfuli, A.S.; Ganjali, M.R.; Jafari, H.; Faridbod, F. Reduced graphene oxide nanocomposites; Sonochemical synthesis and electrochemical evaluation. J. Mater. Sci. Mater. Electron., 2017, 28(8), 6176-6185.
[7]
Ganjali, M.R.; Faridbod, F.; Davarkhah, N.; Shahtaheri, S.J.; Norouzi, P. All solid state graphene based potentiometric sensors for monitoring of mercury ions in waste water samples. Int. J. Environ. Res., 2015, 9(1), 333-340.
[8]
Dezfuli, A.S.; Ganjali, M.R.; Naderi, H.R. Anchoring samarium oxide nanoparticles on reduced graphene oxide for high-performance supercapacitor. Appl. Surf. Sci., 2017, 402, 245-253.
[9]
Khazaei, M.; Nasseri, S.; Ganjali, M.R.; Khoobi, M.; Nabizadeh, R.; Mahvi, A.H.; Nazmara, S.; Gholibegloo, E. Response surface modeling of lead (II) removal by graphene oxide-Fe3O4 nanocomposite using central composite design. J. Environ. Health Sci. Eng., 2016, 14(1), 2.
[10]
Movlaee, K.; Beitollahi, H.; Ganjali, M.R.; Norouzi, P. Electroche-mical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a graphene and ferrocene modified carbon paste electrode. Mikrochim. Acta, 2017, 184(9), 3281-3289.
[11]
Movlaee, K.; Beitollahi, H.; Ganjali, M.R.; Norouzi, P. Strategy for simultaneous determination of droxidopa, acetaminophen and tyrosine using carbon paste electrode modified with graphene and ethyl 2-(4-ferrocenyl-[1,2,3]triazol-1-yl) acetate. J. Electrochem. Soc., 2017, 164(6), H407-H412.
[12]
Dezfuli, A.S.; Ganjali, M.R.; Norouzi, P.; Faridbod, F. Facile sonochemical synthesis and electrochemical investigation of ceria/graphene nanocomposites. J. Mater. Chem. B., 2015, 3(11), 2362-2370.
[13]
Ganjali, M.R.; Ranaei-Siadat, S.O.; Rashedi, H.; Rezapour, M.; Norouzi, P. Thulium Selective Sensor based on Nanographene/RTIL/Ionophore/Graphite. Int. J. Electrochem. Sci., 2011, 6(8), 3684-3693.
[14]
Gholipour-Ranjbar, H.; Ganjali, M.R.; Norouzi, P.; Naderi, H.R. Functionalized graphene aerogel with p-phenylenediamine and its composite with porous MnO2: investigating the effect of functionalizing agent on supercapacitive performance. J. Mater. Sci. Mater. Electron., 2016, 27(10), 10163-10172.
[15]
Ganjali, M.R.; Rezapour, M.; Torkestani, S.K.; Rashedi, H.; Norouzi, P. Long-Term stable fabrication of a nanocomposite Tm(III) sensor containing Nanographene/Nanosilica /RTIL/Ionophore. Int. J. Electrochem. Sci., 2011, 6(7), 2323-2332.
[16]
Gholipour-Ranjbar, H.; Ganjali, M.R.; Norouzi, P.; Naderi, H.R. Synthesis of cross-linked graphene aerogel/Fe2O3 nanocomposite with enhanced supercapacitive performance. Ceram. Int., 2016, 42(10), 12097-12104.
[17]
Gholipour-Ranjbar, H.; Ganjali, M.R.; Norouzi, P.; Naderi, H.R. Electrochemical investigation of functionalized graphene aerogel with different amount of p-phenylenediamine as an advanced electrode material for supercapacitors. Mater. Res. Express, 2016, 3(7), 075501.
[18]
Jafari, H.; Ganjali, M.R.; Dezfuli, A.S.; Faridbod, F. Long term determination of dopamine and uric acid in the presence of ascorbic acid using ytterbia/reduced graphene oxide nanocomposite prepared through a sonochemical route. Appl. Surf. Sci., 2018, 427, 496-506.
[19]
Movlaee, K.; Ganjali, M.R.; Aghazadeh, M.; Beitollahi, H.; Hosseini, M.; Shahabi, S.; Norouzi, P. Graphene nanocomposite modified glassy carbon electrode: As a sensing platform for simultaneous determination of methyldopa and uric acid. Int. J. Electrochem. Sci., 2017, 12(1), 305-315.
[20]
Naderi, H.R.; Ganjali, M.R.; Dezfuli, A.S.; Norouzi, P. Sonochemical preparation of a ytterbium oxide/reduced graphene oxide nanocomposite for supercapacitors with enhanced capacitive performance. RSC Adva., 2016, 6(56), 51211-51220.
[21]
Naderi, H.R.; Norouzi, P.; Ganjali, M.R. Electrochemical study of a novel high performance supercapacitor based on MnO2/nitrogen-doped graphene nanocomposite. Appl. Surf. Sci., 2016, 366, 552-560.
[22]
Naderi, H.R.; Norouzi, P.; Ganjali, M.R.; Gholipour-Ranjbar, H. Synthesis of a novel magnetite/nitrogen-doped reduced graphene oxide nanocomposite as high performance supercapacitor. Powder Technol., 2016, 302, 298-308.
[23]
Norouzi, P.; Ganjali, H.; Larijani, B.; Ganjali, M.R.; Faridbod, F.; Zamani, H.A. A Glucose Biosensor Based on Nanographene and ZnO Nanoparticles Using FFT Continuous Cyclic Voltammetry. Int. J. Electrochem. Sci., 2011, 6(11), 5189-5199.
[24]
Norouzi, P.; Larijani, B.; Ganjali, M.R. Ochratoxin A sensor based on nanocomposite hybrid film of ionic Liquid-Graphene Nano-Sheets using coulometric FFT cyclic voltammetry. Int. J. Electrochem. Sci., 2012, 7(8), 7313-7324.
[25]
Poursaberi, T.; Ganjali, M.R.; Hassanisadi, M. A novel fluoride-selective electrode based on metalloporphyrin grafted-grapheneoxide. Talanta, 2012, 101, 128-134.
[26]
Pur, M.R.K.; Hosseini, M.; Faridbod, F.; Dezfuli, A.S.; Ganjali, M.R. A novel solid-state electrochemiluminescence sensor for detection of cytochrome c based on ceria nanoparticles decorated with reduced graphene oxide nanocomposite. Anal. Biochem., 2016, 408(25), 7193-7202.
[27]
Norouzi, P.; Pirali-Hamedan, M.; Ganjali, R. Candesartan cilexetil determination by electrode modified with hybrid film of ionic liquid- graphene nanosheets-silicon carbide nanoparticle using continuous coulometric fft cyclic voltammetry. Int. J. Electrochem. Sci., 2013, 8(2), 2023-2033.
[28]
Naderi, H.R.; Norouzi, P.; Ganjali, M.R.; Gholipour-Ranjbar, H. Sonochemical synthesis of porous nanowall Co3O4/nitrogen-doped reduced graphene oxide as an efficient electrode material for supercapacitors. J. Mater. Sci. Mater. Electron., 2017, 28(19), 14504-14514.
[29]
Naderi, H.R.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ganjali, M.R. Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Appl. Surf. Sci., 2017, 423, 1025-1034.
[30]
Jafari, S.; Faridbod, F.; Norouzi, P.; Dezfuli, A.S.; Ajloo, D.; Mohammadipanah, F.; Ganjali, M.R. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry. Anal. Chim. Acta, 2015, 895, 80-88.
[31]
Rashedi, H.; Norouzi, P.; Ganjali, M.R. Determination of alfuzosin by hybrid of ionic liquid-graphene nano-composite film using coulometric FFT linear sweep voltammetry. Int. J. Electrochem. Sci., 2013, 8(2), 2479-2490.
[32]
Rostami, M.; Rahimi-Nasrabadi, M.; Ganjali, M.R.; Ahmadi, F.; Shojaei, A.F.; Delavar Rafiee, M. Facile synthesis and characterization of TiO2–graphene–ZnFe2−xTbxO4 ternary nano-hybrids. J. Mater. Sci., 2017, 52(12), 1-9.
[33]
Shayeh, J.S.; Ehsani, A.; Ganjali, M.R.; Norouzi, P.; Jaleh, B. Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors. Appl. Surf. Sci., 2015, 353, 594-599.
[34]
Ebrahimi, M.; Nikoofard, H.; Faridbod, F.; Dezfuli, A.S.; Beigizadeh, H.; Norouzi, P. A ceria NPs decorated graphene nano-composite sensor for sulfadiazine determination in pharmaceutical formulation. J. Mater. Sci. Mater. Electron., 2017, 28(5), 1-9.
[35]
Hosseini, M.; Mirzanasiri, N.; Rezapour, M.; Sheikhha, M.H.; Faridbod, F.; Norouzi, P.; Ganjali, M.R. Sensitive determination of carbidopa through the electrochemiluminescence of luminol at graphene-modified electrodes. Luminescence, 2015, 30(4), 376-381.
[36]
Dezfuli, A.S.; Ganjali, M.R.; Naderi, H.R.; Norouzi, P. A high performance supercapacitor based on a ceria/graphene nanocomposite synthesized by a facile sonochemical method. RSC Advances, 2015, 5(57), 46050-46058.
[37]
Salehnia, F.; Faridbod, F.; Dezfuli, A.S.; Ganjali, M.R.; Norouzi, P. Cerium(III) ion sensing based on graphene quantum dots fluorescent Turn-Off. J. Fluoresc., 2017, 27(1), 331-338.
[38]
Mehrzad-Samarin, M.; Faridbod, F.; Dezfuli, A.S.; Ganjali, M.R. A novel metronidazole fluorescent nanosensor based on graphene quantum dots embedded silica molecularly imprinted polymer. Biosens. Bioelectron., 2017, 92, 618-623.
[39]
Kermani, H.A.; Hosseini, M.; Dadmehr, M.; Hosseinkhani, S.; Ganjali, M.R. DNA methyltransferase activity detection based on graphene quantum dots using fluorescence and fluorescence anisotropy. Sens. Actuators B Chem., 2017, 241, 217-223.
[40]
Hosseini, M.; Khabbaz, H.; Dezfoli, A.S.; Ganjali, M.R.; Dadmehr, M. Selective recognition of Glutamate based on fluorescence enhancement of graphene quantum dot. Spectrochim. Acta Part A., 2015, 136, 1962-1966.
[41]
Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res., 2015, 8(2), 355-381.
[42]
Sun, H.; Wu, L.; Wei, W.; Qu, X. Recent advances in graphene quantum dots for sensing. Mater. Today, 2013, 16(11), 433-442.
[43]
Ritter, K.A.; Lyding, J.W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater., 2009, 8(3), 235-242.
[44]
Bradley, S.J.; Kroon, R.; Laufersky, G.; Röding, M.; Goreham, R.V.; Gschneidtner, T.; Nann, T. Heterogeneity in the fluorescence of graphene and graphene oxide quantum dots. Mikrochim. Acta, 2017, 184(3), 871-878.
[45]
Dong, S.; Bi, Q.; Qiao, C.; Sun, Y.; Zhang, X.; Lu, X.; Zhao, L. Electrochemical sensor for discrimination tyrosine enantiomers using graphene quantum dots and beta-cyclodextrins composites. Talanta, 2017, 173, 94-100.
[46]
Fei, X.; Liu, Z.; Li, Y.; Yang, G.; Su, C.; Zhong, H.; Zhuang, Z.; Guo, Z. One-pot green synthesis of flower-liked Au NP@GQDs nanocomposites for surface-enhanced Raman scattering. J. Alloys Compd., 2017, 725, 1084-1090.
[47]
Dong, P.; Jiang, B.P.; Liang, W.Q.; Huang, Y.; Shi, Z.; Shen, X.C. Synthesis of white-light-emitting graphene quantum dots via a one-step reduction and their interfacial characteristics-dependent luminescence properties. Inorg. Chem. Front., 2017, 4(4), 712-718.
[48]
Iannazzo, D.; Pistone, A.; Salamo, M.; Galvagno, S.; Romeo, R.; Giofre, S.V.; Branca, C.; Visalli, G.; Di Pietro, A. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm., 2017, 518(1-2), 185-192.
[49]
Vazquez-Nakagawa, M.; Rodriguez-Perez, L.; Herranz, M.A.; Martin, N. Chirality transfer from graphene quantum dots. Chem. Commun. (Camb.), 2016, 52(4), 665-668.
[50]
Tang, D.; Liu, J.; Yan, X.; Kang, L. Graphene oxide derived graphene quantum dots with different photoluminescence properties and peroxidase-like catalytic activity. RSC Advances, 2016, 6(56), 50609-50617.
[51]
Canevari, T.C.; Nakamura, M.; Cincotto, F.H.; de Melo, F.M.; Toma, H.E. High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions. Electrochim. Acta, 2016, 209, 464-470.
[52]
Nirala, N.R.; Khandelwal, G.; Kumar, B. Vinita; Prakash, R.; Kumar, V. One step electro-oxidative preparation of graphene quantum dots from wood charcoal as a peroxidase mimetic. Talanta, 2017, 173, 36-43.
[53]
Jovanović, S.P.; Marković, Z.M.; Syrgiannis, Z.; Dramićanin, M.D.; Arcudi, F.; Parola, V.L.; Budimir, M.D.; Marković, B.M.T. Enhancing photoluminescence of graphene quantum dots by thermal annealing of the graphite precursor. Mater. Res. Bull., 2017, 93, 183-193.
[54]
Chen, L.; Wu, C.; Du, P.; Feng, X.; Wu, P.; Cai, C. Electrolyzing synthesis of boron-doped graphene quantum dots for fluorescence determination of Fe3+ ions in water samples. Talanta, 2017, 164, 100-109.
[55]
Li, Y.; Li, S.; Wang, Y.; Wang, J.; Liu, H.; Liu, X.; Wang, L.; Liu, X.; Xue, W.; Ma, N. Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging. Phys. Chem. Chem. Phys., 2017, 19(18), 11631-11638.
[56]
Jovanovic, S.P.; Syrgiannis, Z.; Markovic, Z.M.; Bonasera, A.; Kepic, D.P.; Budimir, M.D.; Milivojevic, D.D.; Spasojevic, V.D.; Dramicanin, M.D.; Pavlovic, V.B.; Todorovic Markovic, B.M. Modification of structural and luminescence properties of graphene quantum dots by gamma irradiation and their application in a photodynamic therapy. ACS Appl. Mater. Interfaces, 2015, 7(46), 25865-25874.
[57]
Wang, B.; Zhuo, S.; Chen, L.; Zhang, Y. Fluorescent graphene quantum dot nanoprobes for the sensitive and selective detection of mercury ions. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 131, 384-387.
[58]
Prasad, B.B.; Kumar, A.; Singh, R. Synthesis of novel monomeric graphene quantum dots and corresponding nanocomposite with molecularly imprinted polymer for electrochemical detection of an anticancerous ifosfamide drug. Biosens. Bioelectron., 2017, 94, 1-9.
[59]
Yew, Y.T.; Loo, A.H.; Sofer, Z.; Klímová, K.; Pumera, M. Coke-derived graphene quantum dots as fluorescence nanoquencher in DNA detection. Appl. Mater. Today., 2017, 7, 138-143.
[60]
Gao, H.; Xue, C.; Hu, G.; Zhu, K. Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium. Ultrason. Sonochem., 2017, 37, 120-127.
[61]
Zuo, W.; Tang, L.; Xiang, J.; Ji, R.; Luo, L.; Rogée, L.; Lau, P.S. Functionalization of graphene quantum dots by fluorine: Preparation, properties, application, and their mechanisms. Appl. Phys. Lett., 2017, 110(22), 221901.
[62]
Lu, L.; Zhu, Y.; Shi, C.; Pei, Y.T. Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation. Carbon, 2016, 109, 373-383.
[63]
Blanco, E.; Blanco, G.; Gonzalez-Leal, J.M.; Barrera, M.C.; Domínguez, M.; Ramirez-del-Solar, M. Green and fast synthesis of amino-functionalized graphene quantum dots with deep blue photoluminescence. J. Nanopart. Res., 2015, 17(5), 1.
[64]
Zhu, Y.; Wang, G.; Jiang, H.; Chen, L.; Zhang, X. One-step ultrasonic synthesis of graphene quantum dots with high quantum yield and their application in sensing alkaline phosphatase. Chem. Commun. (Camb.), 2015, 51(5), 948-951.
[65]
Hassan, M.; Haque, E.; Reddy, K.R.; Minett, A.I.; Chen, J.; Gomes, V.G. Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale, 2014, 6(20), 11988-11994.
[66]
Zhuo, S.; Shao, M.; Lee, S.T. Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano, 2012, 6(2), 1059-1064.
[67]
Wang, L.; Li, W.; Wu, B.; Li, Z.; Pan, D.; Wu, M. Room-temperature synthesis of graphene quantum dots via electron-beam irradiation and their application in cell imaging. Chem. Eng. J., 2017, 309, 374-380.
[68]
Zhu, J.; Tang, Y.; Wang, G.; Mao, J.; Liu, Z.; Sun, T.; Wang, M.; Chen, D.; Yang, Y.; Li, J.; Deng, Y.; Yang, S. Green, Rapid, and Universal Preparation Approach of Graphene Quantum Dots under Ultraviolet Irradiation. ACS Appl. Mater. Interfaces, 2017, 9(16), 14470-14477.
[69]
Park, B.; Kim, S.J.; Sohn, J.S.; Nam, M.S.; Kang, S.; Jun, S.C. Surface plasmon enhancement of photoluminescence in photo-chemically synthesized graphene quantum dot and Au nanosphere. Nano Res., 2016, 9(6), 1866-1875.
[70]
Shin, Y.; Park, J.; Hyun, D.; Yang, J.; Lee, H. Generation of graphene quantum dots by the oxidative cleavage of graphene oxide using the oxone oxidant. New J. Chem., 2015, 39(4), 2425-2428.
[71]
Jiang, D.; Chen, Y.; Li, N.; Li, W.; Wang, Z.; Zhu, J.; Zhang, H.; Liu, B.; Xu, S. Synthesis of luminescent graphene quantum dots with high quantum yield and their toxicity study. PLoS One, 2015, 10(12), e0144906.
[72]
Liu, F.; Jang, M.H.; Ha, H.D.; Kim, J.H.; Cho, Y.H.; Seo, T.S. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: Origin of blue and green luminescence. Adv. Mater., 2013, 25(27), 3657-3662.
[73]
Sapkota, B.; Benabbas, A.; Lin, H.G.; Liang, W.; Champion, P.; Wanunu, M. Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots. ACS Appl. Mater. Interfaces, 2017, 9(11), 9378-9387.
[74]
Biswas, A.; Khandelwal, P.; Das, R.; Salunke, G.; Alam, A.; Ghorai, S.; Chattopadhyay, S.; Poddar, P. Oxidant mediated one-step complete conversion of multi-walled carbon nanotubes to graphene quantum dots and their bioactivity against mammalian and bacterial cells. J. Mater. Chem. B., 2017, 5(4), 785-796.
[75]
Nurunnabi, M.; Khatun, Z.; Nafiujjaman, M.; Lee, D.G.; Lee, Y.K. Surface coating of graphene quantum dots using mussel-inspired polydopamine for biomedical optical imaging. ACS Appl. Mater. Interfaces, 2013, 5(16), 8246-8253.
[76]
Chua, C.K.; Sofer, Z.; Simek, P.; Jankovsky, O.; Klimova, K.; Bakardjieva, S.; Hrdlickova Kuckova, S.; Pumera, M. Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano, 2015, 9(3), 2548-2555.
[77]
Lu, J.; Yeo, P.S.; Gan, C.K.; Wu, P.; Loh, K.P. Transforming C60 molecules into graphene quantum dots. Nat. Nanotechnol., 2011, 6(4), 247-252.
[78]
Kang, S.H.; Mhin, S.; Han, H.; Kim, K.M.; Jones, J.L.; Ryu, J.H.; Kang, J.S.; Kim, S.H.; Shim, K.B. Ultrafast method for selective design of graphene quantum dots with highly efficient blue emission. Sci. Rep., 2016, 6, 38423.
[79]
Majumder, T.; Mondal, S.P. Advantages of nitrogen-doped graphene quantum dots as a green sensitizer with ZnO nanorod based photoanodes for solar energy conversion. J. Electroanal. Chem., 2016, 769, 48-52.
[80]
Bayat, A.; Saievar-Iranizad, E. Synthesis of green-photoluminescent single layer graphene quantum dots: Determination of HOMO and LUMO energy states. J. Lumin., 2017, 192, 180-183.
[81]
Pei, Y.; Fan, T.; Chu, H.; Ge, Y.; Yang, Y.; Dong, P.; Baines, R.; Ye, M.; Shen, J. Synthesis of N doped graphene quantum dots-interspersed CdWO 4 heterostructure nanorods as an effective photocatalyst with enhanced photoelectrochemical performance. J. Alloys Compd., 2017, 724, 1014-1022.
[82]
Wang, C.; Jin, J.; Sun, Y.; Yao, J.; Zhao, G.; Liu, Y. In-situ synthesis and ultrasound enhanced adsorption properties of MoS 2 /graphene quantum dot nanocomposite. Chem. Eng. J., 2017, 327, 774-782.
[83]
Sajjadi, S.; Khataee, A.; Kamali, M. Sonocatalytic degradation of methylene blue by a novel graphene quantum dots anchored CdSe nanocatalyst. Ultrason. Sonochem., 2017, 39, 676-685.
[84]
Safardoust-Hojaghan, H.; Salavati-Niasari, M.; Amiri, O.; Hassanpour, M. Preparation of highly luminescent nitrogen doped graphene quantum dots and their application as a probe for detection of Staphylococcus aureus and E. coli. J. Mol. Liq., 2017, 241, 1114-1119.
[85]
Teymourinia, H.; Salavati-Niasari, M.; Amiri, O.; Safardoust-Hojaghan, H. Synthesis of graphene quantum dots from corn powder and their application in reduce charge recombination and increase free charge carriers. J. Mol. Liq., 2017, 242, 447-455.
[86]
Thanh, D.T.; Ko, K.B.; Khurelbaatar, Z.; Choi, C-J.; Hong, C-H.; Cuong, T.V. Transparent and flexible ultraviolet photoconductors based on solution-processed graphene quantum dots on reduced graphene oxide films. Mater. Res. Bull., 2017, 91, 49-53.
[87]
Kumar, S.; Ojha, A.K.; Ahmed, B.; Kumar, A.; Das, J.; Materny, A. Tunable (violet to green) emission by high-yield graphene quantum dots and exploiting its unique properties towards sun-light-driven photocatalysis and supercapacitor electrode materials. Mater. Today. Comm., 2017, 11, 76-86.
[88]
Bian, S.; Shen, C.; Qian, Y.; Liu, J.; Xi, F.; Dong, X. Facile synthesis of sulfur-doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection. Sens. Actuators B Chem., 2017, 242, 231-237.
[89]
Patra, S.; Roy, E.; Choudhary, R.; Tiwari, A.; Madhuri, R.; Sharma, P.K. Graphene quantum dots decorated CdS doped graphene oxide sheets in dual action mode: As initiator and platform for designing of nimesulide imprinted polymer. Biosens. Bioelectron., 2017, 89(Pt 1), 627-635.
[90]
Min, S.; Hou, J.; Lei, Y.; Ma, X.; Lu, G. Facile one-step hydrothermal synthesis toward strongly coupled TiO2/graphene quantum dots photocatalysts for efficient hydrogen evolution. Appl. Surf. Sci., 2017, 396, 1375-1382.
[91]
Thakur, M.; Kumawat, M.K.; Srivastava, R. Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Advances, 2017, 7(9), 5251-5261.
[92]
Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, W.; Lin, X.; Chen, G. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon, 2012, 50, 4738-4743.
[93]
Wu, X.; Tian, F.; Wang, W.; Chen, J.; Wu, M.; Zhao, J.X. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1(31), 4676-4684.
[94]
Xuan, W.; Ruiyi, L.; Zaijun, L.; Junkang, L. Synthesis of dodecylamine-functionalized graphene quantum dots and their application as stabilizers in an emulsion polymerization of styrene. J. Colloid Interface Sci., 2017, 505, 847-857.
[95]
Arvand, M.; Hemmati, S. Analytical methodology for the electro-catalytic determination of estradiol and progesterone based on graphene quantum dots and poly(sulfosalicylic acid) co-modified electrode. Talanta, 2017, 174, 243-255.
[96]
Gao, T.; Wang, X.; Yang, L.Y.; He, H.; Ba, X.X.; Zhao, J.; Jiang, F.L.; Liu, Y. Red, Yellow, and Blue Luminescence by Graphene Quantum Dots: Syntheses, mechanism, and cellular imaging. ACS Appl. Mater. Interfaces, 2017, 9(29), 24846-24856.
[97]
Xia, C.; Hai, X.; Chen, X.W.; Wang, J.H. Simultaneously fabrication of free and solidified N, S-doped graphene quantum dots via a facile solvent-free synthesis route for fluorescent detection. Talanta, 2017, 168, 269-278.
[98]
Kaur, M.; Mehta, S.K.; Kansal, S.K. Nitrogen doped graphene quantum dots: Efficient fluorescent chemosensor for the selective and sensitive detection of 2,4,6-trinitrophenol. Sens. Actuators B Chem., 2017, 245, 938-945.
[99]
Alvand, M.; Shemirani, F.A. Fe3O4@SiO2@graphene quantum dot core-shell structured nanomaterial as a fluorescent probe and for magnetic removal of mercury(II) ion. Mikrochim. Acta, 2017, 184(6), 1621-1629.
[100]
Xuan, W.; Ruiyi, L.; Saiying, F.; Zaijun, L.; Guangli, W.; Zhiguo, G.; Junkang, L. D-penicillamine-functionalized graphene quantum dots for fluorescent detection of Fe3+ in iron supplement oral liquids. Sens. Actuators B Chem., 2017, 243, 211-220.
[101]
Liu, R.; Yang, R.; Qu, C.; Mao, H.; Hu, Y.; Li, J.; Qu, L. Synthesis of glycine-functionalized graphene quantum dots as highly sensitive and selective fluorescent sensor of ascorbic acid in human serum. Sens. Actuators B Chem., 2017, 241, 644-651.
[102]
Xiaoyan, Z.; Zhangyi, L.; Zaijun, L. Fabrication of valine-functionalized graphene quantum dots and its use as a novel optical probe for sensitive and selective detection of Hg2. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 171, 415-424.
[103]
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[104]
Huang, J.J.; Rong, M.Z.; Zhang, M.Q. Preparation of graphene oxide and polymer-like quantum dots and their one- and two-photon induced fluorescence properties. Phys. Chem. Chem. Phys., 2016, 18(6), 4800-4806.
[105]
Kumawat, M.K.; Thakur, M.; Gurung, R.B.; Srivastava, R. Graphene Quantum Dots from Mangifera indica: Application in Near-Infrared Bioimaging and Intracellular Nanothermometry. ACS Sustain. Chem.& Eng., 2017, 5(2), 1382-1391.
[106]
Zheng, B.; Chen, Y.; Li, P.; Wang, Z.; Cao, B.; Qi, F.; Liu, J.; Qiu, Z.; Zhang, W. Ultrafast ammonia-driven, microwave-assisted synthesis of nitrogen-doped graphene quantum dots and their optical properties. Nanophotonics, 2017, 6(1), 259-267.
[107]
Yousaf, M.; Huang, H.; Li, P.; Wang, C.; Yang, Y. Fluorine functionalized graphene quantum dots as inhibitor against hIAPP amyloid aggregation. ACS Chem. Neurosci., 2017, 8(6), 1368-1377.
[108]
Zhao, P.; Li, C.; Yang, M. Microwave-assisted one-pot conversion from deoiled asphalt to green fluorescent graphene quantum dots and their interfacial properties. J. Dispers. Sci. Technol., 2016, 38(6), 769-774.
[109]
Thakur, M.; Mewada, A.; Pandey, S.; Bhori, M.; Singh, K.; Sharon, M.; Sharon, M. Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system. Mater. Sci. Eng. C Mater. Biol. Appl.,, 2016, 67, 468-477.
[110]
Agarwal, S.; Sadeghi, N.; Tyagi, I.; Gupta, V.K.; Fakhri, A. Adsorption of toxic carbamate pesticide oxamyl from liquid phase by newly synthesized and characterized graphene quantum dots nanomaterials. J. Colloid Interface Sci., 2016, 478, 430-438.
[111]
Zhuang, Q.; Wang, Y.; Ni, Y. Solid-phase synthesis of graphene quantum dots from the food additive citric acid under microwave irradiation and their use in live-cell imaging. Luminescence, 2016, 31(3), 746-753.
[112]
Zhang, C.; Cui, Y.; Song, L.; Liu, X.; Hu, Z. Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta, 2016, 150, 54-60.
[113]
Jang, M.-H.; Umrao, S.; Jung, J.-H.; Srivastva, A.; Oh, I.-K.; Cho, Y.-H. Green luminescence of quasi-molecular level in graphene quantum dots fabricated by microwave bottom-up strategy., 2015, 2015, 1-2.
[114]
Hou, X.; Li, Y.; Zhao, C. Microwave-assisted synthesis of nitrogen-doped multi-layer graphene quantum dots with oxygen-rich functional groups. Aust. J. Chem., 2016, 69(3), 357.
[115]
Choi, S. Unique properties of graphene quantum dots and their applications in photonic/electronic devices. J. Phys. D Appl. Phys., 2017, 50, 103002-103012.
[116]
Ratinac, K.R.; Yang, W.; Gooding, J.J.; Thordarson, P.; Braet, F. Graphene and related materials in electrochemical sensing. Electroanalysis, 2011, 23, 803-826.
[117]
Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis, 2010, 22, 1027-1036.
[118]
Lamani, S.D.; Teradale, A.B.; Unki, S.N.; Nandibewoor, S.T. Electrochemical oxidation and determination of methocarbamol at multi-walled carbon nanotubes-modified glassy carbon electrode. Anal. Bioanal. Electrochem., 2016, 8, 304-317.
[119]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[120]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[121]
Maulidiyah, Tribawono. D.S.; Wibowo, D.; Nurdin, M. Electrochemical profile degradation of amino acid by flow system using TiO2/Ti nanotubes electrode. Anal. Bioanal. Electrochem, 2016, 8, 761-776.
[122]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A sensitive amplified sensor based on improved carbon paste electrode with 1-methyl-3-octylimidazolium tetrafluoroborate and ZnO/CNTs nanocomposite for differential pulse voltammetric analysis of raloxifene. Appl. Surf. Sci., 2017, 420, 882-885.
[123]
Ashjari, M.; Karimi-Maleh, H.; Ahmadpour, F.; Shabani-Nooshabadi, M.; Khalilzadeh, M.A. Voltammetric analysis of mycophenolate mofetil in pharmaceutical samples via electrochemical nanostructure based sensor modified with ionic liquid and MgO/SWCNTs. J. Taiwan. Inst. Chem. Eng., 2017, 80, 989-996.
[124]
Balooei, M.; Raoof, J.B.; Chekin, F.; Ojani, R. Novel sensor based on 3-Mercaptopropyltrimethoxysilane functionalized carbon nanotubes modified glassy carbon electrode for electrochemical determination of cefixime. Anal. Bioanal. Electrochem, 2017, 9, 266-276.
[125]
Babaei, A. Nanomolar simultaneous determination of amlodipine and uric acid at the novel carbon paste electrode modified with magnetic carbon nanotubes/diatomite earth composite. Anal. Bioanal. Electrochem., 2016, 8, 489-504.
[126]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P. Electrochemical nanostructure platform for the analysis of glutathione in the presence of uric acid and tryptophan. Anal. Methods, 2017, 9(44), 6228-6234.
[127]
Venkataprasad, G.; Reddy, T.M.; Shaikshavali, P.; Gopal, P.; Narayana, P.V. Electrochemical Determination of 3,5-dinitrobenzoic Acid in the Presence and Absence of CTAB at Multi-walled Carbon nanotubes modified glassy carbon electrode: A voltammetric study. Anal. Bioanal. Electrochem., 2017, 9, 400-411.
[128]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. Simultaneous determination of amaranth and nitrite in foodstuffs via electrochemical sensor based on carbon paste electrode modified with CuO/SWCNTs and room temperature ionic liquid. Food Anal. Methods, 2017, 10(11), 3773-3780.
[129]
Karimi-Maleh, H.; Salehi, M.; Faghani, F. Application of novel Ni(II) complex and ZrO2 nanoparticle as mediators for electrocatalytic determination of N-acetylcysteine in drug samples. J. Food. Drug. Anal., 2017, 25(4), 1000-1007.
[130]
Bananezhad, A.; Ganjali, M.R.; Karimi-Maleh, H.; Norouzi, P. Fabrication of amplified nanostructure based sensor for analysis of N-Acetylcysteine in presence of high concentration folic acid. Int. J. Electrochem. Sci., 2017, 12, 8045-8058.
[131]
Karimi-Maleh, H.; Biparva, P.; Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens. Bioelectron., 2013, 48, 270-275.
[132]
Elyasi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem., 2013, 141(4), 4311-4317.
[133]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs Nanocomposite Ionic Liquid Paste Electrode as a Sensitive Voltammetric Sensor for Determination of Ascorbic Acid in Food Samples. Food Anal. Methods, 2013, 6(6), 1639-1647.
[134]
Jahani, S.; Beitollahi, H. Carbon Paste Electrode Modified with TiO2/Fe3O4 /MWCNT Nanocomposite and Ionic Liquids as a Voltammetric Sensor for Sensitive Ascorbic Acid and Tryptophan Detection. Anal. Bioanal. Electrochem., 2016, 8, 158-168.
[135]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A. R.; Moradi, Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[136]
Najafi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem., 2014, 158, 125-131.
[137]
Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor. Biosens. Bioelectron., 2016, 86, 879-884.
[138]
Hou, J.; Bei, F.; Wang, M.; Ai, S. Electrochemical determination of malachite green at graphene quantum dots-gold nanoparticles multilayers-modified glassy carbon electrode. J. Appl. Electrochem., 2013, 43(7), 689-696.
[139]
Roushani, M.; Abdi, Z. Novel electrochemical sensor based on graphene quantum dots/riboflavin nanocomposite for the detection of persulfate. Sens. Actuators B Chem., 2014, 201, 503-510.
[140]
Zhou, C.; Jiang, W.; Via, B.K. Facile synthesis of soluble graphene quantum dots and its improved property in detecting heavy metal ions. Colloids Surf. B Biointerfaces, 2014, 118, 72-76.
[141]
Cai, Z.; Li, F.; Wu, P.; Ji, L.; Zhang, H.; Cai, C.; Gervasio, D.F. Synthesis of Nitrogen-Doped graphene quantum dots at low temperature for electrochemical sensing trinitrotoluene. Anal. Chem., 2015, 87(23), 11803-11811.
[142]
Dong, J.; Hou, J.; Jiang, J.; Ai, S. Innovative approach for the electrochemical detection of non-electroactive organophosphorus pesticides using oxime as electroactive probe. Anal. Chim. Acta, 2015, 885, 92-97.
[143]
Ju, J.; Chen, W. In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal. Chem., 2015, 87(3), 1903-1910.
[144]
Niu, X.; Yang, W.; Guo, H.; Ren, J.; Liu, J.; Gao, J. A novel strategy for the detection of tert-butylhydroquinone based on graphene quantum dots and silver nanoparticle modified glass carbon electrode. Can. J. Chem., 2015, 93(6), 648-654.
[145]
Ou, J.; Tao, Y.; Ma, J.; Kong, Y. Well-dispersed chitosan-graphene quantum dots nanocomposites for electrochemical sensing platform. J. Electrochem. Soc., 2015, 162(12), H884-H889.
[146]
Ou, J.; Tao, Y.; Xue, J.; Kong, Y.; Dai, J.; Deng, L. Electrochemical enantiorecognition of tryptophan enantiomers based on graphene quantum dots-chitosan composite film. Electrochem. Commun., 2015, 57, 5-9.
[147]
Ou, J.; Zhu, Y.; Kong, Y.; Ma, J. Graphene quantum dots/β-cyclodextrin nanocomposites: A novel electrochemical chiral interface for tryptophan isomer recognition. Electrochem. Commun., 2015, 60, 60-63.
[148]
Ting, S.L.; Ee, S.J.; Ananthanarayanan, A.; Leong, K.C.; Chen, P. Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim. Acta, 2015, 172, 7-11.
[149]
Wang, G.; Shi, G.; Chen, X.; Yao, R.; Chen, F. A glassy carbon electrode modified with grapheme quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine. Mikrochim. Acta, 2015, 182(1-2), 315-322.
[150]
Zhao, C.; Liu, Z.; Xu, W.; Chen, M.; Weng, S.; Xu, L.; Cai, Q. A glassy carbon electrode based on graphene quantum dots (GQDs) for simultaneous detection of acetaminophen and ascorbic acid. Anal. Methods, 2015, 7(20), 8877-8881.
[151]
Arvand, M.; Abbasnejad, S.; Ghodsi, N. Graphene quantum dots decorated with Fe3O4 nanoparticles/functionalized multiwalled carbon nanotubes as a new sensing platform for electrochemical determination of l-DOPA in agricultural products. Anal. Methods, 2016, 8(29), 5861-5868.
[152]
Chen, A.; Zhao, C.; Yu, Y.; Yang, J. Graphene quantum dots derived from carbon fibers for oxidation of dopamine. J. Wuhan. Univ. Technol. Mater. Sci. Ed., 2016, 31(6), 1294-1297.
[153]
Habibi, E.; Heidari, H. Renewable Surface Carbon-composite Electrode Bulk Modified with GQD-RuCl3 Nano-composite for High Sensitive Detection of l-tyrosine. Electroanalysis, 2016, 28(10), 2559-2564.
[154]
Hasanzadeh, M.; Hashemzadeh, N.; Shadjou, N.; Eivazi-Ziaei, J.; Khoubnasabjafari, M.; Jouyban, A. Sensing of doxorubicin hydrochloride using graphene quantum dot modified glassy carbon electrode. J. Mol. Liq., 2016, 221, 354-357.
[155]
Hasanzadeh, M.; Karimzadeh, A.; Shadjou, N.; Mokhtarzadeh, A.; Bageri, L.; Sadeghi, S.; Mahboob, S. Graphene quantum dots decorated with magnetic nanoparticles: Synthesis, electrodeposition, characterization and application as an electrochemical sensor towards determination of some amino acids at physiological pH. Mater. Sci. Eng. C, 2016, 68, 814-830.
[156]
Jian, X.; Liu, X.; Yang, H.M.; Guo, M.M.; Song, X.L.; Dai, H.Y.; Liang, Z.H. Graphene quantum dots modified glassy carbon electrode via electrostatic self-assembly strategy and its application. Electrochim. Acta, 2016, 190, 455-462.
[157]
Jiang, Y.; Li, Y.; Li, S. A sensitive enzyme-free hydrogen peroxide sensor based on a chitosan-graphene quantum dot/silver nanocube nanocomposite modified electrode. Anal. Methods, 2016, 8(11), 2448-2455.
[158]
Li, J.; Qu, J.; Yang, R.; Qu, L. de B. Harrington, P. A Sensitive and selective electrochemical sensor based on graphene quantum Dot/Gold nanoparticle nanocomposite modified electrode for the determination of quercetin in biological samples. Electroanalysis, 2016, 28(6), 1322-1330.
[159]
Li, Y.; Jiang, Y.; Mo, T.; Zhou, H.; Li, S. Highly selective dopamine sensor based on graphene quantum dots self-assembled monolayers modified electrode. J. Electroanal. Chem., 2016, 767, 84-90.
[160]
Pang, P.; Yan, F.; Li, H.; Zhang, Y.; Wang, H.; Wu, Z.; Yang, W. Graphene quantum dots and Nafion composite as an ultrasensitive electrochemical sensor for the detection of dopamine. Anal. Methods, 2016, 8(24), 4912-4918.
[161]
Punrat, E.; Maksuk, C.; Chuanuwatanakul, S.; Wonsawat, W.; Chailapakul, O. Polyaniline/graphene quantum dot-modified screen-printed carbon electrode for the rapid determination of Cr(VI) using stopped-flow analysis coupled with voltammetric technique. Talanta, 2016, 150, 198-205.
[162]
Shadjou, N.; Hasanzadeh, M.; Talebi, F.; Marjani, A.P. Integration of β-cyclodextrin into graphene quantum dot nano-structure and its application towards detection of Vitamin C at physiological pH: A new electrochemical approach. Mater. Sci. Eng. C, 2016, 67, 666-674.
[163]
Tan, F.; Cong, L.; Li, X.; Zhao, Q.; Zhao, H.; Quan, X.; Chen, J. An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples. Sens. Actuators B Chem., 2016, 233, 599-606.
[164]
Wang, L.; Tricard, S.; Yue, P.; Zhao, J.; Fang, J.; Shen, W. Polypyrrole and graphene quantum dots @ Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of l-cysteine. Biosens. Bioelectron., 2016, 77, 1112-1118.
[165]
Xiaoyan, Z.; Ruiyi, L.; Zaijun, L.; Zhiguo, G.; Guangli, W. Ultrafast synthesis of gold/proline-functionalized graphene quantum dots and its use for ultrasensitive electrochemical detection of: P -acetamidophenol. RSC Advances, 2016, 6(48), 42751-42755.
[166]
Yan, Y.; Liu, Q.; Mao, H.; Wang, K. The immobilization of graphene quantum dots by one-step electrodeposition and its application in peroxydisulfate electrochemiluminescence. J. Electroanal. Chem., 2016, 775, 1-7.
[167]
Arvand, M.; Hemmati, S. Magnetic nanoparticles embedded with graphene quantum dots and multiwalled carbon nanotubes as a sensing platform for electrochemical detection of progesterone. Sens. Actuators B Chem., 2017, 238, 346-356.
[168]
Hasanzadeh, M.; Mokhtari, F.; Shadjou, N.; Eftekhari, A.; Mokhtarzadeh, A.; Jouyban-Gharamaleki, V.; Mahboob, S. Poly arginine-graphene quantum dots as a biocompatible and non-toxic nanocomposite: Layer-by-layer electrochemical preparation, characterization and non-invasive malondialdehyde sensory application in exhaled breath condensate. Mater. Sci. Eng. C, 2017, 75, 247-258.
[169]
Mehta, J.; Bhardwaj, N.; Bhardwaj, S.K.; Tuteja, S.K.; Vinayak, P.; Paul, A.K.; Kim, K.H.; Deep, A. Graphene quantum dot modified screen printed immunosensor for the determination of parathion. Anal. Biochem., 2017, 523, 1-9.
[170]
Ruiyi, L.; Sili, Q.; Zhangyi, L.; Ling, L.; Zaijun, L. Histidine-functionalized graphene quantum dot-graphene micro-aerogel based voltammetric sensing of dopamine. Sens. Actuators B Chem., 2017, 250, 372-382.
[171]
Samuei, S.; Fakkar, J.; Rezvani, Z.; Shomali, A.; Habibi, B. Synthesis and characterization of graphene quantum dots/CoNiAl-layered double-hydroxide nanocomposite: Application as a glucose sensor. Anal. Biochem., 2017, 521, 31-39.
[172]
Wang, Y.; Zhao, S.; Li, M.; Li, W.; Zhao, Y.; Qi, J.; Cui, X. Graphene quantum dots decorated graphene as an enhanced sensing platform for sensitive and selective detection of copper(II). J. Electroanal. Chem., 2017, 797, 113-120.
[173]
Sanati, A.L.; Faridbod, F.; Ganjali, M.R. synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J. Mol. Liq., 2017, 241, 316-320.
[174]
Zhao, J.; Chen, G.; Zhu, L.; Li, G. Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem. Commun., 2011, 13(1), 31-33.
[175]
Shiddiky, M.J.A.; Kithva, P.H.; Rauf, S.; Trau, M. Femtomolar detection of a cancer biomarker protein in serum with ultralow background current by anodic stripping voltammetry. Chem. Commun., 2012, 48(51), 6411-6413.
[176]
Wang, X.; Chen, L.; Su, X.; Ai, S. Electrochemical immunosensor with graphene quantum dots and apoferritin-encapsulated Cu nanoparticles double-assisted signal amplification for detection of avian leukosis virus subgroup J. Biosens. Bioelectron., 2013, 47, 171-177.
[177]
Razmi, H.; Mohammad-Rezaei, R. Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: Application to sensitive glucose determination. Biosens. Bioelectron., 2013, 41(1), 498-504.
[178]
Liu, W.; Yang, H.; Ma, C.; Ding, Y.N.; Ge, S.; Yu, J.; Yan, M. Graphene-palladium nanowires based electrochemical sensor using ZnFe2O4-graphene quantum dots as an effective peroxidase mimic. Anal. Chim. Acta, 2014, 852, 181-188.
[179]
Muthurasu, A.; Ganesh, V. Horseradish Peroxidase Enzyme Immobilized graphene quantum dots as electrochemical biosensors. Appl. Biochem. Biotechnol., 2014, 174(3), 945-959.
[180]
Lou, J.; Liu, S.; Tu, W.; Dai, Z. Graphene quantums dots combined with endonuclease cleavage and bidentate chelation for highly sensitive electrochemiluminescent DNA biosensing. Anal. Chem., 2015, 87(2), 1145-1151.
[181]
Hu, T.; Zhang, L.; Wen, W.; Zhang, X.; Wang, S. Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor. Biosens. Bioelectron., 2016, 77, 451-456.
[182]
Mohammad-Rezaei, R.; Razmi, H. Preparation and characterization of hemoglobin immobilized on graphene quantum dots-chitosan nanocomposite as a sensitive and stable hydrogen peroxide biosensor. Sens. Lett., 2016, 14(7), 685-691.
[183]
Tuteja, S.K.; Chen, R.; Kukkar, M.; Song, C.K.; Mutreja, R.; Singh, S.; Paul, A.K.; Lee, H.; Kim, K.H.; Deep, A.; Suri, C.R. A label-free electrochemical immunosensor for the detection of cardiac marker using graphene quantum dots (GQDs). Biosens. Bioelectron., 2016, 86, 548-556.
[184]
Valipour, A.; Roushani, M. Using silver nanoparticle and thiol graphene quantum dots nanocomposite as a substratum to load antibody for detection of hepatitis C virus core antigen: Electrochemical oxidation of riboflavin was used as redox probe. Biosens. Bioelectron., 2017, 89, 946-951.
[185]
Vasilescu, I.; Eremia, S.A.V.; Kusko, M.; Radoi, A.; Vasile, E.; Radu, G.L. Molybdenum disulphide and graphene quantum dots as electrode modifiers for laccase biosensor. Biosens. Bioelectron., 2016, 75, 232-237.
[186]
Wu, D.; Liu, Y.; Wang, Y.; Hu, L.; Ma, H.; Wang, G.; Wei, Q. Label-free Electrochemiluminescent immunosensor for detection of prostate specific antigen based on aminated graphene quantum dots and carboxyl graphene quantum dots. Sci. Rep., 2016, 6, 20511.
[187]
Xi, J.; Xie, C.; Zhang, Y.; Wang, L.; Xiao, J.; Duan, X.; Ren, J.; Xiao, F.; Wang, S. Pd Nanoparticles Decorated N-Doped Graphene Quantum Dots@N-Doped carbon hollow nanospheres with high electrochemical sensing performance in cancer detection. ACS Appl. Mater. Interfaces, 2016, 8(34), 22563-22573.
[188]
Zhang, T.; Zhao, H.; Fan, G.; Li, Y.; Li, L.; Quan, X. Electrolytic exfoliation synthesis of boron doped graphene quantum dots: A new luminescent material for electrochemiluminescence detection of oncogene microRNA-20a. Electrochim. Acta, 2016, 190, 1150-1158.
[189]
Li, Y.; Zhang, W.; Zhang, L.; Li, J.; Su, Z.; Wei, G. Sequence-Designed peptide nanofibers bridged conjugation of graphene quantum dots with graphene oxide for high performance electrochemical hydrogen peroxide biosensor. Adv. Mater. Interfaces, 2017, 4(3), 1600895.
[190]
Shahdost-fard, F.; Roushani, M. Designing an ultra-sensitive aptasensor based on an AgNPs/thiol-GQD nanocomposite for TNT detection at femtomolar levels using the electrochemical oxidation of Rutin as a redox probe. Biosens. Bioelectron., 2017, 87, 724-731.
[191]
Valipour, A.; Roushani, M. Using silver nanoparticle and thiol graphene quantum dots nanocomposite as a substratum to load antibody for detection of hepatitis C virus core antigen: Electrochemical oxidation of riboflavin was used as redox probe. Biosens. Bioelectron., 2017, 89, 946-951.
[192]
Yang, Y.; Liu, Q.; Liu, Y.; Cui, J.; Liu, H.; Wang, P.; Li, Y.; Chen, L.; Zhao, Z.; Dong, Y. A novel label-free electrochemical immunosensor based on functionalized nitrogen-doped graphene quantum dots for carcinoembryonic antigen detection. Biosens. Bioelectron., 2017, 90, 31-38.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy