Review Article

阿昔洛韦治疗疱疹病毒的研究进展

卷 27, 期 24, 2020

页: [4118 - 4137] 页: 20

弟呕挨: 10.2174/0929867325666180309105519

价格: $65

摘要

背景:单纯疱疹病毒(HSV)是一种广泛传播,高度传染性的人类病原体。统计数据表明,全世界50-90%的成年人对这些病毒(主要是HSV-1和HSV-2)呈血清阳性。最初的感染导致皮肤,嘴唇,舌头,颊粘膜或生殖器上出现水疱(冷疮)。眼部感染是西方世界角膜失明的主要原因。一旦HSV病毒进入人体,就无法完全根除它,因为HSV病毒能够转变成可以在治疗后存活的潜伏形式。病毒体位于宿主的三叉神经节中,在整个生命周期中都容易复发。 HSV的神经营养和神经侵袭特性可导致神经退行性疾病,例如阿尔茨海默氏病。作为病毒DNA复制抑制剂的阿昔洛韦及其类似物,是唯一被批准用于HSV感染治疗的药物。 目的:本论文介绍了阿昔洛韦,其类似物及其递送系统的重要药理学特征的最新概况,包括作用机理,给药途径,吸收和代谢以及该疗法的副作用。 结论:阿昔洛韦仍然是治疗疱疹病毒感染的金标准,这主要是由于新的递送系统的出现大大改善了其生物利用度。具有显着更高的生物利用度和安全性的阿昔洛韦类似物,尤其是其酯,可能会在选定的应用中逐渐取代阿昔洛韦。

关键词: 阿昔洛韦,单纯疱疹病毒,阿昔洛韦类似物,阿昔洛韦酯,给药系统,给药途径,作用机理。

[1]
Tsatsos, M.; MacGregor, C.; Athanasiadis, I.; Moschos, M.M.; Hossain, P.; Anderson, D. Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents - response. Clin. Exp. Ophthalmol., 2017, 45(3), 317.
[http://dx.doi.org/10.1111/ceo.12835] [PMID: 27635860]
[2]
Itzhaki, R.F.; Lin, W-R.; Shang, D.; Wilcock, G.K.; Faragher, B.; Jamieson, G.A. Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet, 1997, 349(9047), 241-244.
[http://dx.doi.org/10.1016/S0140-6736(96)10149-5] [PMID: 9014911]
[3]
Letenneur, L.; Pérès, K.; Fleury, H.; Garrigue, I.; Barberger-Gateau, P.; Helmer, C.; Orgogozo, J-M.; Gauthier, S.; Dartigues, J-F. Seropositivity to herpes simplex virus antibodies and risk of Alzheimer’s disease: a population-based cohort study. PLoS One, 2008, 3(11),e3637.
[http://dx.doi.org/10.1371/journal.pone.0003637] [PMID: 18982063]
[4]
Wozniak, M.A.; Frost, A.L.; Preston, C.M.; Itzhaki, R.F. Antivirals reduce the formation of key Alzheimer’s disease molecules in cell cultures acutely infected with herpes simplex virus type 1. PLoS One, 2011, 6(10),e25152.
[http://dx.doi.org/10.1371/journal.pone.0025152] [PMID: 22003387]
[5]
Piacentini, R.; De Chiara, G.; Puma, D.D.Li.; Ripoli, C.; Marcocci, M.E.; Garaci, E.; Palamara, A.T.; Grassi, C. HSV-1 and Alzheimer’s disease: more than a hypothesis. Front Pharmacol., 2014, 5, 97.
[http://dx.doi.org/10.3389/fphar.2014.00097] [PMID: 24847267]
[6]
Harris, S.A.; Harris, E.A. Herpes simplex virus type 1 and other pathogens are key causative factors in sporadic alzheimer’s disease. J. Alzheimers Dis., 2015, 48(2), 319-353.
[http://dx.doi.org/10.3233/JAD-142853] [PMID: 26401998]
[7]
Tumpang, M.A.; Ramli, N.A.; Hussain, Z. Phytomedicines are efficient complementary therapies for the treatment of atopic dermatitis: A review of mechanistic insight and recent updates. Curr. Drug Targets, 2018, 19(6), 674-700.
[http://dx.doi.org/10.2174/1389450118666170913162147] [PMID: 28914203]
[8]
Wu, Y.H.; Zhang, B.Y.; Qiu, L.P.; Guan, R.F.; Ye, Z.H.; Yu, X.P. Structure properties and mechanisms of action of naturally originated phenolic acids and their derivatives against human viral infections. Curr. Med. Chem., 2017, 24(38), 4279-4302.
[http://dx.doi.org/10.2174/0929867324666170815102917] [PMID: 28814240]
[9]
Alauddin, M.M. Journey of 2′-deoxy-2′-fluoro-5-methyl-1-β-D-arabinofuranosyluracil (FMAU): from Antiviral Drug to PET Imaging Agent. Curr. Med. Chem., 2018, 25(16), 1867-1878.
[http://dx.doi.org/10.2174/0929867325666171129125217] [PMID: 29189119]
[10]
Savoia, P.; Ranghino, A.; Fava, P. Characterization and management of cutaneous side effects related to the immunosuppressive treatment in solid organ recipients. Curr. Drug Targets, 2017, 18(4), 436-446.
[http://dx.doi.org/10.2174/1389450117666160112115524] [PMID: 26758664]
[11]
Szczubiałka, K.; Pyrć, K.; Nowakowska, M. In search for effective and definitive treatment of herpes simplex virus type 1 (HSV-1) infections. RSC Advances, 2016, 6(2), 1058-1075.
[http://dx.doi.org/10.1039/C5RA22896D]
[12]
Engel, J.P.; Englund, J.A.; Fletcher, C.V.; Hill, E.L. Treatment of resistant herpes simplex virus with continuous-infusion acyclovir. JAMA, 1990, 263(12), 1662-1664.
[http://dx.doi.org/10.1001/jama.1990.03440120084042] [PMID: 2308204]
[13]
Holcakova, J.; Tomasec, P.; Bugert, J.J.; Wang, E.C.; Wilkinson, G.W.; Hrstka, R.; Krystof, V.; Strnad, M.; Vojtesek, B. The inhibitor of cyclin-dependent kinases, olomoucine II, exhibits potent antiviral properties. Antivir. Chem. Chemother., 2010, 20(3), 133-142.
[http://dx.doi.org/10.3851/IMP1460] [PMID: 20054100]
[14]
Leung, D.T.; Sacks, S.L. Current recommendations for the treatment of genital herpes. Drugs, 2000, 60(6), 1329-1352.
[http://dx.doi.org/10.2165/00003495-200060060-00007] [PMID: 11152015]
[15]
De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol., 2004, 30(2), 115-133.
[http://dx.doi.org/10.1016/j.jcv.2004.02.009] [PMID: 15125867]
[16]
dos Santos, D.M.; Canduri, F.; Pereira, J.H.; Vinicius Bertacine Dias, M.; Silva, R.G.; Mendes, M.A.; Palma, M.S.; Basso, L.A.; de Azevedo, W.F., Jr; Santos, D.S. Crystal structure of human purine nucleoside phosphorylase complexed with acyclovir. Biochem. Biophys. Res. Commun., 2003, 308(3), 553-559.
[http://dx.doi.org/10.1016/S0006-291X(03)01433-5] [PMID: 12914786]
[17]
Canduri, F.; Fadel, V.; Basso, L.A.; Palma, M.S.; Santos, D.S.; de Azevedo, W.F., Jr New catalytic mechanism for human purine nucleoside phosphorylase. Biochem. Biophys. Res. Commun., 2005, 327(3), 646-649.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.052] [PMID: 15649395]
[18]
De Clercq, E.; Field, H.J. Antiviral prodrugs - the development of successful prodrug strategies for antiviral chemotherapy. Br. J. Pharmacol., 2006, 147(1), 1-11.
[http://dx.doi.org/10.1038/sj.bjp.0706446] [PMID: 16284630]
[19]
Elion, G.B.; Furman, P.A.; Fyfe, J.A.; de Miranda, P.; Beauchamp, L.; Schaeffer, H.J. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc. Natl. Acad. Sci. USA, 1977, 74(12), 5716-5720.
[http://dx.doi.org/10.1073/pnas.74.12.5716] [PMID: 202961]
[20]
Snejdrova, E.; Drastik, M.; Dittrich, M.; Kastner, P.; Nguyenova, J. Mucoadhesive plasticized system of branched poly(lactic-co-glycolic acid) with aciclovir. Drug Dev. Ind. Pharm., 2016, 42(10), 1653-1659.
[http://dx.doi.org/10.3109/03639045.2016.1160109] [PMID: 26925606]
[21]
Ates, M.; Kaynak, M.S.; Sahin, S. Effect of permeability enhancers on paracellular permeability of acyclovir. J. Pharm. Pharmacol., 2016, 68(6), 781-790.
[http://dx.doi.org/10.1111/jphp.12551] [PMID: 27061718]
[22]
Snoeck, R.; Andrei, G.; De Clercq, E. Current pharmacological approaches to the therapy of varicella zoster virus infections: a guide to treatment. Drugs, 1999, 57(2), 187-206.
[http://dx.doi.org/10.2165/00003495-199957020-00005] [PMID: 10188760]
[23]
Keam, S.J.; Chapman, T.M.; Figgitt, D.P. Brivudin (bromovinyl deoxyuridine). Drugs, 2004, 64(18), 2091-2097.
[http://dx.doi.org/10.2165/00003495-200464180-00011] [PMID: 15341504]
[24]
O’Brien, J.J.; Campoli-Richards, D.M. Acyclovir. An updated review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs, 1989, 37(3), 233-309.
[PMID: 2653790]
[25]
Wagstaff, A.J.; Faulds, D.; Goa, K.L. Aciclovir. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs, 1994, 47(1), 153-205.
[http://dx.doi.org/10.2165/00003495-199447010-00009] [PMID: 7510619]
[26]
Hebart, H.; Kanz, L.; Jahn, G.; Einsele, H. Management of cytomegalovirus infection after solid-organ or stem-cell transplantation. Current guidelines and future prospects. Drugs, 1998, 55(1), 59-72.
[http://dx.doi.org/10.2165/00003495-199855010-00005] [PMID: 9463790]
[27]
Slifkin, M.; Doron, S.; Snydman, D.R. Viral prophylaxis in organ transplant patients. Drugs, 2004, 64(24), 2763-2792.
[http://dx.doi.org/10.2165/00003495-200464240-00004] [PMID: 15563248]
[28]
Bhosale, U.; Kusum, D.V.; Jain, N. Formulation and optimization of mucoadhesive nanodrug delivery system of acyclovir. J. Young Pharm., 2011, 3(4), 275-283.
[http://dx.doi.org/10.4103/0975-1483.90236] [PMID: 22224033]
[29]
Elion, G.B. Acyclovir: discovery, mechanism of action, and selectivity. J. Med. Virol., 1993(Suppl. 1), 2-6.
[http://dx.doi.org/10.1002/jmv.1890410503] [PMID: 8245887]
[30]
Shahsavari, S.; Vasheghani-Farahani, E.; Ardjmand, M.; Abedin Dorkoosh, F. Design and characterization of acyclovir loaded nanoparticles for controlled delivery system. Curr. Nanosci., 2014, 10(4), 521-531.
[http://dx.doi.org/10.2174/15734137113096660128]
[31]
Ramyadevi, D.; Rajan, K.S. Synthesis of hybrid polymer blend nanoparticles and incorporation into in situ gel foam spray for controlled release therapy using a versatile synthetic purine nucleoside analogue antiviral drug. RSC Advances, 2015, 5(17), 12956-12973.
[http://dx.doi.org/10.1039/C4RA16537C]
[32]
Ajima, U.; Onah, J.O. Spectrophotometric determination of acyclovir after its reaction with ninhydrin and ascorbic acid. J. Appl. Sci.,, 2015, 5(4), 065-069.
[http://dx.doi.org/10.7324/JAPS.2015.50411]
[33]
Sultan, M. Spectrophotometric determination of acyclovir in some pharmaceutical formulations. Farmaco, 2002, 57(11), 865-870.
[http://dx.doi.org/10.1016/S0014-827X(02)01299-5] [PMID: 12484534]
[34]
Gonzalez, M.H.; Silva, C.S.d.; Amaral, C.D.; Bianchi, S.R.; de Oliveira, L.H.; Coelho, J.S.; Oliveira, A.; Nogueira, A.R.A. Determination of elemental impurities in acyclovir ointment and raw materials using microwave acid digestion (MW-AD) and ICP-MS. J. Braz. Chem. Soc., 2017, 28(1), 98-105.
[35]
Darwish, I.A.; Khedr, A.S.; Askal, H.F.; Mahmoud, R.M. Simple fluorimetric method for determination of certain antiviral drugs via their oxidation with cerium (IV). Farmaco, 2005, 60(6-7), 555-562.
[http://dx.doi.org/10.1016/j.farmac.2005.04.003] [PMID: 15932755]
[36]
Darwish, I.A.; Khedr, A.S.; Askal, H.F.; Mahmoud, R.M.; Liu, B.; Liu, Z.; Gao, J.; Cao, Z.; Ali, S.; Shahzadi, S. Use of oxidation reactions for the spectrophotometric determination of acyclovir and amantadine hydrochloride in their dosage forms. Analytical Chemistry: An Indian Journal,, 2005, 1(1-2), 01-09.
[37]
El-Din, M.K.; El-Brashy, A.M.; Sheribah, Z.A.; El-Gamal, R.M. Spectrophotometric determination of acyclovir and ribavirin in their dosage forms. J. AOAC Int., 2006, 89(3), 631-641.
[http://dx.doi.org/10.1093/jaoac/89.3.631] [PMID: 16792062]
[38]
Reddy, S.A.; Chakraborty, R.; Sen, S.; Parameshappa, B. Spectrophotometric determination and validation of Acyclovir. Arch. Appl. Sci. Res., 2011, 3(1), 328-332.
[39]
Dongare, U.S.; Chemate, S.Z.; Jadhav, S.A.; Pawar, V.R. Spectrophotometric determination and validation of acyclovir in tablet dosage form. Int. J. Pharm. Tech. Res., 2012, 4(4), 1840-1845.
[40]
Darville, J.M.; Lovering, A.M.; MacGowan, A.P. Development, evaluation and application of an isocratic high-performance liquid chromatography (HPLC) assay for the simultaneous determination of aciclovir and its metabolite 9-carboxymethoxymethylguanine in human serum and cerebrospinal fluid. Int. J. Antimicrob. Agents, 2007, 30(1), 30-33.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.02.005] [PMID: 17428641]
[41]
Bahrami, G.; Mirzaeei, Sh.; Kiani, A. Determination of acyclovir in human serum by high-performance liquid chromatography using liquid-liquid extraction and its application in pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 816(1-2), 327-331.
[http://dx.doi.org/10.1016/j.jchromb.2004.11.038] [PMID: 15664366]
[42]
Maes, A.; Garré, B.; Desmet, N.; van der Meulen, K.; Nauwynck, H.; De Backer, P.; Croubels, S. Determination of acyclovir in horse plasma and body fluids by high-performance liquid chromatography combined with fluorescence detection and heated electrospray ionization tandem mass spectrometry. Biomed. Chromatogr., 2009, 23(2), 132-140.
[http://dx.doi.org/10.1002/bmc.1093] [PMID: 18823074]
[43]
Muralidharan, S.; Kalaimani, J.; Parasuraman, S.; Dhanaraj, S.A. Development and validation of acyclovir HPLC external standard method in human plasma: application to pharmacokinetic studies. Adv. Pharm., 2014, 2014
[http://dx.doi.org/10.1155/2014/284652]
[44]
Emami, J.; Bazargan, N.; Ajami, A. HPLC determination of acyclovir in human serum and its application in bioavailability studies. Res. Pharm. Sci., 2010, 4(1), 47-54.
[45]
Al-Amri, K.A.; Mohsin, K.; Alanazi, F.K. Development and validation of a UPLC method for quantification of antiviral agent, Acyclovir in lipid-based formulations. Arab. J. Chem., 2019, 12(7), 1707-1714.
[http://dx.doi.org/10.1016/j.arabjc.2014.08.024]
[46]
Vo, H.C.; Henning, P.A.; Leung, D.T.; Sacks, S.L. Development and validation of a plasma assay for acyclovir using high-performance capillary electrophoresis with sample stacking. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 772(2), 291-297.
[http://dx.doi.org/10.1016/S1570-0232(02)00116-2] [PMID: 12007774]
[47]
Zhang, S.; Yuan, Z.; Liu, H.; Zou, H.; Xiong, H.; Wu, Y. Analysis of acyclovir by high performance capillary electrophoresis with on-column amperometric detection. Electrophoresis,, 2000, 21( 14), 2995- 2998.
[http://dx.doi.org/10.1002/1522-2683(20000801)21:14 <2995:AID-ELPS2995>3.0.CO;2-P] [PMID: 11001315]
[48]
Meyer, L.J.; de Miranda, P.; Sheth, N.; Spruance, S. Acyclovir in human breast milk. Am. J. Obstet. Gynecol., 1988, 158(3 Pt 1), 586-588.
[http://dx.doi.org/10.1016/0002-9378(88)90033-6] [PMID: 3348321]
[49]
Tod, M.; Lokiec, F.; Bidault, R.; De Bony, F.; Petitjean, O.; Aujard, Y. Pharmacokinetics of oral acyclovir in neonates and in infants: a population analysis. Antimicrob. Agents Chemother., 2001, 45(1), 150-157.
[http://dx.doi.org/10.1128/AAC.45.1.150-157.2001] [PMID: 11120958]
[50]
Dilgin, D.G.; Karakaya, S. Differential pulse voltammetric determination of acyclovir in pharmaceutical preparations using a pencil graphite electrode. Mater. Sci. Eng. C, 2016, 63, 570-576.
[http://dx.doi.org/10.1016/j.msec.2016.02.079] [PMID: 27040252]
[51]
Castro, A.A.; Cordoves, A.I.; Farias, P.A. Determination of the antiretroviral drug acyclovir in diluted alkaline electrolyte by adsorptive stripping voltammetry at the mercury film electrode. Anal. Chem. Insights, 2013, 8, 21-28.
[http://dx.doi.org/10.4137/ACI.S11608] [PMID: 23761958]
[52]
Shaidarova, L.; Gedmina, A.; Zhaldak, E.; Chelnokova, I.; Budnikov, H. Voltammetric determination of acyclovir in drugs using an electrode modified by ruthenium hexachloroplatinate or hexacyanocobaltate film. Pharm. Chem. J., 2015, 48(11), 747-752.
[http://dx.doi.org/10.1007/s11094-015-1186-z]
[53]
Sheribah, Z.A.; El-Brashy, A.M.; El-Gamal, R.M. Stability-indicating polarographic determination of acyclovir through chelation with nickel(II). J. AOAC Int., 2009, 92(2), 419-427.
[PMID: 19485200]
[54]
Shetti, N.P.; Malode, S.J.; Nandibewoor, S.T. Electrochemical behavior of an antiviral drug acyclovir at fullerene-C(60)-modified glassy carbon electrode. Bioelectrochemistry, 2012, 88, 76-83.
[http://dx.doi.org/10.1016/j.bioelechem.2012.06.004] [PMID: 22796504]
[55]
Steingrimsdottir, H.; Gruber, A.; Palm, C.; Grimfors, G.; Kalin, M.; Eksborg, S. Bioavailability of aciclovir after oral administration of aciclovir and its prodrug valaciclovir to patients with leukopenia after chemotherapy. Antimicrob. Agents Chemother., 2000, 44(1), 207-209.
[http://dx.doi.org/10.1128/AAC.44.1.207-209.2000] [PMID: 10602752]
[56]
Tran, T.; Druce, J.D.; Catton, M.C.; Kelly, H.; Birch, C.J. Changing epidemiology of genital herpes simplex virus infection in Melbourne, Australia, between 1980 and 2003. Sex. Transm. Infect., 2004, 80(4), 277-279.
[http://dx.doi.org/10.1136/sti.2004.009753] [PMID: 15295125]
[57]
Emmert, D.H. Treatment of common cutaneous herpes simplex virus infections. Am Fam Physician, , 2000, 61(6), 1697-1706-1708..
[58]
Rossi, S.; Sandri, G.; Ferrari, F.; Bonferoni, M.C.; Caramella, C. Buccal delivery of acyclovir from films based on chitosan and polyacrylic acid. Pharm. Dev. Technol., 2003, 8(2), 199-208.
[http://dx.doi.org/10.1081/PDT-120018490] [PMID: 12760570]
[59]
de Miranda, P.; Whitley, R.J.; Blum, M.R.; Keeney, R.E.; Barton, N.; Cocchetto, D.M.; Good, S.; Hemstreet, G.P., III; Kirk, L.E.; Page, D.A.; Elion, G.B. Acyclovir kinetics after intravenous infusion. Clin. Pharmacol. Ther., 1979, 26(6), 718-728.
[http://dx.doi.org/10.1002/cpt1979266718] [PMID: 227639]
[60]
Xu, Y.; Yuan, Z.; Ni, B.J. Biotransformation of acyclovir by an enriched nitrifying culture. Chemosphere, 2017, 170, 25-32.
[http://dx.doi.org/10.1016/j.chemosphere.2016.12.014] [PMID: 27974268]
[61]
Rossi, S. Australian Medicines Handbook (2013 ed.);The Australian Medicines Handbook Unit Trust: Adelaide , 2013.
[62]
Chiriac, A.; Chiriac, A.E.; Pinteala, T.; Moldovan, C.; Stolnicu, S. Allergic contact dermatitis from topical acyclovir: case series. J. Emerg. Med., 2017, 52(2), e37-e39.
[http://dx.doi.org/10.1016/j.jemermed.2016.07.083] [PMID: 27658557]
[63]
Yorulmaz, A.; Sahin, E.B.; Sener, M.; Kulcu Cakmak, S. Acyclovir-induced bullous reaction in a patient with metastatic breast cancer. Cutan. Ocul. Toxicol., 2017, 36(1), 85-87.
[http://dx.doi.org/10.3109/15569527.2016.1140180] [PMID: 26911608]
[64]
Stein, D.S.; Graham, N.M.; Park, L.P.; Hoover, D.R.; Phair, J.P.; Detels, R.; Ho, M.; Saah, A.J. The effect of the interaction of acyclovir with zidovudine on progression to AIDS and survival. Analysis of data in the Multicenter AIDS Cohort Study. Ann. Intern. Med., 1994, 121(2), 100-108.
[http://dx.doi.org/10.7326/0003-4819-121-2-199407150-00004] [PMID: 8017721]
[65]
Bach, M.C. Possible drug interaction during therapy with azidothymidine and acyclovir for AIDS. N. Engl. J. Med., 1987, 316(9), 547.
[http://dx.doi.org/10.1056/NEJM198702263160911] [PMID: 3468354]
[66]
Pottage, J.C., Jr; Kessler, H.A.; Goodrich, J.M.; Chase, R.; Benson, C.A.; Kapell, K.; Levin, S. In vitro activity of ketoconazole against herpes simplex virus. Antimicrob. Agents Chemother., 1986, 30(2), 215-219.
[http://dx.doi.org/10.1128/AAC.30.2.215] [PMID: 3021048]
[67]
Laskin, O.L.; de Miranda, P.; King, D.H.; Page, D.A.; Longstreth, J.A.; Rocco, L.; Lietman, P.S. Effects of probenecid on the pharmacokinetics and elimination of acyclovir in humans. Antimicrob. Agents Chemother., 1982, 21(5), 804-807.
[http://dx.doi.org/10.1128/AAC.21.5.804] [PMID: 7103460]
[68]
Plosker, G.L. Emtricitabine/tenofovir disoproxil fumarate: a review of its use in HIV-1 pre-exposure prophylaxis. Drugs, 2013, 73(3), 279-291.
[http://dx.doi.org/10.1007/s40265-013-0024-4] [PMID: 23444256]
[69]
Levin, M.J.; Leary, P.L. Inhibition of human herpesviruses by combination of acyclovir and human leukocyte interferon. Infect. Immun., 1981, 32(3), 995-999.
[http://dx.doi.org/10.1128/IAI.32.3.995-999.1981] [PMID: 6166569]
[70]
Dzieciatkowski, T.; Rola, A.; Majewska, A.; Solarska, M.; Luczak, M. Leki stosowane w leczeniu zakazen herpeswirusami ludzi. Postepy Mikrobiol., 2007, 3(46), 211-221.
[71]
Datta, A.K.; Colby, B.M.; Shaw, J.E.; Pagano, J.S. Acyclovir inhibition of Epstein-Barr virus replication. Proc. Natl. Acad. Sci. USA, 1980, 77(9), 5163-5166.
[http://dx.doi.org/10.1073/pnas.77.9.5163] [PMID: 6254061]
[72]
Boulter, E.A.; Thornton, B.; Bauer, D.J.; Bye, A. Successful treatment of experimental B virus (Herpesvirus simiae) infection with acyclovir. BMJ, 1980, 280(6215), 681-683.
[http://dx.doi.org/10.1136/bmj.280.6215.681] [PMID: 6244873]
[73]
Styczynski, J.; Reusser, P.; Einsele, H.; de la Camara, R.; Cordonnier, C.; Ward, K.N.; Ljungman, P.; Engelhard, D.; Leukemia, S.E.C.I.i. Second European Conference on Infections in Leukemia. Management of HSV, VZV and EBV infections in patients with hematological malignancies and after SCT: guidelines from the Second European Conference on Infections in Leukemia. Bone Marrow Transplant., 2009, 43(10), 757-770.
[http://dx.doi.org/10.1038/bmt.2008.386] [PMID: 19043458]
[74]
Selby, P.J.; Powles, R.L.; Janeson, B.; Kay, H.E.; Watson, J.G.; Thornton, R.; Morgenstern, G.; Clink, H.M.; McElwain, T.J.; Prentice, H.G.; Corringharn, R.; Ross, M.G.; Hoffbrand, A.V.; Brigden, D. Parenteral acyclovir therapy for herpesvirus infections in man. Lancet,, 1979,, 2(8155), 1267-1270.
[http://dx.doi.org/10.1016/S0140-6736(79)92281-5] [PMID: 93183]
[75]
Przybylski, M.; Majewska, A.; Dzieciatkowski, T.; Rusicka, P.; Basak, G.W.; Nasilowska-Adamska, B.; Bilinski, J.; Jedrzejczak, W.W.; Wroblewska, M.; Halaburda, K.; Mlynarczyk, G.; Tomaszewska, A. Infections due to alphaherpesviruses in early post-transplant period after allogeneic haematopoietic stem cell transplantation: Results of a 5-year survey. J. Clin. Virol., 2017, 87, 67-72.
[http://dx.doi.org/10.1016/j.jcv.2016.12.008] [PMID: 28033514]
[76]
O’Meara, A.; Hillary, I.B. Acyclovir in the management of herpes virus infections in immunosuppressed children. Ir. J. Med. Sci., 1981, 150(3), 73-77.
[http://dx.doi.org/10.1007/BF02938203] [PMID: 6262272]
[77]
O’Meara, A.; Deasy, P.F.; Hillary, I.B.; Bridgen, W.D. Acyclovir for treatment of mucocutaneous herpes infection in a child with leukaemia. Lancet,, 1979,, 2(8153), , 1196..
[http://dx.doi.org/10.1016/S0140-6736(79)92428-0] [PMID: 91931]
[78]
de Almeida, S.M.; Crippa, A.; Cruz, C.; de Paola, L.; de Souza, L.P.; Noronha, L.; Torres, L.F.; Koneski, J.A.; Pessa, L.F.; Nogueira, M.B.; Raboni, S.M.; Silvado, C.E.; Vidal, L.R. Reactivation of herpes simplex virus-1 following epilepsy surgery. Epilepsy Behav. Case Rep., 2015, 4, 76-78.
[http://dx.doi.org/10.1016/j.ebcr.2014.08.007] [PMID: 26543809]
[79]
Sicher, S.E.; Oh, J.O. Acyclovir therapy of neonatal herpes simplex virus type 2 infections in rabbits. Antimicrob. Agents Chemother., 1981, 20(4), 503-507.
[http://dx.doi.org/10.1128/AAC.20.4.503] [PMID: 6282195]
[80]
Sacks, S.L. The role of oral acyclovir in the management of genital herpes simplex. CMAJ, 1987, 136(7), 701-707.
[PMID: 3548933]
[81]
Wilhelmus, K.R.; Coster, D.J.; Jones, B.R. Acyclovir and debridement in the treatment of ulcerative herpetic keratitis. Am. J. Ophthalmol., 1981, 91(3), 323-327.
[http://dx.doi.org/10.1016/0002-9394(81)90284-1] [PMID: 7011037]
[82]
Coster, D.J.; Wilhelmus, K.R.; Michaud, R.; Jones, B.R. A comparison of acyclovir and idoxuridine as treatment for ulcerative herpetic keratitis. Br. J. Ophthalmol., 1980, 64(10), 763-765.
[http://dx.doi.org/10.1136/bjo.64.10.763] [PMID: 7000170]
[83]
Bagwell, A.; Loy, A.; McFarland, M.S.; Tessmer-Neubauer, A. oral acyclovir in the treatment of verruca. J. Drugs Dermatol., 2016, 15(2), 237-238.
[PMID: 26885794]
[84]
Carter, S.B.; Cohen, E.J. Development of herpes simplex virus infectious epithelial keratitis during oral acyclovir therapy and response to topical antivirals. Cornea, 2016, 35(5), 692-695.
[http://dx.doi.org/10.1097/ICO.0000000000000806] [PMID: 26989961]
[85]
Piret, J.; Désormeaux, A.; Gourde, P.; Juhász, J.; Bergeron, M.G. Efficacies of topical formulations of foscarnet and acyclovir and of 5-percent acyclovir ointment (Zovirax) in a murine model of cutaneous herpes simplex virus type 1 infection. Antimicrob. Agents Chemother., 2000, 44(1), 30-38.
[http://dx.doi.org/10.1128/AAC.44.1.30-38.2000] [PMID: 10602719]
[86]
Studahl, M.; Lindquist, L.; Eriksson, B-M.; Günther, G.; Bengner, M.; Franzen-Röhl, E.; Fohlman, J.; Bergström, T.; Aurelius, E. Acute viral infections of the central nervous system in immunocompetent adults: diagnosis and management. Drugs, 2013, 73(2), 131-158.
[http://dx.doi.org/10.1007/s40265-013-0007-5] [PMID: 23377760]
[87]
Frobert, E.; Ooka, T.; Cortay, J.C.; Lina, B.; Thouvenot, D.; Morfin, F. Herpes simplex virus thymidine kinase mutations associated with resistance to acyclovir: a site-directed mutagenesis study. Antimicrob. Agents Chemother., 2005, 49(3), 1055-1059.
[http://dx.doi.org/10.1128/AAC.49.3.1055-1059.2005] [PMID: 15728902]
[88]
Gilbert, C.; Bestman-Smith, J.; Boivin, G. Resistance of herpesviruses to antiviral drugs: clinical impacts and molecular mechanisms. Drug Resist. Updat., 2002, 5(2), 88-114.
[http://dx.doi.org/10.1016/S1368-7646(02)00021-3] [PMID: 12135584]
[89]
Hwang, C.B.; Ruffner, K.L.; Coen, D.M. A point mutation within a distinct conserved region of the herpes simplex virus DNA polymerase gene confers drug resistance. J. Virol., 1992, 66(3), 1774-1776.
[http://dx.doi.org/10.1128/JVI.66.3.1774-1776.1992] [PMID: 1310779]
[90]
Bergmann,, M.; Beer, R.; Kofler, M.; Helbok, R.; Pfausler, B.; Schmutzhard, E. Acyclovir resistance in herpes simplex virus type I encephalitis: a case report. J. Neurovirol., 2017, 23(4), 638-639.
[http://dx.doi.org/10.1007/s13365-017-0537-9] [PMID: 27787806]
[91]
Jones, C.A. Vertical transmission of genital herpes: prevention and treatment options. Drugs, 2009, 69(4), 421-434.
[http://dx.doi.org/10.2165/00003495-200969040-00003] [PMID: 19323586]
[92]
Kanneti, R.; Bhavesh, D.; Paramar, D.; Shivaprakash, R.; Bhatt, P.A. Determination of penciclovir in human plasma by liquid chromatography-electrospray ionization tandem mass spectrometry: application to a clinical pharmacokinetic study. Biomed. Chromatogr., 2011, 25(4), 458-465.
[http://dx.doi.org/10.1002/bmc.1468] [PMID: 21374647]
[93]
Kimberlin, D.W. Acyclovir derivatives and other new antiviral agents in: Seminars in Pediatric Infectious Diseases; Elsevier, 2001, Vol. 12, pp. 224-234.
[94]
Snell, N.J. New treatments for viral respiratory tract infections--opportunities and problems. J. Antimicrob. Chemother., 2001, 47(3), 251-259.
[http://dx.doi.org/10.1093/jac/47.3.251] [PMID: 11222557]
[95]
Deval, J. Antimicrobial strategies: inhibition of viral polymerases by 3′-hydroxyl nucleosides. Drugs, 2009, 69(2), 151-166.
[http://dx.doi.org/10.2165/00003495-200969020-00002] [PMID: 19228073]
[96]
Moomaw, M.D.; Cornea, P.; Rathbun, R.C.; Wendel, K.A. Review of antiviral therapy for herpes labialis, genital herpes and herpes zoster. Expert Rev. Anti Infect. Ther., 2003, 1(2), 283-295.
[http://dx.doi.org/10.1586/14787210.1.2.283] [PMID: 15482124]
[97]
Smee, D.F.; Martin, J.C.; Verheyden, J.P.; Matthews, T.R. Anti-herpesvirus activity of the acyclic nucleoside 9-(1,3-dihydroxy-2-propoxymethyl)guanine. Antimicrob. Agents Chemother., 1983, 23(5), 676-682.
[http://dx.doi.org/10.1128/AAC.23.5.676] [PMID: 6307132]
[98]
Mitsuiki, N.; Tamanuki, K.; Sei, K.; Ito, J.; Kishi, A.; Kobayashi, K.; Hatai, Y.; Nagasawa, M. Severe neonatal CMV infection complicated with thrombotic microangiopathy successfully treated with ganciclovir. J. Infect. Chemother., 2017, 23(2), 107-110.
[http://dx.doi.org/10.1016/j.jiac.2016.08.007] [PMID: 27627852]
[99]
Wagner, S.J.; Brennan, D.C. Induction therapy in renal transplant recipients: how convincing is the current evidence? Drugs, 2012, 72(5), 671-683.
[http://dx.doi.org/10.2165/11631300-000000000-00000] [PMID: 22439670]
[100]
Tabbara, K.F.; Al Balushi, N. Topical ganciclovir in the treatment of acute herpetic keratitis. Clin. Ophthalmol., 2010, 4(1), 905-912.
[http://dx.doi.org/10.2147/OPTH.S8666] [PMID: 20823931]
[101]
Wong, J.X.; Agrawal, R.; Wong, E.P.; Teoh, S.C. Efficacy and safety of topical ganciclovir in the management of cytomegalovirus (CMV)-related anterior uveitis. J. Ophthalmic Inflamm. Infect., 2016, 6(1), 10.
[http://dx.doi.org/10.1186/s12348-016-0078-z] [PMID: 26976016]
[102]
Markham, A.; Faulds, D. Ganciclovir. An update of its therapeutic use in cytomegalovirus infection. Drugs, 1994, 48(3), 455-484.
[http://dx.doi.org/10.2165/00003495-199448030-00009] [PMID: 7527763]
[103]
Friedrichsen, G.M.; Chen, W.; Begtrup, M.; Lee, C-P.; Smith, P.L.; Borchardt, R.T. Synthesis of analogs of L-valacyclovir and determination of their substrate activity for the oligopeptide transporter in Caco-2 cells. Eur. J. Pharm. Sci., 2002, 16(1-2), 1-13.
[http://dx.doi.org/10.1016/S0928-0987(02)00047-7] [PMID: 12113886]
[104]
Morfin, F.; Thouvenot, D. Herpes simplex virus resistance to antiviral drugs. J. Clin. Virol., 2003, 26(1), 29-37.
[http://dx.doi.org/10.1016/S1386-6532(02)00263-9] [PMID: 12589832]
[105]
Skevaki, C.L.; Galani, I.E.; Pararas, M.V.; Giannopoulou, K.P.; Tsakris, A. Treatment of viral conjunctivitis with antiviral drugs. Drugs, 2011, 71(3), 331-347.
[http://dx.doi.org/10.2165/11585330-000000000-00000] [PMID: 21319870]
[106]
Brantley, J.S.; Hicks, L.; Sra, K.; Tyring, S.K. Valacyclovir for the treatment of genital herpes. Expert Rev. Anti Infect. Ther., 2006, 4(3), 367-376.
[http://dx.doi.org/10.1586/14787210.4.3.367] [PMID: 16771614]
[107]
Corey, L. Challenges in genital herpes simplex virus management. J. Infect. Dis., 2002, 186(Suppl. 1), S29-S33.
[http://dx.doi.org/10.1086/342971] [PMID: 12353184]
[108]
Naesens, L.; De Clercq, E. Recent developments in herpesvirus therapy. Herpes, 2001, 8(1), 12-16.
[PMID: 11867011]
[109]
Whitley, R. New approaches to the therapy of HSV infections. Herpes, 2006, 13(2), 53-55.
[PMID: 16895657]
[110]
Wiltshire, H.; Hirankarn, S.; Farrell, C.; Paya, C.; Pescovitz, M.D.; Humar, A.; Dominguez, E.; Washburn, K.; Blumberg, E.; Alexander, B.; Freeman, R.; Heaton, N. Valganciclovir Solid Organ Transplant Study Group. Pharmacokinetic profile of ganciclovir after its oral administration and from its prodrug, valganciclovir, in solid organ transplant recipients. Clin. Pharmacokinet., 2005, 44(5), 495-507.
[http://dx.doi.org/10.2165/00003088-200544050-00003] [PMID: 15871635]
[111]
Pereyra, F.; Rubin, R.H. Prevention and treatment of cytomegalovirus infection in solid organ transplant recipients. Curr. Opin. Infect. Dis., 2004, 17(4), 357-361.
[http://dx.doi.org/10.1097/01.qco.0000136933.67920.dd] [PMID: 15241082]
[112]
Qureshi, S.A.; Jiang, M.; Midha, K.K.; Skelly, J.P. In vitro evaluation of percutaneous absorption of an acyclovir product using intact and tape-stripped human skin. J. Pharm. Pharm. Sci., 1998, 1(3), 102-107.
[PMID: 10948397]
[113]
Shojaei, A.H.; Berner, B.; Xiaoling, L. Transbuccal delivery of acyclovir: I. In vitro determination of routes of buccal transport. Pharm. Res., 1998, 15(8), 1182-1188.
[http://dx.doi.org/10.1023/A:1011927521627] [PMID: 9706047]
[114]
Susantakumar, P.; Gaur, A.; Sharma, P. Comparative pharmacokinetics, safety and tolerability evaluation of Acyclovir IR 800 mg tablet in healthy Indian adult volunteers under fasting and non-fasting conditions. J. Bioequivalence Bioavailab., 2011, 3, 128-138.
[http://dx.doi.org/10.4172/jbb.1000073]
[115]
Calderón, L.; Harris, R.; Cordoba-Diaz, M.; Elorza, M.; Elorza, B.; Lenoir, J.; Adriaens, E.; Remon, J.P.; Heras, A.; Cordoba-Diaz, D. Nano and microparticulate chitosan-based systems for antiviral topical delivery. Eur. J. Pharm. Sci., 2013, 48(1-2), 216-222.
[http://dx.doi.org/10.1016/j.ejps.2012.11.002] [PMID: 23159663]
[116]
Cortesi, R.; Esposito, E. Acyclovir delivery systems. Expert Opin. Drug Deliv., 2008, 5(11), 1217-1230.
[http://dx.doi.org/10.1517/17425240802450340] [PMID: 18976132]
[117]
Fresta, M.; Fontana, G.; Bucolo, C.; Cavallaro, G.; Giammona, G.; Puglisi, G. Ocular tolerability and in vivo bioavailability of poly(ethylene glycol) (PEG)-coated polyethyl-2-cyanoacrylate nanosphere-encapsulated acyclovir. J. Pharm. Sci., 2001, 90(3), 288-297.
[http://dx.doi.org/10.1002/1520-6017(200103)90:3<288:AID-JPS4>3.0.CO;2-5] [PMID: 11170022]
[118]
Godin, B.; Touitou, E. Ethosomes: new prospects in transdermal delivery. Crit. Rev. Ther. Drug Carrier Syst., 2003, 20(1), 63-102.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v20.i1.20] [PMID: 12911264]
[119]
Zhou, Y.; Wei, Y-H.; Zhang, G-Q.; Wu, X-A. Synergistic penetration of ethosomes and lipophilic prodrug on the transdermal delivery of acyclovir. Arch. Pharm. Res., 2010, 33(4), 567-574.
[http://dx.doi.org/10.1007/s12272-010-0411-2] [PMID: 20422366]
[120]
Giammona, G.; Puglisi, G.; Cavallaro, G.; Spadaro, A.; Pitarresi, G. Chemical stability and bioavailability of acyclovir coupled to α, β-poly (N-2-hydroxyethyl)-dl-aspartamide. J. Control. Release, 1995, 33(2), 261-271.
[http://dx.doi.org/10.1016/0168-3659(94)00091-8]
[121]
Hiramath, R.; Chandrashakhar, M.; Sompur, C.; Shattari, A.; Maske, A.; Shaikh, R. Synthesis, in-vitro and bio-availability studies of acyclovir prodrug. AJPSR, 2011, 1(1), 38-48.
[122]
Sawdon, A.J.; Peng, C.A. Polymeric micelles for acyclovir drug delivery. Colloids Surf. B Biointerfaces, 2014, 122, 738-745.
[http://dx.doi.org/10.1016/j.colsurfb.2014.08.011] [PMID: 25193154]
[123]
Pedotti, S.; Pistarà, V.; Cannavà, C.; Carbone, C.; Cilurzo, F.; Corsaro, A.; Puglisi, G.; Ventura, C.A. Synthesis and physico-chemical characterization of a β-cyclodextrin conjugate for sustained release of Acyclovir. Carbohydr. Polym., 2015, 131, 159-167.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.071] [PMID: 26256172]
[124]
Wolinsky, J.B.; Colson, Y.L.; Grinstaff, M.W. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J. Control. Release, 2012, 159(1), 14-26.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.031] [PMID: 22154931]
[125]
Lembo, D.; Swaminathan, S.; Donalisio, M.; Civra, A.; Pastero, L.; Aquilano, D.; Vavia, P.; Trotta, F.; Cavalli, R. Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int. J. Pharm., 2013, 443(1-2), 262-272.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.031] [PMID: 23279938]
[126]
Malik, N.S.; Ahmad, M.; Minhas, M.U. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS One, 2017, 12(2),e0172727.
[http://dx.doi.org/10.1371/journal.pone.0172727] [PMID: 28245257]
[127]
Jana, S.; Sharma, R.; Maiti, S.; Sen, K.K. Interpenetrating hydrogels of O-carboxymethyl Tamarind gum and alginate for monitoring delivery of acyclovir. Int. J. Biol. Macromol., 2016, 92, 1034-1039.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.017] [PMID: 27514441]
[128]
Azizi, M.; Seyed Dorraji, M.S.; Rasoulifard, M.H. Influence of structure on release profile of acyclovir loaded polyurethane nanofibers: Monolithic and core/shell structures. J. Appl. Polym. Sci., 2016, 133(41)
[http://dx.doi.org/10.1002/app.44073]
[129]
Wu, Y.-H.; Yu, D.-G.; Li, H.-P.; Wu, X.-Y.; Li, X.-Y. Medicated structural PVP/PEG composites fabricated using coaxial electrospinning. e-Polymers,, 2017,, 17(1), 39-44.
[130]
Tamayo, A.; Mazo, M.A.; Ruiz-Caro, R.; Martín-Illana, A.; Bedoya, L.M.; Veiga-Ochoa, M.D.; Rubio, J. Mesoporous silicon oxycarbide materials for controlled drug delivery systems. Chem. Eng. J., 2015, 280, 165-174.
[http://dx.doi.org/10.1016/j.cej.2015.05.111]
[131]
Maniya, N.H.; Patel, S.R.; Murthy, Z. Controlled delivery of acyclovir from porous silicon micro-and nanoparticles. Appl. Surf. Sci., 2015, 330, 358-365.
[http://dx.doi.org/10.1016/j.apsusc.2015.01.053]
[132]
Jain, N.; Rajoriya, V.; Jain, P.K.; Jain, A.K. Lactosaminated-N-succinyl chitosan nanoparticles for hepatocyte-targeted delivery of acyclovir. J. Nanopart. Res., 2014, 16(1), 2136.
[http://dx.doi.org/10.1007/s11051-013-2136-x]
[133]
Yao, J.; Zhang, Y.; Ramishetti, S.; Wang, Y.; Huang, L. Turning an antiviral into an anticancer drug: nanoparticle delivery of acyclovir monophosphate. J. Control. Release, 2013, 170(3), 414-420.
[http://dx.doi.org/10.1016/j.jconrel.2013.06.009] [PMID: 23791977]
[134]
Anand, B.S.; Mitra, A.K. Mechanism of corneal permeation of L-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharm. Res., 2002, 19(8), 1194-1202.
[http://dx.doi.org/10.1023/A:1019806411610] [PMID: 12240946]
[135]
Canbolat, M.F.; Celebioglu, A.; Uyar, T. Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids Surf. B Biointerfaces, 2014, 115, 15-21.
[http://dx.doi.org/10.1016/j.colsurfb.2013.11.021] [PMID: 24316584]
[136]
Zhang, Y.; Zhang, J.; Jiang, T.; Wang, S. Inclusion of the poorly water-soluble drug simvastatin in mesocellular foam nanoparticles: drug loading and release properties. Int. J. Pharm., 2011, 410(1-2), 118-124.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.040] [PMID: 20674729]
[137]
Hung, S.F.; Hsieh, C.M.; Chen, Y.C.; Wang, Y.C.; Ho, H.O.; Sheu, M.T. Characterizations of plasticized polymeric film coatings for preparing multiple-unit floating drug delivery systems (muFDDSs) with controlled-release characteristics. PLoS One, 2014, 9(6),e100321.
[http://dx.doi.org/10.1371/journal.pone.0100321] [PMID: 24967594]
[138]
Ghosh, P.K.; Majithiya, R.J.; Umrethia, M.L.; Murthy, R.S. Design and development of microemulsion drug delivery system of acyclovir for improvement of oral bioavailability. AAPS PharmSciTech, 2006, 7(3), 77.
[http://dx.doi.org/10.1208/pt070377] [PMID: 17025257]
[139]
Pavelić, Z.; Skalko-Basnet, N.; Filipović-Grcić, J.; Martinac, A.; Jalsenjak, I. Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir. J. Control. Release, 2005, 106(1-2), 34-43.
[http://dx.doi.org/10.1016/j.jconrel.2005.03.032] [PMID: 15979189]
[140]
Cavalli, R.; Donalisio, M.; Civra, A.; Ferruti, P.; Ranucci, E.; Trotta, F.; Lembo, D. Enhanced antiviral activity of Acyclovir loaded into beta-cyclodextrin-poly(4-acryloylmorpholine) conjugate nanoparticles. J. Control. Release, 2009, 137(2), 116-122.
[http://dx.doi.org/10.1016/j.jconrel.2009.04.004] [PMID: 19361545]
[141]
Sithole, M.N.; Choonara, Y.E.; du Toit, L.C.; Kumar, P.; Marimuthu, T.; Kondiah, P.P.D.; Pillay, V. Development of a novel polymeric nanocomposite complex for drugs with low bioavailability. AAPS PharmSciTech, 2018, 19(1), 303-314.
[http://dx.doi.org/10.1208/s12249-017-0796-z] [PMID: 28717975]
[142]
Tavakoli, N.; Varshosaz, J.; Dorkoosh, F.; Motaghi, S.; Tamaddon, L. Development and evaluation of a monolithic floating drug delivery system for acyclovir. Chem. Pharm. Bull. (Tokyo), 2012, 60(2), 172-177.
[http://dx.doi.org/10.1248/cpb.60.172] [PMID: 22293475]
[143]
Bahri-Najafi, R.; Mostafavi, A.; Tavakoli, N.; Taymouri, S.; Shahraki, M.M. Preparation and in vitro-in vivo evaluation of acyclovir floating tablets. Res. Pharm. Sci., 2017, 12(2), 128-136.
[http://dx.doi.org/10.4103/1735-5362.202451] [PMID: 28515765]
[144]
Palombo, M.; Deshmukh, M.; Myers, D.; Gao, J.; Szekely, Z.; Sinko, P.J. Pharmaceutical and toxicological properties of engineered nanomaterials for drug delivery. Annu. Rev. Pharmacol. Toxicol., 2014, 54, 581-598.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134615] [PMID: 24160695]
[145]
De Koker, S.; Hoogenboom, R.; De Geest, B.G. Polymeric multilayer capsules for drug delivery. Chem. Soc. Rev., 2012, 41(7), 2867-2884.
[http://dx.doi.org/10.1039/c2cs15296g] [PMID: 22282265]
[146]
Gandhi, A.; Jana, S.; Sen, K.K. In-vitro release of acyclovir loaded Eudragit RLPO(®) nanoparticles for sustained drug delivery. Int. J. Biol. Macromol., 2014, 67, 478-482.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.04.019] [PMID: 24755259]
[147]
Davies, N.M. Biopharmaceutical considerations in topical ocular drug delivery. Clin. Exp. Pharmacol. Physiol., 2000, 27(7), 558-562.
[http://dx.doi.org/10.1046/j.1440-1681.2000.03288.x] [PMID: 10874518]
[148]
Rajawat, G.S.; Shinde, U.A.; Nair, H.A. Chitosan-N-acetyl cysteine microspheres for ocular delivery of acyclovir: Synthesis and in vitro/in vivo evaluation. J. Drug Deliv. Sci. Technol., 2016, 35, 333-342.
[http://dx.doi.org/10.1016/j.jddst.2016.08.006]
[149]
Desai, S.; Blanchard, J. An encyclopedia of pharmaceutical technology; Marcel Dekker: New York, USA, 1995.
[150]
Bourlais, C.L.; Acar, L.; Zia, H.; Sado, P.A.; Needham, T.; Leverge, R. Ophthalmic drug delivery systems--recent advances. Prog. Retin. Eye Res., 1998, 17(1), 33-58.
[http://dx.doi.org/10.1016/S1350-9462(97)00002-5] [PMID: 9537794]
[151]
Noomwong, P.; Ratanasak, W.; Polnok, A.; Sarisuta, N. Development of acyclovir-loaded bovine serum albumin nanoparticles for ocular drug delivery. Int. J. Drug Deliv., 2011, 3(4), 669.
[152]
Sharma, G.; Thakur, K.; Setia, A.; Amarji, B.; Singh, M.P.; Raza, K.; Katare, O.P. Fabrication of acyclovir-loaded flexible membrane vesicles (FMVs): evidence of preclinical efficacy of antiviral activity in murine model of cutaneous HSV-1 infection. Drug Deliv. Transl. Res., 2017, 7(5), 683-694.
[http://dx.doi.org/10.1007/s13346-017-0417-0] [PMID: 28801835]
[153]
Aniagyei, S.E.; Sims, L.B.; Malik, D.A.; Tyo, K.M.; Curry, K.C.; Kim, W.; Hodge, D.A.; Duan, J.; Steinbach-Rankins, J.M. Evaluation of poly(lactic-co-glycolic acid) and poly(dl-lactide-co-ε-caprolactone) electrospun fibers for the treatment of HSV-2 infection. Mater. Sci. Eng. C, 2017, 72, 238-251.
[http://dx.doi.org/10.1016/j.msec.2016.11.029] [PMID: 28024582]
[154]
Gavini, E.; Chetoni, P.; Cossu, M.; Alvarez, M.G.; Saettone, M.F.; Giunchedi, P. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: in vitro/in vivo studies. Eur. J. Pharm. Biopharm., 2004, 57(2), 207-212.
[http://dx.doi.org/10.1016/j.ejpb.2003.10.018] [PMID: 15018976]
[155]
Baskakova, A.; Awwad, S.; Jiménez, J.Q.; Gill, H.; Novikov, O.; Khaw, P.T.; Brocchini, S.; Zhilyakova, E.; Williams, G.R. Electrospun formulations of acyclovir, ciprofloxacin and cyanocobalamin for ocular drug delivery. Int. J. Pharm., 2016, 502(1-2), 208-218.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.015] [PMID: 26899973]
[156]
Al-Dhubiab, B.E.; Nair, A.B.; Kumria, R.; Attimarad, M.; Harsha, S. Formulation and evaluation of nano based drug delivery system for the buccal delivery of acyclovir. Colloids Surf. B Biointerfaces, 2015, 136, 878-884.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.045] [PMID: 26547315]
[157]
Xu, X.; Al-Ghabeish, M.; Krishnaiah, Y.S.; Rahman, Z.; Khan, M.A. Kinetics of drug release from ointments: Role of transient-boundary layer. Int. J. Pharm., 2015, 494(1), 31-39.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.077] [PMID: 26241753]
[158]
Al-Subaie, M.M.; Hosny, K.M.; El-Say, K.M.; Ahmed, T.A.; Aljaeid, B.M. Utilization of nanotechnology to enhance percutaneous absorption of acyclovir in the treatment of herpes simplex viral infections. Int. J. Nanomedicine, 2015, 10, 3973-3985.
[http://dx.doi.org/10.2147/IJN.S83962] [PMID: 26109856]
[159]
El-Feky, G.S.; El-Rafie, M.; El-Sheikh, M.; El-Naggar, M.E.; Hebeish, A. Utilization of crosslinked starch nanoparticles as a carrier for indomethacin and acyclovir drugs. J. Nanomed. Nanotechnol., 2015, 6(1), 1-8.
[http://dx.doi.org/10.4172/2157-7439.1000254]
[160]
Ijaz, M.; Griessinger, J.A.; Mahmood, A.; Laffleur, F.; Bernkop-Schnürch, A. Thiolated cyclodextrin: development of a mucoadhesive vaginal delivery system for acyclovir. J. Pharm. Sci., 2016, 105(5), 1714-1720.
[http://dx.doi.org/10.1016/j.xphs.2016.03.009] [PMID: 27112405]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy