[1]
Deepanwita M, Samanta S. A review on the role of peroxisome prolifertor-activated receptor-γ agonists and hybrids in type 2 diabetes and cardiomyopathy. Asian J Pharm Clin Res 2015; 8: 974-2441.
[2]
Chandra V, Huang P, Hamuro Y, et al. Structure of the intact PPAR-γ–RXR-α nuclear receptor complex on DNA. Nature 2008; 456(7220): 350.
[3]
Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: Nutritional and clinical implications-a review. Nutr J 2014; 13(1): 17.
[4]
Thangavel N, Al Bratty M, Akhtar Javed S, Ahsan W, Alhazmi HA. Targeting peroxisome proliferator-activated receptors using thiazolidinediones: Strategy for design of novel antidiabetic drugs. Int J Med Chem 2017; 2017: 1069718.
[5]
Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem 2016; 12: 2694-718.
[6]
Sliwoski G, Kothiwale S, Meiler J, Lowe EW. Computational methods in drug discovery. Pharmacol Rev 2014; 66(1): 334-95.
[7]
Ai N, Krasowski MD, Welsh WJ, Ekins S. Understanding nuclear receptors using computational methods. Drug Discov Today 2009; 14(9): 486-94.
[8]
Montanari R, Saccoccia F, Scotti E, et al. Crystal structure of the peroxisome proliferator-activated receptor γ (PPARγ) ligand binding domain complexed with a novel partial agonist: A new region of the hydrophobic pocket could be exploited for drug design. J Med Chem 2008; 51(24): 7768-76.
[9]
Schwarz R, Tänzler D, Ihling CH, Müller MQ, Kölbel K, Sinz A. Monitoring conformational changes in peroxisome proliferator-activated receptor α by a genetically encoded photoamino acid, cross-linking, and mass spectrometry. J Med Chem 2013; 56(11): 4252-63.
[10]
Schwarz R, Tänzler D, Ihling CH, Sinz A. Monitoring solution structures of peroxisome proliferator-activated receptor β/δ upon ligand binding. PLoS One 2016; 11(3): e0151412.
[11]
Tsakovska I, Al Sharif M, Alov P, et al. Molecular modelling study of the PPARγ receptor in relation to the mode of action/adverse outcome pathway framework for liver steatosis. Int J Mol Sci 2014; 15(5): 7651-66.
[12]
Dixit VA, Bharatam PV. SAR and computer-aided drug design approaches in the discovery of peroxisome proliferator-activated receptor γ activators: a perspective. J Comput Med 2013; 2013: 406049.
[13]
de Groot JC, Weidner C, Krausze J, et al. Structural characterization of amorfrutins bound to the peroxisome proliferator-activated receptor γ. J Med Chem 2013; 56(4): 1535-43.
[14]
Guasch L, Sala E, Valls C, et al. Structural insights for the design of new PPARgamma partial agonists with high binding affinity and low transactivation activity. J Comput Aided Mol Des 2011; 25(8): 717-28.
[15]
Wang L, Waltenberger B, Pferschy-Wenzig E-M, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 2014; 92(1): 73-89.
[16]
Sharma V, Sarkar IN. Bioinformatics opportunities for identification and study of medicinal plants. Brief Bioinform 2012; 14(2): 238-50.
[17]
Medina-Franco JL. Advances in computational approaches for drug discovery based on natural products. Rev Latinoam Quím 2013; 41(2): 95-110.
[18]
Yap CW. PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comput Chem 2011; 32(7): 1466-74.
[19]
Guasch L, Sala E, Castell-Auví A, et al. Identification of PPARgamma partial agonists of natural origin (I): Development of a virtual screening procedure and in vitro validation. PLoS One 2012; 7(11): e50816.
[20]
Muralikumar S, Vetrivel U, Narayanasamy A, Das UN. Probing the intermolecular interactions of PPARγ-LBD with polyunsaturated fatty acids and their anti-inflammatory metabolites to infer most potential binding moieties. Lipids Health Dis 2017; 16(1): 17.
[21]
El-Houri RB, Mortier J, Murgueitio MS, Wolber G, Christensen LP. Identification of PPARγ agonists from natural sources using different in silico approaches. Planta Med 2015; 81(06): 488-94.
[22]
Yang S-Y. Pharmacophore modelling and applications in drug discovery: challenges and recent advances. Drug Discov Today 2010; 15(11): 444-50.
[23]
Agrawal R, Jain PN, Dikshit S. Ligand-based pharmacophore detection and screening of potential glitazones. Curr Enzym Inhib 2012; 8(1): 22-46.
[24]
Kaserer T, Obermoser V, Weninger A, Gust R, Schuster D. Evaluation of selected 3D virtual screening tools for the prospective identification of peroxisome proliferator-activated receptor (PPAR) γ partial agonists. Eur J Med Chem 2016; 124: 49-62.
[25]
Sohn Y-S, Park C, Lee Y, et al. Multi-conformation dynamic pharmacophore modelling of the peroxisome proliferator-activated receptor γ for the discovery of novel agonists. J Mol Graph Model 2013; 46: 1-9.
[26]
Lu I-L, Huang C-F, Peng Y-H, et al. Structure-based drug design of a novel family of PPARγ partial agonists: virtual screening, X-ray crystallography, and in vitro/in vivo biological activities. J Med Chem 2006; 49(9): 2703-12.
[27]
Chen K-C, Chang S-S, Huang H-J, Lin T-L, Wu Y-J, Chen CY-C. Three-in-one agonists for PPAR-α, PPAR-γ, and PPAR-δ from traditional Chinese medicine. J Biomol Struct Dyn 2012; 30(6): 662-83.
[28]
Wieder M, Perricone U, Boresch S, Seidel T, Langer T. Evaluating the stability of pharmacophore features using molecular dynamics simulations. Biochem Biophys Res Commun 2016; 470(3): 685-9.
[29]
Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH. Structure-based virtual screening for drug discovery: A problem-centric review. AAPS J 2012; 14(1): 133-41.
[30]
Ferreira LG, dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules 2015; 20(7): 13384-421.
[31]
Meng X-Y, Zhang H-X, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 2011; 7(2): 146-57.
[32]
Encinar JA, Fernández-Ballester G, Galiano-Ibarra V, Micol V. In silico approach for the discovery of new PPARγ modulators among plant-derived polyphenols. Drug Des Devel Ther 2015; 9: 5877.
[33]
Nazreen S, Alam MS, Hamid H, et al. Design, synthesis, in silico molecular docking and biological evaluation of novel oxadiazole based thiazolidine-2, 4-diones bis-heterocycles as PPAR-γ agonists. Eur J Med Chem 2014; 87: 175-85.
[34]
Nazreen S, Alam MS, Hamid H, et al. Thiazolidine-2, 4-diones derivatives as PPAR-γ agonists: Synthesis, molecular docking, in vitro and in vivo antidiabetic activity with hepatotoxicity risk evaluation and effect on PPAR-γ gene expression. Bioorg Med Chem Lett 2014; 24(14): 3034-42.
[35]
Priyadarsini R, Durga V, Ahmed S. Virtual screening, synthesis of newer heterocycles as PPAR -gamma agonists with antidiabetic activity. Int J Pharm Sci Res 2017; 8(2): 631.
[36]
Gaddipati R, Raikundalia GK, Mathai ML. Comparison of autodock and glide towards the discovery of PPAR agonists. Int J Biosci Biochem Bioinform 2014; 4(2): 100.
[37]
Nabuurs SB, Wagener M, De Vlieg J. A flexible approach to induced fit docking. J Med Chem 2007; 50(26): 6507-18.
[38]
Mannhold R, Kubinyi H, Folkers G. Virtual screening: principles, challenges, and practical guidelines. John Wiley & Sons 2011.
[39]
Muñoz-Gutierrez C, Adasme-Carreño F, Fuentes E, Palomo I, Caballero J. Computational study of the binding orientation and affinity of PPARγ agonists: Inclusion of ligand-induced fit by cross-docking. RSC Advances 2016; 6(69): 64756-68.
[40]
Bajorath J. Computational scaffold hopping: Cornerstone for the future of drug design? Future Med Chem 2017; 9(7): 629-31.
[41]
Ma Y, Wang S-Q, Xu W-R, Wang R-L, Chou K-C. Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach. PLoS One 2012; 7(6): e38546.
[42]
Wang X-J, Zhang J, Wang S-Q, Xu W-R, Cheng X-C, Wang R-L. Identification of novel multitargeted PPARα/γ/δ pan agonists by core hopping of rosiglitazone. Drug Des Devel Ther 2014; 8: 2255.
[43]
Dilly SJ, Morris GS. Pimping up drugs recovered, superannuated and under exploited drugs-an introduction to the basics of drug reprofiling. Curr Drug Discov Technol 2017; 14(2): 121-6.
[44]
Peragovics AG, Simon ZN, Tombor LS, et al. Virtual affinity fingerprints for target fishing: A new application of Drug Profile Matching. . J Chem Inf Model 2012; 53(1): 103-13.
[45]
Kovács D, Simon Z, Hári P, et al. Identification of PPARγ ligands with one-dimensional drug profile matching. Drug Des Devel Ther 2013; 7: 917.