[1]
Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; Isasi, C.R.; Jiménez, M.C.; Jordan, L.C.; Judd, S.E.; Lackland, D.; Lichtman, J.H.; Lisabeth, L.; Liu, S.; Longenecker, C.T.; Mackey, R.H.; Matsushita, K.; Mozaffarian, D.; Mussolino, M.E.; Nasir, K.; Neumar, R.W.; Palaniappan, L.; Pandey, D.K.; Thiagarajan, R.R.; Reeves, M.J.; Ritchey, M.; Rodriguez, C.J.; Roth, G.A.; Rosamond, W.D.; Sasson, C.; Towfighi, A.; Tsao, C.W.; Turner, M.B.; Virani, S.S.; Voeks, J.H.; Willey, J.Z.; Wilkins, J.T.; Wu, J.H.; Alger, H.M.; Wong, S.S.; Muntner, P. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation, 2017, 135(10), e146-e603.
[3]
Gaw, A.; Packard, C.J.; Shepherd, J. Statins: The HMG CoA reductase inhibitors in perspective; CRC Press, 2003.
[4]
Naoumova, R.P.; Marais, A.D.; Mountney, J.; Firth, J.C.; Rendell, N.B.; Taylor, G.W.; Thompson, G.R. Plasma mevalonic acid, an index of cholesterol synthesis in vivo, and responsiveness to HMG-CoA reductase inhibitors in familial hypercholesterolaemia. Atherosclerosis, 1996, 119(2), 203-213.
[5]
Miettinen, T.A.; Gylling, H. Ineffective decrease of serum cholesterol by simvastatin in a subgroup of hypercholesterolemic coronary patients. Atherosclerosis, 2002, 164(1), 147-152.
[6]
Roberts, W.C. The rule of 5 and the rule of 7 in lipid-lowering by statin drugs. Am. J. Cardiol., 1997, 80(1), 106-107.
[7]
Ooi, T.C.; Heinonen, T.; Alaupovic, P.; Davignon, J.; Leiter, L.; Lupien, P.J.; Sniderman, A.D.; Tan, M.H.; Tremblay, G.; Sorisky, A.; Shurzinske, L.; Black, D.M. Efficacy and safety of a new hydroxymethylglutaryl-coenzyme A reductase inhibitor, atorvastatin, in patients with combined hyperlipidemia: comparison with fenofibrate. Arterioscler. Thromb. Vasc. Biol., 1997, 17(9), 1793-1799.
[8]
Ginsberg, H.N. Effects of statins on triglyceride metabolism. Am. J. Cardiol., 1998, 81(4A), 32B-35B.
[9]
Jain, K.S.; Kathiravan, M.K.; Somani, R.S.; Shishoo, C.J. The biology and chemistry of hyperlipidemia. Bioorg. Med. Chem., 2007, 15(14), 4674-4699.
[10]
Rozman, D.; Monostory, K. Perspectives of the non-statin hypolipidemic agents. Pharmacol. Ther., 2010, 127(1), 19-40.
[11]
Costet, P. Molecular pathways and agents for lowering LDL-cholesterol in addition to statins. Pharmacol. Ther., 2010, 126(3), 263-278.
[12]
Brahmkshatriya, P.S.; Jani, M.H.; Chhabria, M.T. Recent developments in the treatment of atherosclerosis. J. Enzyme Inhib. Med. Chem., 2006, 21(1), 1-15.
[13]
Bergstrom, J.D.; Dufresne, C.; Bills, G.F.; Nallin-Omstead, M.; Byrne, K. Discovery, biosynthesis, and mechanism of action of the zaragozic acids: Potent inhibitors of squalene synthase. Annu. Rev. Microbiol., 1995, 49(1), 607-639.
[14]
Amin, D.; Rutledge, R.Z.; Needle, S.J.; Hele, D.J.; Neuenswander, K.; Bush, R.C.; Bilder, G.E.; Perrone, M.H. RPR 101821, a new potent cholesterol-lowering agent: Inhibition of squalene synthase and 7-dehydrocholesterol reductase. Naunyn Schmiedebergs Arch. Pharmacol., 1996, 353(2), 233-240.
[15]
Amin, D.; Rutledge, R.Z.; Needle, S.N.; Galczenski, H.F.; Neuenschwander, K.; Scotese, A.C.; Maguire, M.P.; Bush, R.C.; Hele, D.J.; Bilder, G.E.; Perrone, M.H. RPR 107393, a potent squalene synthase inhibitor and orally effective cholesterol-lowering agent: Comparison with inhibitors of HMG-CoA reductase. J. Pharmacol. Exp. Ther., 1997, 281(2), 746-752.
[16]
Dickson, J.K., Jr; Biller, S.A.; Magnin, D.R.; Petrillo, E.W., Jr; Hillyer, J.W.; Hsieh, D.C.; Lan, S-J.; Rinehart, J.K.; Gregg, R.E.; Harrity, T.W.; Jolibois, K.G.; Kalinowski, S.S.; Kunselman, L.K.; Mookhtiar, K.A.; Ciosek, C.P., Jr Orally active squalene synthase inhibitors: Bis((acyloxy)alkyl) prodrugs of the α-phosphonosulfonic acid moiety. J. Med. Chem., 1996, 39(3), 661-664.
[17]
Amin, D.; Rutledge, R.Z.; Needle, S.N.; Galczenski, H.F.; Neuenschwander, K.; Scotese, A.C.; Maguire, M.P.; Bush, R.C.; Hele, D.J.; Bilder, G.E.; Perrone, M.H. RPR 107393, a potent squalene synthase inhibitor and orally effective cholesterol-lowering agent: Comparison with inhibitors of HMG-CoA reductase. J. Pharmacol. Exp. Ther., 1997, 281(2), 746-752.
[18]
Hiyoshi, H.; Yanagimachi, M.; Ito, M.; Yasuda, N.; Okada, T.; Ikuta, H.; Shinmyo, D.; Tanaka, K.; Kurusu, N.; Yoshida, I.; Abe, S.; Saeki, T.; Tanaka, H. Squalene synthase inhibitors suppress triglyceride biosynthesis through the farnesol pathway in rat hepatocytes. J. Lipid Res., 2003, 44(1), 128-135.
[19]
Ugawa, T.; Kakuta, H.; Moritani, H.; Matsuda, K.; Ishihara, T.; Yamaguchi, M.; Naganuma, S.; Iizumi, Y.; Shikama, H. YM-53601, a novel squalene synthase inhibitor, reduces plasma cholesterol and triglyceride levels in several animal species. Br. J. Pharmacol., 2000, 131(1), 63-70.
[20]
Burnett, J.R. Drug evaluation: TAK-475--an oral inhibitor of squalene synthase for hyperlipidemia. Curr. Opin. Investig. Drugs, 2006, 7(9), 850-856.
[21]
Liao, J.K. Squalene synthase inhibitor lapaquistat acetate: Could anything be better than statins? Circulation, 2011, 123(18), 1925-1928.
[22]
Chhabria, M.T.; Brahmkshatriya, P.S.; Mahajan, B.M.; Darji, U.B.; Shah, G.B. Discovery of novel acyl coenzyme a: Cholesterol acyltransferase inhibitors: pharmacophore-based virtual screening, synthesis and pharmacology. Chem. Biol. Drug Des., 2012, 80(1), 106-113.
[23]
Brogi, S.; Kladi, M.; Vagias, C.; Papazafiri, P.; Roussis, V.; Tafi, A. Pharmacophore modeling for qualitative prediction of antiestrogenic activity. J. Chem. Inf. Model., 2009, 49(11), 2489-2497.
[24]
Li, H.; Sutter, J.; Hoffmann, R. Hypo Gen: An Automated System
for Generating Predictive 3D Pharmacophore Models. In: Pharmacophore
perception, development, and use in drug design; Internat'l
University Line,, 2000, 2, pp. pp. 171-178.
[25]
Kurogi, Y.; Güner, O.F. Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr. Med. Chem., 2001, 8(9), 1035-1055.
[26]
Ichikawa, M.; Yokomizo, A.; Itoh, M.; Usui, H.; Shimizu, H.; Suzuki, M.; Terayama, K.; Kanda, A.; Sugita, K. Discovery of a new 2-aminobenzhydrol template for highly potent squalene synthase inhibitors. Bioorg. Med. Chem., 2011, 19(6), 1930-1949.
[27]
Ichikawa, M.; Yokomizo, A.; Itoh, M.; Haginoya, N.; Sugita, K.; Usui, H.; Terayama, K.; Kanda, A. Discovery of atrop fixed alkoxy-aminobenzhydrol derivatives: novel, highly potent and orally efficacious squalene synthase inhibitors. Bioorg. Med. Chem., 2011, 19(17), 5207-5224.
[28]
Kourounakis, A.P.; Matralis, A.N.; Nikitakis, A. Design of more potent squalene synthase inhibitors with multiple activities. Bioorg. Med. Chem., 2010, 18(21), 7402-7412.
[29]
Ichikawa, M.; Ohtsuka, M.; Ohki, H.; Haginoya, N.; Itoh, M.; Sugita, K.; Usui, H.; Suzuki, M.; Terayama, K.; Kanda, A. Discovery of novel tricyclic compounds as squalene synthase inhibitors. Bioorg. Med. Chem., 2012, 20(9), 3072-3093.
[30]
Miki, T.; Kori, M.; Mabuchi, H.; Tozawa, R.; Nishimoto, T.; Sugiyama, Y.; Teshima, K.; Yukimasa, H. Synthesis of novel 4,1-benzoxazepine derivatives as squalene synthase inhibitors and their inhibition of cholesterol synthesis. J. Med. Chem., 2002, 45(20), 4571-4580.
[31]
Ishihara, T.; Kakuta, H.; Moritani, H.; Ugawa, T.; Yanagisawa, I. Synthesis and biological evaluation of novel propylamine derivatives as orally active squalene synthase inhibitors. Bioorg. Med. Chem., 2004, 12(22), 5899-5908.
[32]
Ishihara, T.; Kakuta, H.; Moritani, H.; Ugawa, T.; Sakamoto, S.; Tsukamoto, S.; Yanagisawa, I. Syntheses and biological evaluation of novel quinuclidine derivatives as squalene synthase inhibitors. Bioorg. Med. Chem., 2003, 11(11), 2403-2414.
[33]
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods, 1986, 89(2), 271-277.
[34]
Borenfreund, E.; Puerner, J.A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett., 1985, 24(2-3), 119-124.
[35]
Argyropoulou, I.; Geronikaki, A.; Vicini, P.; Zani, F. Synthesis and biological evaluation of sulfonamide thiazole and benzothiazole derivatives as antimicrobial agents. ARKIVOC, 2009, 6, 89-102.
[36]
Mirian, M.; Zarghi, A.; Sadeghi, S.; Tabaraki, P.; Tavallaee, M.; Dadrass, O.; Sadeghi-Aliabadi, H. Synthesis and cytotoxic evaluation of some novel sulfonamidederivativesagainst a few human cancer cells. Iran. J. Pharm. Res., 2011, 10(4), 741-748.
[37]
Krátký, M.; Vinšová, J.; Volková, M.; Buchta, V.; Trejtnar, F.; Stolaříková, J. Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. Eur. J. Med. Chem., 2012, 50, 433-440.