Review Article

有机荧光染料基纳米材料:成像和传感应用的合理设计方面的进展

卷 26, 期 21, 2019

页: [4042 - 4064] 页: 23

弟呕挨: 10.2174/0929867325666180226111716

价格: $65

摘要

在过去的十年中,基于小分子有机染料的自组装荧光纳米材料在成像和传感应用中越来越受欢迎。这主要是由于它们具有将小分子有机荧光团的光谱特性可调性和生物相容性与无机材料的亮度,化学和胶体稳定性相结合的能力。这种独特的功能组合带来了染料基纳米材料的丰富多功能性:从小分子的聚集体到涉及超支化聚合物的复杂核壳纳米体系结构。随着对新材料及其合成方法的不断发现,继续系统研究调节荧光纳米材料关键特性的基本因素非常重要:它们的尺寸,多分散性,胶体稳定性,化学稳定性,吸收和发射最大值,生物相容性以及与生物界面的相互作用。在这篇综述中,我们集中于各种有机荧光纳米材料的系统描述,其合成方法以及优化和控制其特性的方法。讨论建立在有关此类材料的设计和应用的最新进展的报告中的示例上。通过该分析得出的结论为生物医学及相关应用的荧光纳米材料设计的未来发展提供了前景。

关键词: 有机荧光团,分子设计,结构-性质关系,纳米材料合成,胶体稳定性,光谱性质,超分子组装,聚合物聚集体。

[1]
Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev., 2015, 115(21), 11718-11940.
[http://dx.doi.org/10.1021/acs.chemrev.5b00263] [PMID: 26492387]
[2]
Klymchenko, A.S. Emerging Field of Self-Assembled Fluorescent Organic Dye Nanoparticles. J. Nanosci. Lett., 2013, 3(21), 1-8.
[3]
Demchenko, A.P. Nanoparticles and nanocomposites for fluorescence sensing and imaging. Methods Appl. Fluoresc., 2013, 1(2)022001
[http://dx.doi.org/10.1088/2050-6120/1/2/022001] [PMID: 29148443]
[4]
Liu, M.; Gao, P.; Wan, Q.; Deng, F.; Wei, Y.; Zhang, X. Recent Advances and Future Prospects of Aggregation-induced Emission Carbohydrate Polymers. Macromol. Rapid Commun., 2017, 38(10)1600575
[http://dx.doi.org/10.1002/marc.201600575] [PMID: 28266096]
[5]
Elsabahy, M.; Heo, G.S.; Lim, S-M.; Sun, G.; Wooley, K.L. Polymeric Nanostructures for Imaging and Therapy. Chem. Rev., 2015, 115(19), 10967-11011.
[http://dx.doi.org/10.1021/acs.chemrev.5b00135] [PMID: 26463640]
[6]
Reisch, A.; Klymchenko, A.S. Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging. Small, 2016, 12(15), 1968-1992.
[http://dx.doi.org/10.1002/smll.201503396] [PMID: 26901678]
[7]
Hill, T.K.; Mohs, A.M. Image-guided tumor surgery: will there be a role for fluorescent nanoparticles? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(4), 498-511.
[http://dx.doi.org/10.1002/wnan.1381] [PMID: 26585556]
[8]
Chinen, A.B.; Guan, C.M.; Ferrer, J.R.; Barnaby, S.N.; Merkel, T.J.; Mirkin, C.A. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chem. Rev., 2015, 115(19), 10530-10574.
[http://dx.doi.org/10.1021/acs.chemrev.5b00321] [PMID: 26313138]
[9]
Würthner, F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun. (Camb.), 2004, (14), 1564-1579.
[http://dx.doi.org/10.1039/B401630K] [PMID: 15263926]
[10]
Würthner, F.; Saha-Möller, C.R.; Fimmel, B.; Ogi, S.; Leowanawat, P.; Schmidt, D. Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chem. Rev., 2016, 116(3), 962-1052.
[http://dx.doi.org/10.1021/acs.chemrev.5b00188] [PMID: 26270260]
[11]
Panthi, K.; Adhikari, R.M.; Kinstle, T.H. Visible and near IR Emitting Organic Nanoparticles of Aromatic Fumaronitrile Core-Based Donor-acceptor Compounds. J. Photochem. Photobiol. Chem., 2010, 215, 179-184.
[http://dx.doi.org/10.1016/j.jphotochem.2010.08.014]
[12]
Palayangoda, S.S.; Cai, X.; Adhikari, R.M.; Neckers, D.C. Carbazole-based donor-acceptor compounds: highly fluorescent organic nanoparticles. Org. Lett., 2008, 10(2), 281-284.
[http://dx.doi.org/10.1021/ol702666g] [PMID: 18092792]
[13]
Ishi-i, T.; Kitahara, I.; Yamada, S.; Sanada, Y.; Sakurai, K.; Tanaka, A.; Hasebe, N.; Yoshihara, T.; Tobita, S. Amphiphilic benzothiadiazole-triphenylamine-based aggregates that emit red light in water. Org. Biomol. Chem., 2015, 13(6), 1818-1828.
[http://dx.doi.org/10.1039/C4OB02181A] [PMID: 25502800]
[14]
Parthasarathy, V.; Fery-Forgues, S.; Campioli, E.; Recher, G.; Terenziani, F.; Blanchard-Desce, M. Dipolar versus octupolar triphenylamine-based fluorescent organic nanoparticles as brilliant one- and two-photon emitters for (bio)imaging. Small, 2011, 7(22), 3219-3229.
[http://dx.doi.org/10.1002/smll.201100726] [PMID: 21972222]
[15]
Zhao, Z.; Lam, J.W.Y.; Tang, B.Z. Tetraphenylethene: A Versatile AIE Building Block for the Construction of Efficient Luminescent Materials for Organic Light-Emitting Diodes. J. Mater. Chem., 2012, 22, 23726.
[http://dx.doi.org/10.1039/c2jm31949g]
[16]
Ooyama, Y.; Sugino, M. EnoKi, T.; Yamamoto, K.; Tsunoji, N.; Ohshita, J. Aggregation-Induced Emission (AIE) Characteristic of Water-Soluble Tetraphenylethene (TPE). Bearing Four Sulfonate Salts. New J. Chem., 2017, 41, 4747-4749.
[17]
Miladi, K.; Sfar, S.; Fessi, H.; Elaissari, A. Nanoprecipitation Process: From Particle Preparation to In Vivo Applications.Polymer Nanoparticles for Nanomedicines; Vauthier, C; Ponchel, G., Ed.; Springer International Publishing: Cham, 2016, pp. 17-53.
[http://dx.doi.org/10.1007/978-3-319-41421-8_2]
[18]
Noroozi, M.; Radiman, S.; Zakaria, A. Influence of Sonication on the Stability and Thermal Properties of Al 2 O 3 Nanofluids. J. Nanomater., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/612417]
[19]
Pradhan, S.; Hedberg, J.; Blomberg, E.; Wold, S.; Odnevall Wallinder, I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res., 2016, 18(9), 285.
[http://dx.doi.org/10.1007/s11051-016-3597-5] [PMID: 27774036]
[20]
Tang, F.; Wang, C.; Wang, J.; Wang, X.; Li, L. Fluorescent organic nanoparticles with enhanced fluorescence by self-aggregation and their application to cellular imaging. ACS Appl. Mater. Interfaces, 2014, 6(20), 18337-18343.
[http://dx.doi.org/10.1021/am505776a] [PMID: 25275214]
[21]
Barman, S.; Mukhopadhyay, S.K.; Behara, K.K.; Dey, S.; Singh, N.D.P. 1-Acetylpyrene-salicylic acid: photoresponsive fluorescent organic nanoparticles for the regulated release of a natural antimicrobial compound, salicylic acid. ACS Appl. Mater. Interfaces, 2014, 6(10), 7045-7054.
[http://dx.doi.org/10.1021/am500965n] [PMID: 24800888]
[22]
Su, S-Y.; Lin, H-H.; Chang, C-C. Dual Optical Responses of Phenothiazine Derivatives: Near-IR Chromophore and Water-Soluble Fluorescent Organic Nanoparticles. J. Mater. Chem., 2010, 20, 8653.
[http://dx.doi.org/10.1039/c0jm01303j]
[23]
Hong, G.; Antaris, A.L.; Dai, H. Near-Infrared Fluorophores for Biomedical Imaging. Nat. Biomed. Eng., 2017, 1, 10.
[http://dx.doi.org/10.1038/s41551-016-0010]
[24]
Zhang, J.; Chen, R.; Zhu, Z.; Adachi, C.; Zhang, X.; Lee, C-S. Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging. ACS Appl. Mater. Interfaces, 2015, 7(47), 26266-26274.
[http://dx.doi.org/10.1021/acsami.5b08539] [PMID: 26558487]
[25]
Denk, W. Two-photon excitation in functional biological imaging. J. Biomed. Opt., 1996, 1(3), 296-304.
[http://dx.doi.org/10.1117/12.242945] [PMID: 23014729]
[26]
Amro, K.; Daniel, J.; Clermont, G.; Bsaibess, T.; Pucheault, M.; Genin, E.; Vaultier, M.; Blanchard-Desce, M. A New Route towards Fluorescent Organic Nanoparticles with Red-Shifted Emission and Increased Colloidal Stability. Tetrahedron, 2014, 70, 1903-1909.
[http://dx.doi.org/10.1016/j.tet.2014.01.032]
[27]
D’Aléo, A.; Felouat, A.; Heresanu, V.; Ranguis, A.; Chaudanson, D.; Karapetyan, A.; Giorgi, M.; Fages, F. Two-Photon Excited Fluorescence of BF 2 Complexes of Curcumin Analogues: Toward NIR-to-NIR Fluorescent Organic Nanoparticles. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2, 5208-5215.
[http://dx.doi.org/10.1039/C4TC00543K]
[28]
Zhang, W.; Ren, Y-Y.; Zhang, L-N.; Fan, X.; Fan, H.; Wu, Y.; Zhang, Y.; Kuang, G-C. Borondifluoride β-Diketonate Complex as Fluorescent Organic Nanoparticles: Aggregation-Induced Emission for Cellular Imaging. RSC Advances, 2016, 6, 101937-101940.
[http://dx.doi.org/10.1039/C6RA23719C]
[29]
Shulov, I.; Arntz, Y.; Mély, Y.; Pivovarenko, V.G.; Klymchenko, A.S. Non-coordinating anions assemble cyanine amphiphiles into ultra-small fluorescent nanoparticles. Chem. Commun. (Camb.), 2016, 52(51), 7962-7965.
[http://dx.doi.org/10.1039/C6CC03716J] [PMID: 27251475]
[30]
Das, S.; Debnath, T.; Basu, A.; Ghosh, D.; Das, A.K.; Baker, G.A.; Patra, A. Efficient White-Light Generation from Ionically Self-Assembled Triply-Fluorescent Organic Nanoparticles. Chemistry, 2016, 22(26), 8855-8863.
[http://dx.doi.org/10.1002/chem.201502339] [PMID: 27219524]
[31]
Bwambok, D.K.; El-Zahab, B.; Challa, S.K.; Li, M.; Chandler, L.; Baker, G.A.; Warner, I.M. Near-infrared fluorescent nanoGUMBOS for biomedical imaging. ACS Nano, 2009, 3(12), 3854-3860.
[http://dx.doi.org/10.1021/nn9010126] [PMID: 19928781]
[32]
Petkau, K.; Kaeser, A.; Fischer, I.; Brunsveld, L.; Schenning, A.P.H.J. Pre- and postfunctionalized self-assembled π-conjugated fluorescent organic nanoparticles for dual targeting. J. Am. Chem. Soc., 2011, 133(42), 17063-17071.
[http://dx.doi.org/10.1021/ja2075345] [PMID: 21913650]
[33]
Zhang, X.; Zhang, X.; Yang, B.; Zhang, Y.; Wei, Y. A new class of red fluorescent organic nanoparticles: noncovalent fabrication and cell imaging applications. ACS Appl. Mater. Interfaces, 2014, 6(5), 3600-3606.
[http://dx.doi.org/10.1021/am4058309] [PMID: 24555855]
[34]
Zhang, X.; Zhang, X.; Yang, B.; Zhang, Y.; Wei, Y. Facile Preparation of Water Dispersible Red Fluorescent Organic Nanoparticles and Their Cell Imaging Applications. Tetrahedron, 2014, 70, 3553-3559.
[http://dx.doi.org/10.1016/j.tet.2014.04.010]
[35]
Luo, M. Facile Preparation of Water Dispersible Red Fluorescent Organic Nanoparticles for Cell Imaging. Bull. Korean Chem. Soc., 2014, 35, 1732-1736.
[http://dx.doi.org/10.5012/bkcs.2014.35.6.1732]
[36]
Wang, Z.; Yong, T-Y.; Wan, J.; Li, Z-H.; Zhao, H.; Zhao, Y.; Gan, L.; Yang, X-L.; Xu, H-B.; Zhang, C. Temperature-sensitive fluorescent organic nanoparticles with aggregation-induced emission for long-term cellular tracing. ACS Appl. Mater. Interfaces, 2015, 7(5), 3420-3425.
[http://dx.doi.org/10.1021/am509161y] [PMID: 25602511]
[37]
Long, Z.; Liu, M.; Jiang, R.; Wan, Q.; Mao, L.; Wan, Y.; Deng, F.; Zhang, X.; Wei, Y. Preparation of Water Soluble and Biocompatible AIE-Active Fluorescent Organic Nanoparticles via Multicomponent Reaction and Their Biological Imaging Capability. Chem. Eng. J., 2017, 308, 527-534.
[http://dx.doi.org/10.1016/j.cej.2016.09.053]
[38]
Long, Z.; Liu, M.; Mao, L.; Zeng, G.; Wan, Q.; Xu, D.; Deng, F.; Huang, H.; Zhang, X.; Wei, Y. Rapid preparation of branched and degradable AIE-active fluorescent organic nanoparticles via formation of dynamic phenyl borate bond. Colloids Surf. B Biointerfaces, 2017, 150, 114-120.
[http://dx.doi.org/10.1016/j.colsurfb.2016.11.018] [PMID: 27907858]
[39]
Lv, Q.; Wang, K.; Xu, D.; Liu, M.; Wan, Q.; Huang, H.; Liang, S.; Zhang, X.; Wei, Y. Synthesis of Amphiphilic Hyperbranched AIE-active Fluorescent Organic Nanoparticles and Their Application in Biological Application. Macromol. Biosci., 2016, 16(2), 223-230.
[http://dx.doi.org/10.1002/mabi.201500256] [PMID: 26376342]
[40]
Long, Z.; Liu, M.; Jiang, R.; Zeng, G.; Wan, Q.; Huang, H.; Deng, F.; Wan, Y.; Zhang, X.; Wei, Y. Ultrasonic-assisted Kabachnik-Fields reaction for rapid fabrication of AIEactive fluorescent organic nanoparticles. Ultrason. Sonochem., 2017, 35(Pt A), 319-325.
[http://dx.doi.org/10.1016/j.ultsonch.2016.10.008] [PMID: 27773771]
[41]
Moholkar, V.S.; Choudhury, H.A.; Singh, S.; Khanna, S.; Ranjan, A.; Chakma, S.; Bhasarkar, J. Physical and Chemical Mechanisms of Ultrasound in Biofuel SynthesisProduction of Biofuels and Chemicals with Ultrasound; Fang, Z.; Smith, R.L; Qi, X., Eds.; Springer International Publishing, 2015, pp. 35-86.
[http://dx.doi.org/10.1007/978-94-017-9624-8_2]
[42]
Cella, R.; Stefani, H.A. Ultrasonic Reactions.Green Techniques for Organic Synthesis and Medicinal Chemistry; John Wiley & Sons, Ltd: Chichester, UK, 2012, pp. 343-361.
[http://dx.doi.org/10.1002/9780470711828.ch13]
[43]
Liu, M.; Zhang, X.; Yang, B.; Liu, L.; Deng, F.; Zhang, X.; Wei, Y. Polylysine crosslinked AIE dye based fluorescent organic nanoparticles for biological imaging applications. Macromol. Biosci., 2014, 14(9), 1260-1267.
[http://dx.doi.org/10.1002/mabi.201400140] [PMID: 24854875]
[44]
Zhang, X.; Zhang, X.; Yang, B.; Liu, L.; Deng, F.; Hui, J.; Liu, M.; Chen, Y.; Wei, Y. Glycosylated Aggregation Induced Emission Dye Based Fluorescent Organic Nanoparticles: Preparation and Bioimaging Applications. RSC Advances, 2014, 4, 24189.
[http://dx.doi.org/10.1039/c4ra01176g]
[45]
Pelaz, B.; del Pino, P.; Maffre, P.; Hartmann, R.; Gallego, M.; Rivera-Fernández, S.; de la Fuente, J.M.; Nienhaus, G.U.; Parak, W.J. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake. ACS Nano, 2015, 9(7), 6996-7008.
[http://dx.doi.org/10.1021/acsnano.5b01326] [PMID: 26079146]
[46]
Uthaman, S.; Lee, S.J.; Cherukula, K.; Cho, C-S.; Park, I-K. Polysaccharide-Coated Magnetic Nanoparticles for Imaging and Gene Therapy. BioMed Res. Int., 2015.2015959175
[http://dx.doi.org/10.1155/2015/959175] [PMID: 26078971]
[47]
Hill, T.K.; Abdulahad, A.; Kelkar, S.S.; Marini, F.C.; Long, T.E.; Provenzale, J.M.; Mohs, A.M. Indocyanine green-loaded nanoparticles for image-guided tumor surgery. Bioconjug. Chem., 2015, 26(2), 294-303.
[http://dx.doi.org/10.1021/bc5005679] [PMID: 25565445]
[48]
Hill, T.K.; Kelkar, S.S.; Wojtynek, N.E.; Souchek, J.J.; Payne, W.M.; Stumpf, K.; Marini, F.C.; Mohs, A.M. Near Infrared Fluorescent Nanoparticles Derived from Hyaluronic Acid Improve Tumor Contrast for Image-Guided Surgery. Theranostics, 2016, 6(13), 2314-2328.
[http://dx.doi.org/10.7150/thno.16514] [PMID: 27877237]
[49]
Kelkar, S.S.; Hill, T.K.; Marini, F.C.; Mohs, A.M. Near infrared fluorescent nanoparticles based on hyaluronic acid: Self-assembly, optical properties, and cell interaction. Acta Biomater., 2016, 36, 112-121.
[http://dx.doi.org/10.1016/j.actbio.2016.03.024] [PMID: 26995504]
[50]
Payne, W.M.; Hill, T.K.; Svechkarev, D.; Holmes, M.B.; Sajja, B.R.; Mohs, A.M. Multimodal Imaging Nanoparticles Derived from Hyaluronic Acid for Integrated Preoperative and Intraoperative Cancer Imaging. Contrast Media Mol. Imaging, 2017, •••20179616791
[http://dx.doi.org/10.1155/2017/9616791] [PMID: 29097944]
[51]
Tao, Z.; Hong, G.; Shinji, C.; Chen, C.; Diao, S.; Antaris, A.L.; Zhang, B.; Zou, Y.; Dai, H. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew. Chem. Int. Ed. Engl., 2013, 52(49), 13002-13006.
[http://dx.doi.org/10.1002/anie.201307346] [PMID: 24174264]
[52]
Dang, X.; Gu, L.; Qi, J.; Correa, S.; Zhang, G.; Belcher, A.M.; Hammond, P.T. Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer. Proc. Natl. Acad. Sci. USA, 2016, 113(19), 5179-5184.
[http://dx.doi.org/10.1073/pnas.1521175113] [PMID: 27114520]
[53]
Wu, I-C.; Yu, J.; Ye, F.; Rong, Y.; Gallina, M.E.; Fujimoto, B.S.; Zhang, Y.; Chan, Y-H.; Sun, W.; Zhou, X-H.; Wu, C.; Chiu, D.T. Squaraine-based polymer dots with narrow, bright near-infrared fluorescence for biological applications. J. Am. Chem. Soc., 2015, 137(1), 173-178.
[http://dx.doi.org/10.1021/ja5123045] [PMID: 25494172]
[54]
Hong, G.; Zou, Y.; Antaris, A.L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X.; Chen, C.; Liu, B.; He, Y.; Wu, J.Z.; Yuan, J.; Zhang, B.; Tao, Z.; Fukunaga, C.; Dai, H. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun., 2014, 5, 4206.
[http://dx.doi.org/10.1038/ncomms5206] [PMID: 24947309]
[55]
Liu, M.; Zhang, X.; Yang, B.; Li, Z.; Deng, F.; Yang, Y.; Zhang, X.; Wei, Y. Fluorescent nanoparticles from starch: facile preparation, tunable luminescence and bioimaging. Carbohydr. Polym., 2015, 121, 49-55.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.047] [PMID: 25659670]
[56]
Ma, C.; Zhang, X.; Yang, L.; Wu, Y.; Liu, H.; Zhang, X.; Wei, Y. Preparation of fluorescent organic nanoparticles from polyethylenimine and sucrose for cell imaging. Mater. Sci. Eng. C, 2016, 68, 37-42.
[http://dx.doi.org/10.1016/j.msec.2016.05.100] [PMID: 27523993]
[57]
Shi, Y.; Jiang, R.; Liu, M.; Fu, L.; Zeng, G.; Wan, Q.; Mao, L.; Deng, F.; Zhang, X.; Wei, Y. Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging. Mater. Sci. Eng. C, 2017, 77, 972-977.
[http://dx.doi.org/10.1016/j.msec.2017.04.033] [PMID: 28532118]
[58]
Wu, S-Y.; Debele, T.A.; Kao, Y-C.; Tsai, H-C. Synthesis and Characterization of Dual-Sensitive Fluorescent Nanogels for Enhancing Drug Delivery and Tracking Intracellular Drug Delivery. Int. J. Mol. Sci., 2017, 18(5), 1090.
[http://dx.doi.org/10.3390/ijms18051090] [PMID: 28534813]
[59]
Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J.R.; Geddes, C.D. Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr. Opin. Biotechnol., 2005, 16(1), 55-62.
[http://dx.doi.org/10.1016/j.copbio.2005.01.001] [PMID: 15722016]
[60]
Bharti, C.; Nagaich, U.; Pal, A.K.; Gulati, N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig., 2015, 5(3), 124-133.
[http://dx.doi.org/10.4103/2230-973X.160844] [PMID: 26258053]
[61]
Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T.; Wang, S. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine (Lond.), 2015, 11(2), 313-327.
[http://dx.doi.org/10.1016/j.nano.2014.09.014] [PMID: 25461284]
[62]
Sun, L.; Liu, T.; Li, H.; Yang, L.; Meng, L.; Lu, Q.; Long, J. Fluorescent and cross-linked organic-inorganic hybrid nanoshells for monitoring drug delivery. ACS Appl. Mater. Interfaces, 2015, 7(8), 4990-4997.
[http://dx.doi.org/10.1021/acsami.5b00175] [PMID: 25651861]
[63]
Oltolina, F.; Gregoletto, L.; Colangelo, D.; Gómez-Morales, J.; Delgado-López, J.M.; Prat, M. Monoclonal antibody-targeted fluorescein-5-isothiocyanate-labeled biomimetic nanoapatites: a promising fluorescent probe for imaging applications. Langmuir, 2015, 31(5), 1766-1775.
[http://dx.doi.org/10.1021/la503747s] [PMID: 25602940]
[64]
Chen, M.; Yin, M. Design and Development of Fluorescent Nanostructures for Bioimaging. Prog. Polym. Sci., 2014, 39, 365-395.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.11.001]
[65]
Smith, B.R.; Gambhir, S.S. Nanomaterials for In Vivo Imaging. Chem. Rev., 2017, 117(3), 901-986.
[http://dx.doi.org/10.1021/acs.chemrev.6b00073] [PMID: 28045253]
[66]
Linot, C.; Poly, J.; Boucard, J.; Pouliquen, D.; Nedellec, S.; Hulin, P.; Marec, N.; Arosio, P.; Lascialfari, A.; Guerrini, A.; Sangregorio, C.; Lecouvey, M.; Lartigue, L.; Blanquart, C.; Ishow, E. PEGylated Anionic Magnetofluorescent Nanoassemblies: Impact of Their Interface Structure on Magnetic Resonance Imaging Contrast and Cellular Uptake. ACS Appl. Mater. Interfaces, 2017, 9(16), 14242-14257.
[http://dx.doi.org/10.1021/acsami.7b01737] [PMID: 28379690]
[67]
Faucon, A.; Benhelli-Mokrani, H.; Fleury, F.; Dubreil, L.; Hulin, P.; Nedellec, S.; Doussineau, T.; Antoine, R.; Orlando, T.; Lascialfari, A.; Fresnais, J.; Lartigue, L.; Ishow, E. Tuning the architectural integrity of high-performance magneto-fluorescent core-shell nanoassemblies in cancer cells. J. Colloid Interface Sci., 2016, 479, 139-149.
[http://dx.doi.org/10.1016/j.jcis.2016.06.064] [PMID: 27388127]
[68]
Reddy, E.R.; Banote, R.K.; Chatti, K.; Kulkarni, P.; Rajadurai, M.S. Selective multicolour imaging of zebrafish muscle fibres by using fluorescent organic nanoparticles. ChemBioChem, 2012, 13(13), 1889-1894.
[http://dx.doi.org/10.1002/cbic.201200350] [PMID: 22887835]
[69]
Jana, A.; Saha, B.; Banerjee, D.R.; Ghosh, S.K.; Nguyen, K.T.; Ma, X.; Qu, Q.; Zhao, Y.; Singh, N.D.P. Photocontrolled nuclear-targeted drug delivery by single component photoresponsive fluorescent organic nanoparticles of acridin-9-methanol. Bioconjug. Chem., 2013, 24(11), 1828-1839.
[http://dx.doi.org/10.1021/bc400170r] [PMID: 24195782]
[70]
Pramanik, M.; Chatterjee, N.; Das, S.; Saha, K.D.; Bhaumik, A. Anthracene-bisphosphonate based novel fluorescent organic nanoparticles explored as apoptosis inducers of cancer cells. Chem. Commun. (Camb.), 2013, 49(82), 9461-9463.
[http://dx.doi.org/10.1039/c3cc44989k] [PMID: 24013492]
[71]
Yang, Y.; Wang, X.; Cui, Q.; Cao, Q.; Li, L. Self-Assembly of Fluorescent Organic Nanoparticles for Iron(III) Sensing and Cellular Imaging. ACS Appl. Mater. Interfaces, 2016, 8(11), 7440-7448.
[http://dx.doi.org/10.1021/acsami.6b00065] [PMID: 26950776]
[72]
Huerta-Aguilar, C.A.; Raj, P.; Thangarasu, P.; Singh, N. Fluorescent Organic Nanoparticles (FONs) for Selective Recognition of Al 3+ : Application to Bio-Imaging for Bacterial Sample. RSC Advances, 2016, 6, 37944-37952.
[http://dx.doi.org/10.1039/C6RA01231K]
[73]
Huerta-Aguilar, C.A.; Pandiyan, T.; Raj, P.; Singh, N.; Zanella, R. Fluorescent Organic Nanoparticles (FONs) for the Selective Recognition of Zn 2+ : Applications to Multi-Vitamin Formulations in Aqueous Medium. Sens. Actuators B Chem., 2016, 223, 59-67.
[http://dx.doi.org/10.1016/j.snb.2015.09.064]
[74]
Kaur, A.; Raj, T.; Kaur, S.; Singh, N.; Kaur, N. Fluorescent organic nanoparticles of dihydropyrimidone derivatives for selective recognition of iodide using a displacement assay: application of the sensors in water and biological fluids. Org. Biomol. Chem., 2015, 13(4), 1204-1212.
[http://dx.doi.org/10.1039/C4OB02152E] [PMID: 25428514]
[75]
You, C-C.; Miranda, O.R.; Gider, B.; Ghosh, P.S.; Kim, I-B.; Erdogan, B.; Krovi, S.A.; Bunz, U.H.F.; Rotello, V.M. Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’ sensors. Nat. Nanotechnol., 2007, 2(5), 318-323.
[http://dx.doi.org/10.1038/nnano.2007.99] [PMID: 18654291]
[76]
Faucon, A.; Benhelli-Mokrani, H.; Córdova, L.A.; Brulin, B.; Heymann, D.; Hulin, P.; Nedellec, S.; Ishow, E. Are Fluorescent Organic Nanoparticles Relevant Tools for Tracking Cancer Cells or Macrophages? Adv. Healthc. Mater., 2015, 4(17), 2727-2734.
[http://dx.doi.org/10.1002/adhm.201500562] [PMID: 26548458]
[77]
Breton, M.; Prével, G.; Audibert, J-F.; Pansu, R.; Tauc, P.; Le Pioufle, B.; Français, O.; Fresnais, J.; Berret, J-F.; Ishow, E. Solvatochromic dissociation of non-covalent fluorescent organic nanoparticles upon cell internalization. Phys. Chem. Chem. Phys., 2011, 13(29), 13268-13276.
[http://dx.doi.org/10.1039/c1cp20877b] [PMID: 21701730]
[78]
Milosevic, A.M.; Rodriguez-Lorenzo, L.; Balog, S.; Monnier, C.A.; Petri-Fink, A.; Rothen-Rutishauser, B. Assessing the Stability of Fluorescently Encoded Nanoparticles in Lysosomes by Using Complementary Methods. Angew. Chem. Int. Ed. Engl., 2017, 56(43), 13382-13386.
[http://dx.doi.org/10.1002/anie.201705422] [PMID: 28767191]
[79]
Chopra, S.; Singh, J.; Kaur, H.; Singh, N.; Kaur, N. Estimation of Biogenic Amines and Biothiols by Metal Complex of Fluorescent Organic Nanoparticles Acting as Single Receptor Multi-Analyte Sensor in Aqueous Medium. Sens. Actuators B Chem., 2015, 220, 295-301.
[http://dx.doi.org/10.1016/j.snb.2015.05.086]
[80]
Bhardwaj, V.K.; Sharma, H.; Singh, N. Ratiometric fluorescent probe for biothiol in aqueous medium with fluorescent organic nanoparticles. Talanta, 2014, 129, 198-202.
[http://dx.doi.org/10.1016/j.talanta.2014.05.036] [PMID: 25127584]
[81]
Svechkarev, D.A.; Bukatich, I.V.; Doroshenko, A.O. New 1,3,5-Triphenyl-2-Pyrazoline-Containing 3-Hydroxychromones as Highly Solvatofluorochromic Ratiometric Polarity Probes. J. Photochem. Photobiol. Chem., 2008, 200, 426-431.
[http://dx.doi.org/10.1016/j.jphotochem.2008.09.005]
[82]
Svechkarev, D.A.; Baumer, V.N.; Syzova, Z.A.; Doroshenko, A.O. New Benzimidazolic 3-Hydroxychromone Derivative with Two Alternative Mechanisms of the Excited State Intramolecular Proton Transfer Reaction. J. Mol. Struct., 2008, 882, 63-69.
[http://dx.doi.org/10.1016/j.molstruc.2007.09.009]
[83]
Chen, Q.; Jia, C.; Zhang, Y.; Du, W.; Wang, Y.; Huang, Y.; Yang, Q.; Zhang, Q. A Novel Fluorophore Based on the Coupling of AIE and ESIPT Mechanisms and Its Application in Biothiol Imaging. J. Mater. Chem. B Mater. Biol. Med., 2017, 5, 7736-7742.
[http://dx.doi.org/10.1039/C7TB02076G]
[84]
Yin, C-X.; Xiong, K-M.; Huo, F-J.; Salamanca, J.C.; Strongin, R.M. Fluorescent Probes with Multiple Binding Sites for the Discrimination of Cys, Hcy, and GSH. Angew. Chem. Int. Ed. Engl., 2017, 56(43), 13188-13198.
[http://dx.doi.org/10.1002/anie.201704084] [PMID: 28703457]
[85]
Petrizza, L.; Collot, M.; Richert, L.; Mely, Y.; Prodi, L.; Klymchenko, A.S. Dye-Doped Silica Nanoparticle Probes for Fluorescence Lifetime Imaging of Reductive Environments in Living Cells. RSC Advances, 2016, 6, 104164-104172.
[http://dx.doi.org/10.1039/C6RA21427D]
[86]
Mahajan, P.G.; Kolekar, G.B.; Patil, S.R. Recognition of D-Penicillamine Using Schiff Base Centered Fluorescent Organic Nanoparticles and Application to Medicine Analysis. J. Fluoresc., 2017, 27(3), 829-839.
[http://dx.doi.org/10.1007/s10895-016-2019-5] [PMID: 28091784]
[87]
Ding, L.; Qin, Z.; Xiang, C.; Zhou, G. Novel Fluorescent Organic Nanoparticles as a Label-Free Biosensor for Dopamine in Serum. J. Mater. Chem. B Mater. Biol. Med., 2017, 5, 2750-2756.
[http://dx.doi.org/10.1039/C6TB03077G]
[88]
Hu, J.; Liu, G.; Wang, C.; Liu, T.; Zhang, G.; Liu, S. Spatiotemporal monitoring endocytic and cytosolic pH gradients with endosomal escaping pH-responsive micellar nanocarriers. Biomacromolecules, 2014, 15(11), 4293-4301.
[http://dx.doi.org/10.1021/bm501296d] [PMID: 25317967]
[89]
Kaur, G.; Raj, T.; Kaur, N.; Singh, N. Pyrimidine-based functional fluorescent organic nanoparticle probe for detection of Pseudomonas aeruginosa. Org. Biomol. Chem., 2015, 13(16), 4673-4679.
[http://dx.doi.org/10.1039/C5OB00206K] [PMID: 25790762]
[90]
Jana, A.; Devi, K.S.P.; Maiti, T.K.; Singh, N.D.P. Perylene-3-ylmethanol: fluorescent organic nanoparticles as a single-component photoresponsive nanocarrier with real-time monitoring of anticancer drug release. J. Am. Chem. Soc., 2012, 134(18), 7656-7659.
[http://dx.doi.org/10.1021/ja302482k] [PMID: 22519548]
[91]
Gangopadhyay, M.; Singh, T.; Behara, K.K.; Karwa, S.; Ghosh, S.K.; Singh, N.D.P. Coumarin-containing-star-shaped 4-arm-polyethylene glycol: targeted fluorescent organic nanoparticles for dual treatment of photodynamic therapy and chemotherapy. Photochem. Photobiol. Sci., 2015, 14(7), 1329-1336.
[http://dx.doi.org/10.1039/C5PP00057B] [PMID: 26066468]
[92]
Chang, C-C.; Hsieh, M-C.; Lin, J-C.; Chang, T-C. Selective photodynamic therapy based on aggregation-induced emission enhancement of fluorescent organic nanoparticles. Biomaterials, 2012, 33(3), 897-906.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.018] [PMID: 22024361]
[93]
Han, H-H.; Wang, C-Z.; Zang, Y.; Li, J.; James, T.D.; He, X-P. Supramolecular core-glycoshell polythiophene nanodots for targeted imaging and photodynamic therapy. Chem. Commun. (Camb.), 2017, 53(70), 9793-9796.
[http://dx.doi.org/10.1039/C7CC04525E] [PMID: 28817147]
[94]
Ng, K.K.; Zheng, G. Molecular Interactions in Organic Nanoparticles for Phototheranostic Applications. Chem. Rev., 2015, 115(19), 11012-11042.
[http://dx.doi.org/10.1021/acs.chemrev.5b00140] [PMID: 26244706]
[95]
Wu, X.; Zhu, W. Stability enhancement of fluorophores for lighting up practical application in bioimaging. Chem. Soc. Rev., 2015, 44(13), 4179-4184.
[http://dx.doi.org/10.1039/C4CS00152D] [PMID: 25175934]
[96]
Genin, E.; Gao, Z.; Varela, J.A.; Daniel, J.; Bsaibess, T.; Gosse, I.; Groc, L.; Cognet, L.; Blanchard-Desce, M. Hyper- bright” near-infrared emitting fluorescent organic nanoparticles for single particle tracking. Adv. Mater., 2014, 26(14), 2258-2261, 2257.
[http://dx.doi.org/10.1002/adma.201304602] [PMID: 24497445]
[97]
Grimm, J.B.; Muthusamy, A.K.; Liang, Y.; Brown, T.A.; Lemon, W.C.; Patel, R.; Lu, R.; Macklin, J.J.; Keller, P.J.; Ji, N.; Lavis, L.D. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods, 2017, 14(10), 987-994.
[http://dx.doi.org/10.1038/nmeth.4403] [PMID: 28869757]
[98]
Xu, Z.; Liao, Q.; Shi, X.; Li, H.; Zhang, H.; Fu, H. Full-Color Tunable Organic Nanoparticles with FRET-Assisted Enhanced Two-Photon Excited Fluorescence for Bio-Imaging. J. Mater. Chem. B Mater. Biol. Med., 2013, 1, 6035.
[http://dx.doi.org/10.1039/c3tb20841a]
[99]
Zhang, T.; Xu, H.; Wang, H.; Zhu, J.; Zhai, Y.; Bai, X.; Dong, B.; Song, H. Green Fluorescent Organic Nanoparticles Based on Carbon Dots and Self-Polymerized Dopamine for Cell Imaging. RSC Advances, 2017, 7, 28987-28993.
[http://dx.doi.org/10.1039/C7RA03493H]
[100]
Varghese, B.; Al-Busafi, S.N.; Suliman, F.O.; Al-Kindy, S.M.Z. Unveiling a Versatile Heterocycle: Pyrazoline - a Review. RSC Advances, 2017, 7, 46999-47016.
[http://dx.doi.org/10.1039/C7RA08939B]
[101]
Das, S.; Bwambok, D.; El-Zahab, B.; Monk, J.; de Rooy, S.L.; Challa, S.; Li, M.; Hung, F.R.; Baker, G.A.; Warner, I.M. Nontemplated approach to tuning the spectral properties of cyanine-based fluorescent nanoGUMBOS. Langmuir, 2010, 26(15), 12867-12876.
[http://dx.doi.org/10.1021/la101463r] [PMID: 20583774]
[102]
Handke, M.; Adachi, T.; Hu, C.; Ward, M.D. Encapsulation of Isolated Luminophores within Supramolecular Cages. Angew. Chem. Int. Ed. Engl., 2017, 56(45), 14003-14006.
[http://dx.doi.org/10.1002/anie.201707097] [PMID: 28922537]
[103]
Shulov, I.; Oncul, S.; Reisch, A.; Arntz, Y.; Collot, M.; Mely, Y.; Klymchenko, A.S. Fluorinated counterion-enhanced emission of rhodamine aggregates: ultrabright nanoparticles for bioimaging and light-harvesting. Nanoscale, 2015, 7(43), 18198-18210.
[http://dx.doi.org/10.1039/C5NR04955E] [PMID: 26482443]
[104]
Yang, M.; Xu, D.; Xi, W.; Wang, L.; Zheng, J.; Huang, J.; Zhang, J.; Zhou, H.; Wu, J.; Tian, Y. Aggregation-induced fluorescence behavior of triphenylamine-based Schiff bases: the combined effect of multiple forces. J. Org. Chem., 2013, 78(20), 10344-10359.
[http://dx.doi.org/10.1021/jo401719c] [PMID: 24050697]
[105]
Trofymchuk, K.; Reisch, A.; Shulov, I.; Mély, Y.; Klymchenko, A.S. Tuning the color and photostability of perylene diimides inside polymer nanoparticles: towards biodegradable substitutes of quantum dots. Nanoscale, 2014, 6(21), 12934-12942.
[http://dx.doi.org/10.1039/C4NR03718A] [PMID: 25233438]
[106]
Kaeser, A.; Fischer, I.; Abbel, R.; Besenius, P.; Dasgupta, D.; Gillisen, M.A.; Portale, G.; Stevens, A.L.; Herz, L.M.; Schenning, A.P. Side chains control dynamics and self-sorting in fluorescent organic nanoparticles. ACS Nano, 2013, 7(1), 408-416.
[http://dx.doi.org/10.1021/nn305477u] [PMID: 23256849]
[107]
Cosco, E.D.; Caram, J.R.; Bruns, O.T.; Franke, D.; Day, R.A.; Farr, E.P.; Bawendi, M.G.; Sletten, E.M. Flavylium Polymethine Fluorophores for Near- and Shortwave Infrared Imaging. Angew. Chem. Int. Ed. Engl., 2017, 56(42), 13126-13129.
[http://dx.doi.org/10.1002/anie.201706974] [PMID: 28806473]
[108]
Svechkarev, D.; Kyrychenko, A.; Payne, W.M.; Mohs, A.M. Development of colloidally stable carbazole-based fluorescent nanoaggregates. J. Photochem. Photobiol. Chem., 2018, 352, 55-64.
[http://dx.doi.org/10.1016/j.jphotochem.2017.10.042] [PMID: 29430162]
[109]
Cai, X.; Bandla, A.; Mao, D.; Feng, G.; Qin, W.; Liao, L-D.; Thakor, N.; Tang, B.Z.; Liu, B. Biocompatible Red Fluorescent Organic Nanoparticles with Tunable Size and Aggregation-Induced Emission for Evaluation of Blood-Brain Barrier Damage. Adv. Mater., 2016, 28(39), 8760-8765.
[http://dx.doi.org/10.1002/adma.201601191] [PMID: 27511643]
[110]
Reisch, A.; Runser, A.; Arntz, Y.; Mély, Y.; Klymchenko, A.S. Charge-controlled nanoprecipitation as a modular approach to ultrasmall polymer nanocarriers: making bright and stable nanoparticles. ACS Nano, 2015, 9(5), 5104-5116.
[http://dx.doi.org/10.1021/acsnano.5b00214] [PMID: 25894117]
[111]
Enseki, T.; Yao, H. Controlled Formation of Fluorescent Organic Nanoparticles of Carbocyanine Dye via Ion-Association Approach. Chem. Lett., 2012, 41, 1119-1121.
[http://dx.doi.org/10.1246/cl.2012.1119]
[112]
Zhang, X.; Chen, Z.; Würthner, F. Morphology control of fluorescent nanoaggregates by co-self-assembly of wedge- and dumbbell-shaped amphiphilic perylene bisimides. J. Am. Chem. Soc., 2007, 129(16), 4886-4887.
[http://dx.doi.org/10.1021/ja070994u] [PMID: 17402739]
[113]
Fischer, I.; Petkau-Milroy, K.; Dorland, Y.L.; Schenning, A.P.H.J.; Brunsveld, L. Self-assembled fluorescent organic nanoparticles for live-cell imaging. Chemistry, 2013, 19(49), 16646-16650.
[http://dx.doi.org/10.1002/chem.201302647] [PMID: 24281811]
[114]
Omer, K.M.; Mohammad, S.J.; Raheem, S.J. Solventless Synthesis of a Schiff Base That Forms Highly Fluorescent Organic Nanoparticles Exhibiting Aggregation-Induced Emission in Aqueous Media. J. Exp. Nanosci., 2016, 11, 1184-1192.
[http://dx.doi.org/10.1080/17458080.2016.1201868]
[115]
Payne, W.M.; Svechkarev, D.; Kyrychenko, A.; Mohs, A.M. The role of hydrophobic modification on hyaluronic acid dynamics and self-assembly. Carbohydr. Polym., 2018, 182, 132-141.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.054] [PMID: 29279107]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy