[1]
Ciolkowski, M.; Paneth, P.; Lorenz, I.P.; Mayer, P.; Rozalski, M.; Krajewska, U.; Budzisz, E. Tautomeric forms study of 1H-(2′-pyridyl)-3-methyl-5-hydroxypyrazole and 1H-(2′-pyridyl)-3-phenyl-5-hydroxypyrazole. Synthesis, structure, and cytotoxic activity of their complexes with palladium(II) ions. J. Enzyme Inhib. Med. Chem., 2009, 24(6), 1257-1268.
[2]
Grazul, M.; Besic-Gyenge, E.; Maake, C.; Ciolkowski, M.; Czyz, M.; Sigel, R.K.; Budzisz, E. Synthesis, physico-chemical properties and biological analysis of newly obtained copper(II) complexes with pyrazole derivatives. J. Inorg. Biochem., 2014, 135, 68-76.
[3]
Schepetkin, I.; Potapov, A.; Khlebnikov, A.; Korotkova, E.; Lukina, A.; Malovichko, G.; Kirpotina, L.; Quinn, M.T. Decomposition of reactive oxygen species by copper(II) bis(1-pyrazolyl)methane complexes. J. Biol. Inorg. Chem., 2006, 11(4), 499-513.
[4]
Budzisz, E.; Krajewska, U.; Rozalski, M.; Szulawska, A.; Czyz, M.; Nawrot, B. Biological evaluation of novel Pt(II) and Pd(II) complexes with pyrazole-containing ligands. Eur. J. Pharmacol., 2004, 502(1-2), 59-65.
[5]
Budakoti, A.; Abid, M.; Azam, A. Syntheses, characterization and in vitro antiamoebic activity of new Pd(II) complexes with 1-N-substituted thiocarbamoyl-3,5-diphenyl-2-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(4), 544-551.
[6]
Castagnolo, D.; De Logu, A.; Radi, M.; Bechi, B.; Manetti, F.; Magnani, M.; Supino, S.; Meleddu, R.; Chisu, L.; Botta, M. Synthesis, biological evaluation and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem., 2008, 16(18), 8587-8591.
[7]
Ciesielska, E.; Szulawska, A.; Studzian, K.; Ochocki, J.; Malinowska, K.; Kik, K.; Szmigiero, L. Comparative studies on the mechanism of cytotoxic action of novel platinum II complexes with pyrazole ligands. J. Inorg. Biochem., 2006, 100(10), 1579-1585.
[8]
Pérez, J.; Riera, L. Pyrazole Complexes and Supramolecular Chemistry. Eur. J. Inorg. Chem., 2009, 4913-4925.
[9]
Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to mid-2010: a fruitful decade for the synthesis of pyrazoles. Chem. Rev., 2011, 111(11), 6984-7034.
[10]
David, S.; Perkins, R.S.; Fronczek, F.R.; Kasiri, S.; Mandal, S.S.; Srivastava, R.S. Synthesis, characterization, and anticancer activity of ruthenium-pyrazole complexes. J. Inorg. Biochem., 2012, 111, 33-39.
[11]
Malinowska, K.; Modranka, R.; Kubiak, K.; Mrowicka, M.; Klimczak, A.; Kedziora, J.; Rutkowski, M. [Testing antineoplastic activity of new platinum(II) and palladium(II) complex compounds]. Pol. Merkuriusz Lek., 2009, 26(151), 57-61.
[12]
Polshettiwar, V.; Varma, R.S. Greener and rapid access to bio-active heterocycles: room temperature synthesis of pyrazoles and diazepines in aqueous medium. Tetrahedron Lett., 2008, 49, 397-400.
[13]
Deng, X.; Mani, N.S. Reaction of N-monosubstituted hydrazones with nitroolefins: a novel regioselective pyrazole synthesis. Org. Lett., 2006, 8(16), 3505-3508.
[14]
Dadiboyena, S.; Valente, E.J.; Hamme, A.T., II Synthesis of novel pyrazoles via [2+3]-dipolar cycloaddition using alkyne surrogates. Tetrahedron Lett., 2010, 51(9), 1341-1343.
[15]
Zhang, H.; Liu, C-S.; Bu, X-H.; Yang, M. Synthesis, crystal structure, cytotoxic activity and DNA-binding properties of the copper (II) and zinc (II) complexes with 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene. J. Inorg. Biochem., 2005, 99(5), 1119-1125.
[16]
Gama, S.; Mendes, F.; Marques, F.; Santos, I.C.; Carvalho, M.F.; Correia, I.; Pessoa, J.C.; Santos, I.; Paulo, A. Copper(II) complexes with tridentate pyrazole-based ligands: synthesis, characterization, DNA cleavage activity and cytotoxicity. J. Inorg. Biochem., 2011, 105(5), 637-644.
[17]
Singh, K.; Kumar, Y.; Puri, P.; Kumar, M.; Sharma, C. Cobalt, nickel, copper and zinc complexes with 1,3-diphenyl-1H-pyrazole-4-carboxaldehyde Schiff bases: antimicrobial, spectroscopic, thermal and fluorescence studies. Eur. J. Med. Chem., 2012, 52, 313-321.
[18]
Tribó, R.; Muñoz, S.; Pons, J.; Yáñez, R.; Álvarez-Larena, Á.; Piniella, J.F.; Ros, J. Synthesis and characterization of new pyrazole-phospinite ligands and their ruthenium(II) arene complexes. J. Organomet. Chem., 2005, 690, 4072-4079.
[19]
Dougan, S.J.; Melchart, M.; Habtemariam, A.; Parsons, S.; Sadler, P.J. Phenylazo-pyridine and phenylazo-pyrazole chlorido ruthenium(II) arene complexes: arene loss, aquation, and cancer cell cytotoxicity. Inorg. Chem., 2006, 45(26), 10882-10894.
[20]
Kupcewicz, B.; Sobiesiak, K.; Malinowska, K.; Koprowska, K.; Czyz, M.; Keppler, B.; Budzisz, E. Copper(II) complexes with derivatives of pyrazole as potential antioxidant enzyme mimics. Med. Chem. Res., 2013, 22(5), 2395-2402.
[21]
Malinowska, K.; Modranka, R.; Kubiak, K.; Mrowicki, J.; Klimczak, A.; Mrowicka, M. Wpływ związków koordynacyjnych na aktywność enzymów antyoksydacyjnych w chorobach nowotworowych przewodu pokarmowego. PML, 2009, 27(158), 97-100.
[22]
Malinowska, K.; Kędziora, J.; Gałecka, E.; Miernicka, M.; Budzisz, E. Pro-and antioxidant activity of Cu (II) complexes with pyrazole derivate ligands. Intern. Med. Chem., 2007, 7, 8-11.
[23]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neuro-degenerative diseases.Nature, 2006. 19, 443(7113), 787-95.
[24]
Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem., 1972, 247(10), 3170-3175.
[25]
Beers, R.F., Jr; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., 1952, 195(1), 133-140.
[26]
Little, C.; O’Brien, P.J. An intracellular GSH-peroxidase with a lipid peroxide substrate. Biochem. Biophys. Res. Commun., 1968, 31(2), 145-150.
[27]
Malinowska, K.; Modranka, R. Dichlorido[(-3,5-dimethyl-1H-pyrazol-1-y)methane] copper(II). Acta Crystallogr., 2007, 63(11), 2783-2784.
[28]
Mrowicka, M.; Bortnik, K.; Malinowska, K.; Kędziora, J.; Mrowicki, J. Całkowity potencjał antyoksydacyjny w osoczu sportowców po dozowanym wysiłku fizycznym. PML, 2009, 27(157), 22-25.
[29]
Malinowska, K.; Zielińska-Bliżniewska, H.; Majsterek, I.; Olszewski, J. [Influence of complex deacon-tetra (N1,3-triazole,кN2) copper (II) on the barrier and antioxidant pro people with nasal polyps]. Otolaryngol. Pol., 2013, 67(5), 228-232.
[30]
Kubiak, K.; Klimczak, A.; Dziki, Ł.; Modranka, R.; Malinowska, K. Wpływ kompleksu miedzi(II) na aktywność wybranych enzymów antyoksydacyjnych. PML, 2010, 28(163), 22-25.
[31]
Kubiak, K.; Malinowska, K.; Langer, E.; Dziki, Ł.; Dziki, A.; Majsterek, I. Effect of Cu(II) coordination compounds on the activity of antioxidant enzymes catalase and superoxide dismutase in patients with colorectal cancer. Pol. Przegl. Chir., 2011, 83(3), 155-160.
[32]
J aćimović, Ż.; Bogdanović, G.A.; Holló, B.; Leovac, V.M.; Szécsényi, K.M. Transition metal complexes with pyrazole-based ligands. Part. 29. Reaction of zinc (II) and mercury(II) thiocyanate with 4-acetyl-3-amino-5-methylpyrazole. J. Serb. Chem. Soc., 2009, 74(11), 1259-1271.
[33]
Keter, F.K.; Darkwa, J. Perspective: the potential of pyrazole-based compounds in medicine. Biometals, 2012, 25(1), 9-21.
[34]
Kumar, K.A.; Jayaroopa, P. Pyrazoles: Synthetic Strategies and Their Pharmaceutical Applications – An Overview. Int. J. Pharm. Tech. Res., 2013, 5, 1473-1486.
[35]
Tanitame, A.; Oyamada, Y.; Ofuji, K.; Terauchi, H.; Kawasaki, M.; Wachi, M.; Yamagishi, J. Synthesis and antibacterial activity of a novel series of DNA gyrase inhibitors: 5-[(E)-2-arylvinyl]pyrazoles. Bioorg. Med. Chem. Lett., 2005, 15(19), 4299-4303.
[36]
Chande, M.S.; Thakkar, N.V.; Patil, D.V. Synthesis and antimicrobial activity of bis[6-phenyl-4-methyl-3-substituted-pyrazo[4,5-d] pyrazol-1-yl]thioketones. Acta Pol. Pharm., 1999, 56(3), 207-210.
[37]
Manikannan, R.; Venkatesan, R.; Muthusubramanian, S.; Yogeeswari, P.; Sriram, D. Pyrazole derivatives from azines of substituted phenacyl aryl/cyclohexyl sulfides and their antimycobacterial activity. Bioorg. Med. Chem. Lett., 2010, 20(23), 6920-6924.
[38]
Jayaroopa, P.; Vasanth Kumar, G.; Renuka, N.; Harish Nayaka, M.A.; Ajay Kumar, K. Evaluation of new pyrazole derivatives for their biological activity: structure-activity relationship. Intern. J. PharmTech Res., 2013, 5(2), 819-826.
[39]
Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol., 2013, 11(6), 371-384.
[40]
Kothari, R.; Sharma, B.; Sahawal, S.; Neha, K.; Mandal, S.K.; Birthare, S.; Shivhare, V. Synthesis, characterization and antimicrobial evaluation of copper (II) complex with ciprofloxacin antibiotic. World J. Pharm. Pharm. Sci., 2015, 4(06), 696-707.
[41]
Pillai, M.S.; Latha, S.P. Designing of some novel metallo antibiotics tuning biochemical behaviour towards therapeutics: synthesis, characterisation and pharmacological studies of metal complexes of cefixime. J. Saudi Chem. Soc., 2016, 20, S60-S66.
[42]
Damljanović, I.; Vukićević, M.; Radulović, N.; Palić, R.; Ellmerer, E.; Ratković, Z.; Joksović, M.D.; Vukićević, R.D. Synthesis and antimicrobial activity of some new pyrazole derivatives containing a ferrocene unit. Bioorg. Med. Chem. Lett., 2009, 19(4), 1093-1096.
[43]
Fonteh, P.N.; Keter, F.K.; Meyer, D.; Guzei, I.A.; Darkwa, J. Tetra-chloro-(bis-(3,5-dimethylpyrazolyl)methane)gold(III) chloride: An HIV-1 reverse transcriptase and protease inhibitor. J. Inorg. Biochem., 2009, 103(2), 190-194.
[44]
Sau, D.K.; Butcher, R.J.; Chaudhuri, S.; Saha, N. Spectroscopic, structural and antibacterial properties of copper(II) complexes with bio-relevant 5-methyl-3-formylpyrazole N(4)-benzyl-N(4)-methylthiosemicarbazone. Mol. Cell. Biochem., 2003, 253(1-2), 21-29.
[45]
Gibbons, S. Phytochemicals for bacterial resistance--strengths, weaknesses and opportunities. Planta Med., 2008, 74(6), 594-602.
[46]
Jung, N.; Bräse, S. New catalysts for the transition-metal-catalyzed synthesis of aziridines. Angew. Chem. Int. Ed. Engl., 2012, 51(23), 5538-5540.
[47]
Budzisz, E.; Bobka, R.; Hauss, A.; Roedel, J.N.; Wirth, S.; Lorenz, I.P.; Rozalska, B.; Więckowska-Szakiel, M.; Krajewska, U.; Rozalski, M. Synthesis, structural characterization, antimicrobial and cytotoxic effects of aziridine, 2-aminoethylaziridine and azirine complexes of copper(II) and palladium(II). Dalton Trans., 2012, 41(19), 5925-5933.
[48]
Chakraborty, B.; Chhetri, M.S.; Chhetri, E. Highly stereoselective synthesis of new aziridines via Baldwin rearrangement and their potential biological activities., 2015.
[49]
Giovine, A.; Muraglia, M.; Florio, M.A.; Rosato, A.; Corbo, F.; Franchini, C.; Musio, B.; Degennaro, L.; Luisi, R. Synthesis of functionalized arylaziridines as potential antimicrobial agents. Molecules, 2014, 19(8), 11505-11519.
[50]
Goodenough, K.M.; Moran, W.J.; Raubo, P.; Harrity, J.P.A. Development of a flexible approach to Nuphar alkaloids via two enantiospecific piperidine-forming reactions. J. Org. Chem., 2005, 70(1), 207-213.
[51]
Kamuf, M.; Trapp, O. Stereodynamics of small 1,2-dialkyldiaziridines. Chirality, 2013, 25(4), 224-229.
[52]
Lykke, L.; Halskov, K.S.; Carlsen, B.D.; Chen, V.X.; Jørgensen, K.A. Catalytic asymmetric diaziridination. J. Am. Chem. Soc., 2013, 135(12), 4692-4695.
[53]
Zawatzky, K.; Kamuf, M.; Trapp, O. Chiral 1,2-dialkenyl diaziridines: synthesis, enantioselective separation, and nitrogen inversion barriers. Chirality, 2015, 27(2), 156-162.
[54]
Trapp, O.; Sahraoui, L.; Hofstadt, W.; Könen, W. The stereodynamics of 1,2-dipropyldiaziridines. Chirality, 2010, 22(2), 284-291.
[55]
Carroccia, L.; Fioravanti, S.; Pellacani, L.; Sadun, C.; Tardella, P.A. Synthesis of optically active trifluoromethyl substituted diaziridines and oxaziridines. Tetrahedron, 2011, 67, 5375-5381.
[56]
Aresu, E.; Fioravanti, S.; Pellacani, L.; Sciubba, F.; Trulli, L. Water-controlled chiral inversion of a nitrogen atom during the synthesis of diaziridines from α-branched N,N′-dialkyl α-diimines. New J. Chem., 2013, 37, 4125-4129.
[57]
Lanners, S.; Hanquet, G. Asymmetric synthesis of three- and four-membered ring heterocycles with more than one heteroatom; Asymmetric Synthesis of Nitrogen Heterocycles, 2009, pp. 189-222.
[58]
Trapp, O.; Schurig, V.; Kostyanovsky, R.G. The control of the nitrogen inversion in alkyl-substituted diaziridines. Chemistry, 2004, 10(4), 951-957.
[59]
Watson, I.D.G.; Yu, L.; Yudin, A.K. Advances in nitrogen transfer reactions involving aziridines. Acc. Chem. Res., 2006, 39(3), 194-206.
[60]
Degennaro, L.; Trinchera, P.; Luisi, R. Recent advances in the stereoselective synthesis of aziridines. Chem. Rev., 2014, 114(16), 7881-7929.
[61]
Li, X.; Chen, N.; Xu, J. An Improved and Mild Wenker Synthesis of Aziridines. Synthesis, 2010, 20, 3423-3428.
[62]
Makhova, N.N.; Petukhova, V.Y.; Kuznetsov, V.V. Synthesis of monocyclic diaziridines and their fused derivatives. ARKIVOC, 2008, (i), 128-152.
[63]
Hieber, W.; Wiesboeck, R. Reaktionen des Kobalttetracarbonyls mit verschiedenartigen Basen. Chem. Ber., 1958, 91, 1146-1155.
[64]
Rödel, J.N. Contributions to the coordination chemistry of aziridines, 2H-azirines and phosphiranes, PhD Thesis,Ludwig-Maximilians-University, Munich, Germany,. 2008.
[65]
Bobka, R.; Rödel, J.N.; Neumann, B.; Krinninger, C.; Mayer, P.; Wunderlich, S.; Penger, A.; Lorenz, I-P. Neutral Mono- and Cationic Bis-Aziridine d6-Metal Complexes of the Type [(π-arene)M(Az)Cl2] and [(π-arene)M(Az)2Cl]Cl (π-arene/M = η6-C6Me6/Ru; η5-C5Me5/Rh, Ir). Z. Anorg. Allg. Chem., 2007, 633, 1985-1994.
[66]
Rödel, J.N.; Bobka, R.; Neumann, B.; Weber, B.; Mayer, P.; Lorenz, I-P. Synthesis, Characterization and Structure of Bis- and Tetrakis-Aziridine-Nickel(II) and Copper(II). Complexes. Z. Anorg. Allg. Chem., 2007, 633, 1171-1177.
[67]
Fielden, J.; Sprott, J.; Long, D-L.; Kögerler, P.; Cronin, L. Controlling aggregation of copper(II)-based coordination compounds: From mononuclear to dinuclear, tetranuclear, and polymeric copper complexes. Inorg. Chem., 2006, 45(7), 2886-2895.
[68]
Lopez, N.; Vos, T.E.; Arif, A.M.; Shum, W.W.; Noveron, J.C.; Miller, J.S. Structure and magnetic properties of a hydroxo-bridged copper(II) distorted cubane stabilized via supramolecular hydrogen bonding with an ionic hexafluoroacetylacetonate. Inorg. Chem., 2006, 45(11), 4325-4327.
[69]
Shevtsov, A.V.; Petukhova, V.Y.; Kutepov, S.A.; Kuznetsov, V.V.; Makhova, N.N.; Kugzmina, N.E.; Aleksandrov, G.G. Synthesis, structures of complexes of N-(-aminoethyl)diaziridines, with transition metal salts. Russ. Chem. Bull., 2000, 49, 1882-1886.
[70]
Skrupskaya, T.V.; Kislukhin, A.A.; Shevtsov, A.V.; Petukhova, V.Y.; Lyssenko, K.A.; Makhova, N.N. Complexes of α,ω-bis(3,3-dialkyldiaziridin-1-yl)alkanes and their bis(2-arylcarbamoyl) derivatives with cadmium and nickel salts. Russ. Chem. Bull. Int. Ed., 2008, 57, 56-62.
[71]
Kostyanovsky, R.G.; Lyssenko, K.A.; Kostyanovsky, V.R. Homochiral and pseudoracemic 3,3- and 1,2-dimethyldiaziridine-silver nitrate complex. Mendeleev Commun., 2000, 10, 44-46.
[72]
Shustov, G.V.; Zolotoi, A.B.; Konovalikhin, S.V.; Atovmyan, L.O.; Kostyanovsky, R.G. A Novel trans-1,2-Dimethyldiaziridine-Silver Nitrate Complex: Synthesis and Molecular and Crystal Structure. Mendeleev Commun., 1995, 5, 218-219.
[73]
Sosnovsky, G.; Lukszo, J. In theSearch for New Anticancer Drugs. J. Cancer Res. Clin. Oncol., 1984, 107, 217-220.
[74]
Adedapo, A.; Avent, A.G.; Carmichael, D.; Chaloner, P.A.; Hitchcock, P.B. Novel Mono- and Bis-metallated Complexes of Dialkyldiaziridines; X-Ray Diffraction Structures of Three Platinum Complexes. J. Chem. Soc. Chem. Commun., 1993, 186-187.
[75]
Syroeshkina, Y.S.; Fershtat, L.L.; Syroeshkin, M.A.; Kuznatsov, V.V.; Lyssenko, K.A.; Makhova, N.N. First¶
synthesis of 1,5-diazabicyclo[3.1.0]heksane complexes with cadmium salts. Russian Chemical Bulletin, International Edition 2009, 58, 1002-1006.
[76]
Fürmeier, S.; Metzger, J.O. Fat-derived aziridines and their N-substituted derivatives: biologically active compounds based on renewable raw materials. Eur. J. Org. Chem., 2003, 649-659.
[77]
Keniche, A.; Mezrai, A.; Mulengi, J.K. Synthesis of a novel class of phosphonoaziridines as interesting antibacterial agents. Open Conf. Proc. J., 2011, 2, 28-35.
[78]
Sharma, P.; Kumar, A.; Upadhyay, S.; Sahu, V.; Singh, J. Synthesis and QSAR modeling of 2-acetyl-2-ethoxycarbonyl-1-[4(4′-arylazo)-phenyl]-N,N-dimethylaminophenyl aziridines as potential antibacterial agents. Eur. J. Med. Chem., 2008, XX, 1-9.