Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

A Colorimetric Sensor for Dopamine Detection Based on Peroxidase-like Activity of Ce2(MoO4)3 Nanoplates

Author(s): Mehdi Rahimi-Nasrabadi*, Morteza Hosseini*, Amir Homayoun Keihan and Mohammad Reza Ganjali

Volume 15, Issue 3, 2019

Page: [224 - 230] Pages: 7

DOI: 10.2174/1573412914666180213123557

Price: $65

Abstract

Introduction: Artificial enzyme mimics are materials with similar catalytic function of natural enzymes. Among several types of artificial enzymes, nanomaterial-based products or nanozymes have been of particular interest to researchers.

Materials and Methods: In this work, Ce2(MoO4)3 nanoplates were synthesized via a one-pot hydrothermal approach. SEM and EDS characterizations show a plated-like architecture with high purity. These nanoplates are shown to have an intrinsic peroxidase-mimetic activity. In the presence of H2O2, Ce2(MoO4)3 nanoplates could catalyse the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) with high performance to produce a blue dye (with an absorbance maximum at 652 nm). Dopamine (DA) has some reducibility due to the phenol hydroxyl group, which results in using H2O2 and causing the blue shallowing of the reaction solution by inhibiting the reaction between H2O2 and TMB. Based on that, a visual, sensitive and simple colorimetric method using Ce2(MoO4)3 nanoplates as peroxidase mimics was developed for detecting DA.

Results and Conclusions: Suitable linear relationship for DA was obtained from 0.1 to 10 µM. The limit of detection (LOD) of the proposed method was calculated as 0.05 µM and the relative standard deviation (RSD) was less than 4.0%. The proposed method was successfully applied to DA detection in human serum sample.

Keywords: Nanoplates, peroxidase mimetic, dopamine, colorimetric, cerium molybdate, enzymes.

Graphical Abstract

[1]
Wang, N.; Sun, J.; Chen, L.; Fan, H.; Ai, S.A. Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim. Acta, 2015, 182, 1733-1738.
[2]
Wei, H.; Wang, E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem., 2008, 80, 2250-2254.
[3]
Kim, J.; Grate, J.W.; Wang, P. Nanostructures for enzyme stabilization. Chem. Eng. Sci., 2006, 61, 1017-1026.
[4]
Wang, S.; Chen, Z.; Chen, L.; Liu, R.; Chen, L. Label-free colorimetric sensing of copper(ii) ions based on accelerating decomposition of H2O2 using gold nanorods as an indicator. Analyst, 2013, 138, 2080-2084.
[5]
Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev., 2013, 42, 6060-6093.
[6]
Otte, K.B.; Hauer, B.E. Enzyme engineering in the context of novel pathways and products. Curr. Opin. Biotechnol., 2015, 35, 16-22.
[7]
Breslow, R. Biomimetic chemistry and artificial enzymes: Catalysis by design. Acc. Chem. Res., 1995, 28, 146-153.
[8]
Hosseini, M.; Sabet, F.; Khabbaz, H.; Aghazadeh, M.; Mizani, F.; Ganjali, M.R. Enhancement of peroxidase-like activity of cerium-doped ferrite nanoparticle for colorimetric detection of H2O2 and Glucose. Anal. Methods, in press. 2017.
[9]
Murakami, Y.; Kikuchi, J.I.; Hisaeda, Y.; Hayashida, O. Artificial enzymes. Chem. Rev., 1996, 96, 721-758.
[10]
Lin, Y.; Ren, J.; Qu, X. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Accounts. Chem. Res., 2014, 47, 1097-1105.
[11]
Wason, M.S.; Zhao, J. Cerium oxide nanoparticles: Potential applications for cancer and other diseases. Am. J. Translat. Res., 2013, 5, 126-131.
[12]
Xu, C.; Qu, X. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater., 2014, 6.
[13]
Gao, L.; Zhuang, J.; Nie, L. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature. Nanotechnol., 2007, 2, 577-583.
[14]
Wang, H.; Li, S.; Si, Y.; Zhang, N.; Sun, Z.; Wu, H. Platinum nanocatalysts loaded on graphene oxide-dispersed carbon nanotubes with greatly enhanced peroxidase-like catalysis and electrocatalysis activities. Nanoscale, 2014, 6, 8107-8116.
[15]
Zhang, L.; Han, L.; Hu, P.; Wang, L.; Dong, S. TiO2 nanotube arrays: Intrinsic peroxidase mimetics. Chem. Commun., 2013, 49, 10480-10482.
[16]
Dong, J.; Song, L.; Yin, J.J.; He, W.; Wu, Y.; Gu, N.; Zhang, Y. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl. Mater. Interf, 2014, 6, 1959-1970.
[17]
André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H.C.; Müller, W.E.G.; Tremel, W. V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater., 2011, 21, 501-509.
[18]
Natalio, F.; André, R.; Hartog, A.F.; Stoll, B.; Jochum, K.P.; Wever, R.; Tremel, W. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nature . Nanotechnol., 2012, 7, 530-535.
[19]
He, W.; Liu, Y.; Yuan, J.; Yin, J.J.; Wu, X.; Hu, X.; Zhang, K.; Liu, J.; Chen, C.; Ji, Y.; Guo, Y. Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials, 2011, 32, 1139-1147.
[20]
Heckman, K.L.; Decoteau, W.; Estevez, A.; Reed, K.J.; Costanzo, W.; Sanford, D.; Leiter, J.C.; Clauss, J.; Knapp, K.; Gomez, C.; Mullen, P.; Rathbun, E.; Prime, K.; Marini, J.; Patchefsky, J.; Patchefsky, A.S.; Hailstone, R.K.; Erlichman, J.S. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano, 2013, 7, 10582-10596.
[21]
Das, S.; Dowding, J.M.; Klump, K.E.; McGinnis, J.F.; Self, W.; Seal, S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine, 2013, 8, 1483-1508.
[22]
Ji, Z.; Wang, X.; Zhang, H.; Lin, S.; Meng, H.; Sun, B. George, S.; Xia, T.; Nel, A.E.; Zink, J.I. Designed synthesis of CeO 2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano, 2012, 6, 5366-5380.
[23]
Xia, T.; Kovochich, M.; Liong, M.; Mädler, L.; Gilbert, B.; Shi, H.; Yeh, J.I.; Zink, J.I.; Nel, A.E. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2008, 2, 2121-2134.
[24]
Heckert, E.G.; Karakoti, A.S.; Seal, S.; Self, W.T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 2008, 29, 2705-2709.
[25]
Tsai, Y.Y.; Oca-Cossio, J.; Agering, K.; Simpson, N.E.; Atkinson, M.A.; Wasserfall, C.H.; Constantinidis, I.; Sigmund, W. Novel synthesis of cerium oxide nanoparticles for free radical scavenging. Nanomedicine, 2007, 2, 325-332.
[26]
Arya, A.; Sethy, N.K.; Singh, S.K.; Das, M.; Bhargava, K. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation. Int. J. Nanomedicine, 2013, 8, 4507-4520.
[27]
Celardo, I.; De Nicola, M.; Mandoli, C.; Pedersen, J.Z.; Traversa, E.; Ghibelli, L. Ce 3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano, 2011, 5, 4537-4549.
[28]
Karakoti, A.; Singh, S.; Dowding, J.M.; Seal, S.; Self, W.T. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev., 2010, 39, 4422-4432.
[29]
Hirst, S.M.; Karakoti, A.S.; Tyler, R.D.; Sriranganathan, N.; Seal, S.; Reilly, C.M. Anti-inflammatory properties of cerium oxide nanoparticles. Small, 2009, 5, 2848-2856.
[30]
Mark Wightman, R. Detection of dopamine dynamics in the brain. Anal. Chem., 1988, 60, 769A-779A.
[31]
Zhang, A.; Neumeyer, J.L.; Baldessarini, R.J. Recent progress in development of dopamine receptor subtype-selective agents: Potential therapeutics for neurological and psychiatric disorders. Chem. Rev., 2007, 107, 274-302.
[32]
Damier, P.; Hirsch, E.C.; Agid, Y.; Graybiel, A.M. The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain, 1999, 122, 1437-1448.
[33]
Carrera, V.; Sabater, E.; Vilanova, E.; Sogorb, M.A. A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures. J. Chromatog. B, 2007, 847, 88-94.
[34]
Park, Y.H.; Zhang, X.; Rubakhin, S.S.; Sweedler, J.V. Independent optimization of capillary electrophoresis separation and native fluorescence detection conditions for indolamine and catecholamine measurements. Anal. Chem., 1999, 71, 4997-5002.
[35]
Kong, B.; Zhu, A.; Luo, Y.; Tian, Y.; Yu, Y.; Shi, G. Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew. Chem., 2011, 123, 1877-1880.
[36]
Lin, Y.; Chen, C.; Wang, C.; Pu, F.; Ren, J.; Qu, X. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction. Chem. Commun., 2011, 47, 1181-1183.
[37]
Napolitano, A.; Crescenzi, O.; Pezzella, A.; Prota, G. Generation of the neurotoxin 6-hydroxydopamine by peroxidase/H2O2 oxidation of dopamine. J. Med. Chem., 1995, 38, 917-922.
[38]
Walkey, C.; Das, S.; Seal, S.; Erlichman, J.; Heckman, K.; Ghibelli, L.; Traversa, E.; McGinnis, J.F.; Self, W.T. Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ. Sci. Nano, 2015, 2, 33-53.
[39]
Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mat., 2010, 22(19), 2206-2210.
[40]
Dutta, S.; Ray, C.; Mallick, S.; Sarkar, S.; Sahoo, R.; Negishi, Y.; Pal, T. A gel-based approach to design hierarchical CuS decorated reduced graphene oxide nanosheets for enhanced peroxidase-like activity leading to colorimetric detection of dopamine. J. Physical. Chem. C, 2015, 119(41), 23790-23800.
[41]
Niu, X.; Xu, Y.; Dong, Y.; Qi, L.; Qi, S.; Chen, H.; Chen, X. Visual and quantitative determination of dopamine based on CoxFe 3- xO 4 magnetic nanoparticles as peroxidase mimetics. J. Alloys Compounds., 2014, 587, 74-81.
[42]
Zhao, C.; Liu, Y.; Li, Y. Colorimetric and fluorometric assays for dopamine with a wide concentration range based on fe-mil-88nh2 metal-organic framework. Anal. Sci., 2015, 31(10), 1035-1039.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy