[1]
Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI. IEEE Signal Process Mag 2008; 25(2): 72-82.
[2]
Weizman L, Eldar YC, Ben Bashat D. Compressed sensing for longitudinal MRI: An adaptive-weighted approach. Med Phys 2015; 42(9): 5195-208.
[3]
Weizman L, Eldar YC, Ben Bashat D. Reference-based MRI. Med Phys 2016; 43(10): 5357-69.
[4]
Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans Med Imaging 2011; 30(5): 1028-41.
[5]
Gleichman S, Eldar YC. Blind compressed sensing. IEEE Trans Inf Theory 2011; 57(10): 6958-75.
[6]
Aharon M, Elad M, Bruckstein A. The K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 2006; 54(11): 4311-22.
[7]
Huang Y, Paisley J, Lin Q, Ding X, Fu X, Zhang XP. Bayesian nonparametric dictionary learning for com- pressed sensing MRI. IEEE Trans Image Process 2014; 23(12): 5007-19.
[8]
Lingala SG, Jacob M. Blind compressive sensing dynamic MRI. IEEE Trans Med Imaging 2013; 32(6): 1132-45.
[9]
Ravishankar S, Bresler Y. Data-driven learning of a union of sparsifying transforms model for blind compressed sensing. IEEE Trans Comput Imaging 2016; 2(3): 294-309.
[10]
Ravishankar S, Bresler Y. Blind compressed sensing using sparsifying transforms. In: International conference on Sampling Theory and Applications (SampTA) 2 0 1 5 . IEEE: Washington, DC, USA; pp. 513-7.
[11]
Ravishankar S, Bresler Y. Efficient blind compressed sensing using sparsifying transforms with convergence guarantees and application to magnetic resonance imaging. SIAM J Imaging Sci 2015; 8(4): 2519-57.
[12]
Zhao B, Haldar JP, Brinegar C, Liang ZP. Low rank matrix recovery for real-time cardiac MRI. In: IEEE International symposium on biomedical imaging: from nano to macro 2010. IEEE: Rotterdam, Netherlands; pp. 996-9.
[13]
Otazo R, Cand’es E, Sodickson DK. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med 2015; 73(3): 1125-36.
[14]
Weizman L, Miller KL, Eldar YC, Chiew M. PEAR: PEriodic And fixed Rank separation for fast fMRI. Med Phys 2017; arXiv:1706.04772.
[15]
Majumdar A, Ward RK. An algorithm for sparse MRI reconstruction by Schatten p-norm minimization. Magn Reson Imaging 2011; 29(3): 408-17.
[16]
Haldar JP. Low-rank modeling of local-space neighborhoods (LORAKS) for constrained MRI. IEEE Trans Med Imaging 2014; 33(3): 668-81.
[17]
Buades A, Coll B, Morel JM. A non-local algorithm for image denoising.In: IEEE Computer society conference on Computer Vision and Pattern Recognition (CVPR'05) 2005. 60-5.
[18]
Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 2007; 16(8): 2080-95.
[19]
Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 2006; 15(12): 3736-45.
[20]
Dong W, Shi G, Li X, Ma Y, Huang F. Compressive sensing via nonlocal low-rank regularization. IEEE Trans Image Process 2014; 23(8): 3618-32.
[21]
Qu X, Hou Y, Lam F, Guo D, Zhong J, Chen Z. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med Image Anal 2014; 18(6): 843-56.
[22]
Lingala SG, Hu Y, DiBella E, Jacob M. Accelerated dynamic MRI exploiting sparsity and low-rank structure: kt SLR. IEEE Trans Med Imaging 2011; 30(5): 1042-54.
[24]
Donoho DL. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun Pure Appl Math 2006; 59(6): 797-829.
[25]
Ravishankar S, Bresler Y. l0 Sparsifying transform learning with efficient optimal updates and convergence guarantees. IEEE Trans Signal Process 2015; 63(9): 2389-404.
[26]
Ravishankar S, Bresler Y. Online sparsifying transform learning part II: convergence analysis. IEEE J Sel Top Signal Process 2015; 9(4): 637-46.
[27]
Ravishankar S, Wen B, Bresler Y. Online sparsifying transform learningPart I: Algorithms. IEEE J Sel Top Signal Process 2015; 9(4): 625-36.
[28]
Wen B, Ravishankar S, Bresler Y. Structured overcomplete sparsifying transform learning with convergence guarantees and applications. Int J Comput Vis 2015; 114(2-3): 137-67.
[29]
Cai JF, Cand’es EJ, Shen Z. A singular value thresholding algorithm for matrix completion*. SIAM J Optim 1956; 20(4): 2010.
[30]
Cand’es EJ, Wakin MB, Boyd SP. Enhancing sparsity by reweighted l1 minimization. J Fourier Anal Appl 2008; 14(5-6): 877-905.
[31]
Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process Lett 2007; 14(10): 707-10.
[32]
Gorodnitsky IF, Rao BD. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans Signal Process 1997; 45(3): 600-16.
[33]
Trzasko J, Manduca A. Relaxed conditions for sparse signal recovery with general concave priors. IEEE Trans Signal Process 2009; 57(11): 4347-54.
[34]
Wipf D, Nagarajan S. Iterative Reweighted l1 and l2 Methods for Finding Sparse Solutions. IEEE J Sel Top Signal Process 2010; 4(2): 317-29.
[35]
Cand’es EJ, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 2006; 52(2): 489-509.
[37]
Scho¨nemann PH. A generalized solution of the orthogonal Procrustes problem. Psychometrika 1966; 31(1): 1-10.
[38]
Ravishankar S, Bresler Y. Closed-form solutions within sparsifying transform learning. In: IEEE International conference on acoustics, speech and signal processing 2013 5378-82.
[39]
Ravishankar S, Bresler Y. Learning sparsifying transforms. IEEE Trans Signal Process 2013; 61(5): 1072-86.
[40]
Gu S, Zhang L, Zuo W, Feng X. Weighted nuclear norm minimization with application to image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition 2014 2862-9.
[41]
Ga¨ıffas S, Lecu´e G. Weighted algorithms for compressed sensing and matrix completion 2011. arXiv Prepr arX- iv11071638.
[42]
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 2011; 3(1): 1-122.
[43]
Lin Z, Chen M, Ma Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv Prepr arXiv10095055 2010.
[44]
Golub GH, Van Loan CF. Matrix computations. 3rd ed. JHU Press 2012.