[1]
Md Jani, A.M.; Losic, D.; Voelcker, N.H. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Progr. Mater. Sci., 2013, 58, 636-704.
[2]
Wu, H.; Yang, J.; Cao, S.; Huang, L.; Chen, L. Ordered organic nanostructures fabricated from anodic alumina oxide templates for organic bulk-heterojuncion photovoltaics. Macromol. Chem. Phys., 2014, 215, 584-596.
[3]
Kong, J-H.; Kim, T-H.; Kim, J.H.; Park, J-K.; Lee, D-W.; Kim, S-H.; Kim, J-M. Highly flexible, transparent and self-cleanable superhydrophobic films prepared by a facile and scalable nanopyramid formation technique. Nanoscale, 2014, 6, 1453-1461.
[4]
Banerjee, P.; Perez, I.; Henn-Lecordier, L.; Lee, S.B.; Rubloff, G.W. Nanotubular metal–insulator–metal capacitor arrays for energy storage. Nat. Nano, 2009, 4, 292-296.
[5]
Wang, K.; Wang, Y.; Hosono, E.; Zhou, H. Mesoporous carbon nanofibers for supercapacitor application. J. Phys. Chem. C, 2009, 113, 1093-1097.
[6]
Toccafondi, C.; La Rocca, R.; Scarpellini, A.; Salerno, M.; Das, G.; Dante, S. Thin nanoporous alumina-based SERS platform for single cell sensing. Appl. Surf. Sci., 2015, 35, 1738-1745.
[7]
Toccafondi, C.; Dante, S.; Reverberi, A.P.; Salerno, M. Biomedical applications of anodic alumina. Curr. Nanosci., 2015, 11, 572-580.
[8]
Tsao, Y.C.; Søndergaard, T.; Skovsen, E.; Gurevich, L.; Pedersen, K.; Pedersen, T.G. Pore size dependence of diffuse light scattering from anodized aluminum solar cell backside reflectors. Opt. Express, 2013, 21, A84-A95.
[9]
Norek, M.; Włodarski, M.; Nyga, P.; Budner, B.; Siemiaszko, D. Improved anti-reflective properties of amorphous silicon films deposited on Al nanoconcave arrays. Mater. Lett., 2014, 135, 199-201.
[10]
Huang, H.; Lu, L.; Wang, J.; Yang, J.; Leung, S.F.; Wang, Y.; Chen, D.; Chen, X.; Shen, G.; Li, D.; Fan, Z. Performance enhancement of thin-film amorphous silicon solar cells with low cost nanodent plasmonic substrates. Energy Environ. Sci., 2013, 6, 2965-2971.
[11]
Shingubara, S. Fabrication of nanomaterials using porous alumina templates. J. Nanopart. Res., 2003, 5, 17-30.
[12]
Sulka, G.D. In: Nanostructured Materials in Electrochemistry;, 2008. Eftekhari, A. Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,
2008; pp. 1-116.
[13]
Kikuchi, T.; Nishinaga, O.; Natsui, S.; Suzuki, R.O. Self-ordering behavior of anodic porous alumina via selenic acid anodizing. Electrochim. Acta, 2014, 137, 728-735.
[14]
Takenaga, A.; Kikuchi, T.; Natsui, S.; Suzuki, R.O. Self-ordered aluminum anodizing in phosphonoacetic acid and its structural coloration. ECS Solid State Lett., 2015, 4, 55-P58.
[15]
Kikuchi, T.; Yamamoto, T.; Natsui, S.; Suzuki, R.O. Fabrication of anodic porous alumina by squaric acid anodizing. Electrochim. Acta, 2014, 123, 14-22.
[16]
Kikuchi, T.; Nishinaga, O.; Natsui, S.; Suzuki, R.O. Fabrication of self-ordered porous alumina via etidronic acid anodizing and structural color generation from submicrometer-scale dimple array. Electrochim. Acta, 2015, 156, 235-243.
[17]
Takenaga, A.; Kikuchi, T.; Natsui, S.; Suzuki, R.O. Exploration for the self-ordering of porous alumina fabricated via anodizing in etidronic acid. Electrochim. Acta, 2016, 211, 515-523.
[18]
Ono, S.; Saito, M.; Asoh, H. Self-ordering of anodic porous alumina induced by local current concentration: Burning. Electrochem. Solid-State Lett., 2004, 7, B21-B24.
[19]
Ono, S.; Saito, M.; Ishiguro, M.; Asoh, H. Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc., 2004, 151, B473-B478.
[20]
Gabe, D.R. Hard anodizing – what do we mean by hard. Metal Finishing., 2002, 100, 52-58.
[21]
Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature, 2006, 5, 741-747.
[22]
Li, Y.B.; Zheng, M.J.; Ma, L. High-speed growth and photoluminescence of porous anodic alumina films with controllable interpore distances over a large range. Appl. Phys. Lett., 2007, 91, 073109.
[23]
Cheng, C.; Ngan, A.H. Fast fabrication of self-ordered anodic porous alumina on oriented aluminum grains by high acid concentration and high temperature anodization. Nanotechnology, 2013, 24, 215602.
[24]
Schwirn, K.; Lee, W.; Hillebrand, R.; Steinhart, M.; Nielsch, K.; Gösele, U. Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. ACS Nano, 2008, 2, 302-310.
[25]
Li, Y.; Ling, Z.Y.; Chen, S.S.; Wang, J.C. Fabrication of novel porous anodic alumina membranes by two-step hard anodization. Nanotechnology, 2008, 19, 225604.
[26]
Li, Y.; Zheng, M.; Ma, L.; Shen, W. Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology, 2006, 17, 5101-5105.
[27]
Su, Z.; Hähner, G.; Zhou, W. Investigation of the pore formation in anodic aluminium oxide. J. Mater. Chem., 2008, 18, 5787-5795.
[28]
Su, Z.; Zhou, W. Formation mechanism of porous anodic aluminium and titanium oxides. Adv. Mater., 2008, 20, 3663-3667.
[29]
Su, Z.; Zhou, W. Pore diameter control in anodic titanium and aluminium oxides. J. Mater. Chem., 2011, 21, 357-362.
[30]
Akerlof, G. Dielectric constants of some organic solvent-water mixtures at various temperatures. J. Am. Chem. Soc., 1932, 54, 4125-4139.
[31]
Zahn, M.; Ohki, Y.; Fenneman, D.B.; Gripshover, R.J.; Gehman, V.H. Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design. Proc. IEEE, 1986, 74, 1182-1221.
[32]
Yi, L.; Zhiyuan, L.; Shuoshuo, C.; Xing, H.; Xinhua, H. Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization. Chem. Commun., 2010, 46, 309-311.
[33]
Yi, L.; Zhiyuan, L.; Xing, H.; Yisen, L.; Yi, C. Investigation of intrinsic mechanisms of aluminium anodization processes by analyzing the current density. RSC Adv., 2012, 2, 5164-5171.
[34]
Li, Y.; Ling, Z.Y.; Hu, X.; Liu, Y.S.; Chang, Y. Unique fusiform alumina nanotubes fabricated by combined anodization. Chem. Commun., 2011, 47, 2173-2175.
[35]
Li, D.; Jiang, C.; Jiang, J.; Ren, X. Investigation on highly ordered porous alumina membranes formed by high electric field anodization. Mater. Chem. Phys., 2008, 111, 168-171.
[36]
Han, X.Y.; Shen, W.Z. Improved two-step anodization technique for ordered porous anodic aluminum membranes. J. Electroan. Chem., 2011, 655, 56-64.
[37]
Qin, X.; Zhang, J.; Meng, X.; Wang, L.; Deng, C.; Ding, G.; Zeng, H.; Xu, X. Effect of ethanol on the fabrication of porous anodic alumina in sulfuric acid. Surf. Coat. Technol., 2014, 254, 398-401.
[38]
Norek, M.; Dopierała, M.; Stępniowski, W.J. Ethanol influence on arrangement and geometrical parameters of aluminum concaves prepared in a modified hard anodization for fabrication of highly ordered nanoporous alumina. J. Electroan. Chem., 2015, 750, 79-88.
[39]
Li, A-P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys., 1998, 84, 6023-6026.
[40]
Jessensky, O.; Müller, F.; Gösele, U. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett., 1998, 72, 1173-1175.
[41]
Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R.B.; Gosele, U. Self-ordering regimes of porous alumina: the 10 porosity rule. Nano Lett., 2002, 2, 677-680.
[42]
Martín, J.; Manzano, C.V.; Martín-González, M. In-depth study of self-ordered porous alumina in the 140-400 nm pore diameter range. Microporous Mesoporous Mater., 2012, 151, 311-316.
[43]
Zaraska, L.; Sulka, G.D.; Jaskuła, M. The effect of n-alcohols on porous anodic alumina formed by self-organized two-step anodizing of aluminum in phosphoric acid. Surf. Coat. Technol., 2010, 204, 1729-1737.
[44]
Chen, X.; Yu, D.; Cao, L.; Zhu, X.; Song, Y.; Huang, H.; Lu, L.; Chen, X. Fabrication of ordered porous anodic alumina with ultra-large interpore distances using ultrahigh voltages. Mater. Res. Bull., 2014, 57, 116-120.
[45]
Wang, Q.; Long, Y.; Sun, B. Fabrication of highly ordered porous anodic alumina membrane with ultra-large pore intervals in ethylene glycol-modified citric acid solution. J. Porous Mater., 2013, 20, 785-788.
[46]
Shulgov, V.; Ignashev, E.; Gurskaja, E. Correlation between formation conditions and breakdown voltage of anodic oxide films on aluminum. Microchim. Acta, 2007, 156, 147-150.
[47]
Martín, J.; Manzano, C.V.; Caballero-Calero, O.; Martín-González, M. High-aspect-ratio and highly ordered 15-nm porous alumina templates. ACS Appl. Mater. Interfaces, 2013, 5, 72-79.
[48]
Manzano, C.V.; Martín, J.; Martín-González, M.S. Ultra-narrow 12 nm pore diameter self-ordered anodic alumina templates. Microporous Mesoporous Mater., 2014, 184, 177-183.
[49]
Abad, B.; Maiz, J.; Martin-Gonzalez, M. Rules to determine thermal conductivity and density of anodic aluminium oxide (AAO) membranes. J. Phys. Chem. C, 2016, 120, 5361-5370.
[50]
Parkhutik, V.P.; Shershulsky, V.I. Theoretical modelling of porous oxide growth on aluminium. J. Phys. D Appl. Phys., 1992, 25, 1258-1263.
[51]
Manzano, C.V.; Best, J.P.; Schwiedrzik, J.J.; Cantarero, A.; Michler, J.; Philippe, L. The influence of thickness, interpore distance and compositional structure on the optical properties of self-ordered anodic aluminum oxide films. J. Mater. Chem. C., 2016, 4, 7658-7666.
[52]
Song, Y.; Wu, H.; Yang, B.; Wang, J.; Yang, J.; Xu, C.; Zhu, X.; Jia, H. Effect of solvent on the structural features and the degree of ordering of pore arrays in porous anodic alumina. J. Electroan. Chem., 2012, 682, 110-115.
[53]
Garcia-Vergara, S.J.; Skeldon, P.; Thompson, G.E.; Habazaki, H. A flow model of porous anodic film growth on aluminum. Electrochim. Acta, 2006, 52, 681-687.
[54]
Garcia-Vergara, S.J.; Skeldon, P.; Thompson, G.E.; Hashimoto, T.; Habazaki, H. Compositional evidence for flow in anodic films on aluminum under high electric fields. J. Electrochem. Soc., 2007, 154, C540-C545.
[55]
Norek, M.; Stępniowski, W.J.; Siemiaszko, D. Effect of ethylene glycol on morphology of anodic alumina prepared in hard anodization. J. Electroanal. Chem., 2016, 762, 20-28.
[56]
Norek, M.; Zasada, D.; Siemiaszko, D. Systematic study on morphology of anodic alumina produced by hard anodization in the electrolytes modified with ethylene glycol. J. Nano Res., 2017, 46, 165-178.
[57]
Morlidge, J.R.; Shimizu, K.; Skeldon, P.; Thompson, G.E.; Wood, G.C. Formation of anodicalumina films in tungstate/ethylene glycol electrolyte. Thin Solid Films, 1995, 258, 341-346.
[58]
Stępniowski, W.J.; Norek, M.; Michalska-Domańska, M.; Bombalska, A.; Nowak-Stępniowska, A.; Kwaśny, M.; Bojar, Z. Fabrication of anodic aluminium oxide with incorporated chromate ions. Appl. Surf. Sci., 2012, 259, 324-330.
[59]
Stępniowski, W.J.; Norek, M.; Michalska-Domańska, M.; Nowak-Stępniowska, A.; Bombalska, A.; Włodarski, M.; Bojar, Z. Incorporation of copper chelate ions into anodic alumina walls. Mater. Lett., 2013, 106, 242-245.
[60]
Stępniowski, W.J.; Norek, M.; Budner, B.; Michalska-Domańska, M.; Nowak-Stępniowska, A.; Bombalska, A.; Kaliszewski, M.; Mostek, A.; Thorat, S.; Salerno, M.; Giersig, M.; Bojar, Z. In-situ electrochemical doping of nanoporous anodic alumina oxide with indigo carmine organic dye. Thin Solid Films, 2016, 598, 60-64.
[61]
Stępniowski, W.J.; Norek, M.; Michalska-Domańska, M.; Nowak-Stępniowska, A.; Kaliszewski, M.; Chilimoniuk, P.; Bombalska, A.; Bojar, Z. Fabrication and luminescence of anodic alumina with incorporated vanadyl citrate chelate anions. J. Mater. Sci. Nanotechnol., 2014, 1, 1-7.
[62]
Stępniowski, W.J.; Forbot, D.; Norek, M.; Michalska-Domańska, M.; Król, A. The impact of viscosity of the electrolyte on the formation of nanoporous anodic aluminum oxide. Electrochim. Acta, 2014, 133, 57-64.
[63]
Stępniowski, W.J.; Norek, M.; Michalska-Domańska, M.; Forbot, D.; Król, A. Study on the correlation between criterion number derived from Rayleigh–Bénard convective cells and arrangement of nanoporous anodic aluminum oxide. Mater. Lett., 2014, 125, 124-127.
[64]
Chen, W.; Wu, J-S.; Xia, X-H. Porous anodic alumina with continuously manipulated pore/cell size. ACS Nano, 2008, 2, 959-965.
[65]
Salerno, M.; Patra, N.; Losso, R.; Cingolani, R. Increased growth rate of anodic porous alumina by use of ionic liquid as electrolyte additive. Mater. Lett., 2009, 63, 1826-1829.