[1]
Chen YT. Brain tumor detection using three-dimensional Bayesian
level set method with volume rendering. In: International
Conference on Wavelet Analysis and Pattern Recognition; IEEE.
Xian: China 2012; pp. 158-63.
[2]
Hsieh TM, Liu YM, Liao CC, et al. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing. BMC Med Inform Decis Mak 2011; 11: 54.
[3]
Gordillo N, Montseny E, Sobrevilla P. State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 2013; 31(8): 1426-38.
[4]
Gonzlez-Villà, Oliver A, Valverde S, Wang L, Zwiggelaar R, Llad X. A review on brain structures segmentation in magnetic resonance imaging. Artif Intell Med 2016; 73: 45-69.
[5]
Mohammed AM, Shams AAM. In: Hassanien AE Ed. Recent
survey on medical image segmentation. Ismailia: IGI Global 2017.
[6]
Boberek M, Saeed K. In: Filipczuk P, Kowal M, Obuchowicz A,
Ed. Segmentation of MRI brain images for automatic detection and
precise localization of tumor. Springer 2011; pp. 333-41.
[7]
Adams R, Bischof L. Seeded region growing. IEEE Trans Pattern Anal Mach Intell 1994; 16(6): 641-7.
[8]
Kaus MR, Warfield SK, Nabavi A, Black PM, Jolesz FA, Kikinis R. Automated segmentation of mr images of brain tumors 1. Radiology 2001; 218(2): 586-91.
[9]
Sato M, Lakare S, Wan M, Kaufman A, Nakajima M. A gradient
magnitude based region growing algorithm for accurate
segmentation. In: International Conference on Image Processing
(Image Process). IEEE 2000; pp. 448-51.
[10]
Lakare S, Kaufman A. 3D segmentation techniques for medical
volumes. Center for Visual Computing, State University of New
York 2000.
[11]
Salman YM. Modified technique for volumetric brain tumor measurements. J Biomed Sci Eng 2009; 2(01): 16-9.
[12]
Dam E, Loog M, Letteboer M. Integrating automatic and
interactive brain tumor segmentation. Proceedings of the 17th
International Conference on Pattern Recognition; 2004;
Cambridge, UK. IEEE 2004.
[13]
Cates JE, Whitaker RT, Jones GM. Case study: An evaluation of user-assisted hierarchical watershed segmentation. Med Image Anal 2005; 9(6): 566-78.
[14]
Supot S, Thanapong C, Chuchart P, Manas S. Segmentation of
magnetic resonance images using discrete curve evolution and
fuzzy clustering. In: IEEE International Conference on Integration
Technology; 2007 Mar 20-24; Shenzhen, China. IEEE 2007.
[15]
Szilgyi L, Sndor Szilgyi, Zoltn Beny. A modified fuzzy C-means
algorithm for MR brain image segmentation. In: 4th International
Conference on Image Analysis and Recognition; 2007 Aug 22-24;
Montreal, Canada.
[16]
Capelle AS, Alata O, Fernandez C, Lefvre S, Ferrie JC. Unsupervised segmentation for automatic detection of brain tumors
in MRI. International Conference on Image Processing; 2000 10-13
Sep; Vancouver, BC: Canada. IEEE 2000.
[17]
Gering DT, Grimson WE, Kikinis R. Recognizing deviations from normalcy for brain tumor segmentation. In: Dohi T, Kikinis R, Eds. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2002 Oct 10. Springer, Berlin, Heidelberg 2002.
[18]
Bauer S, Nolte LP, Reyes M. Segmentation of brain tumor images
based on atlas-registration combined with a Markov-Random-Field
lesion growth model. IEEE International Symposium on
Biomedical Imaging: From Nano to Macro 2011 30 Mar-2 Apr;
Chicago, IL, USA 2011.
[19]
Clarke LP. MR image segmentation using MLM and artificial neural nets. Med Phys 1991; 18(3): 673.
[20]
Ozkan M, Dawant BM, Maciunas RJ. Neural-network-based segmentation of multi-modal medical images: A comparative and prospective study. IEEE Trans Med Imaging 1993; 12(3): 534-44.
[21]
Solomon JM. Computer-assisted segmentation and tracking of
brain lesions in magnetic resonance images based on probabilistic
reasoning in space and time. George Mason University 2005.
[22]
Prastawa M, Bullitt E, Ho S, Gerig G. A brain tumor segmentation framework based on outlier detection. Med Image Anal 2004; 8(3): 275-83.
[23]
Zhu SC, Yuille A. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans Pattern Anal Mach Intell 1996; 18(9): 884-900.
[24]
Moon TK. The expectation-maximization algorithm. IEEE Signal Process Mag 1996; 13(6): 47-60.
[25]
Tolba MF, Mostafa MG, Gharib TF, Salem MA-MM. MR-brain image segmentation using gaussian multiresolution analysis and the EM algorithm. In: International Conference on Enterprise Information Systems (ICEIS) 2003; pp. 165-70.
[26]
Saeed M. Maximum likelihood parameter estimation of mixture models and its application to image segmentation and restoration. Massachusetts Institute of Technology 1997.
[27]
Saeed M, Karl WC, Nguyen TQ, Rabiee HR. A new
multiresolution algorithm for image segmentation. Proceedings of
the 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP '98; 1998 May 15-15; Seattle, WA,
USA. IEEE 1998; pp. 2753-6.
[28]
Salem MA-M. Medical Image Segmentation: Multiresolution-based Algorithms. VDM Verlag 2011.
[29]
Kaufhold J, Schneider M, Karl WC, Willsky A. MR image segmentation and data fusion using a statistical approach. In: International Conference on Image Processing (ICIP’97) 1997 Oct.. Santa Barbara, California, USA 1997.
[30]
Pien HH, Gauch JM. Variational segmentation of multi-channel
MRI images. In: Proceedings of 1st International Conference on
Image Processing; Austin, TX: USA. IEEE; 1994; pp. 508-12.
[31]
Ye Z, Lu CC. An unsupervised multiresolution textured image segmentation using wavelet-domain classification. In: Proceedings of the International Conference of Image Science, System, and Technology 2001.
[32]
Al-Tamimi MSH, Sulong G, Shuaib IL. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images. Magn Reson Imaging 2015; 33(6): 787-803.
[33]
Edelsbrunner H, Mucke EP. Three-dimensional alpha shapes. ACM Trans Graph 1994; 13(1): 43-72.
[34]
Angelopoulou A, Psarrou A, Garcia-Rodriguez J, Orts-Escolano S, Azorin-Lopez J, Revett K. 3D reconstruction of medical images from slices automatically landmarked with growing neural models. Neurocomputing 2015; 150: 16-25.
[35]
Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. In: Proceedings of the 14th annual conference on Computer graphics and interactive techniques 1987; ACM New York, NY, USA 1987: pp. 163-9.
[36]
Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Surface reconstruction from unorganized points. 26th ed. ACM 1992.
[37]
Carr JC, Beatson RK, Cherrie JB, et al. Reconstruction and
representation of 3D objects with radial basis functions. In:
Proceedings of the 28th Annual Conference on Computer graphics
and Interactive Techniques; 2001. ACM; New York: USA 2001;
pp. 67-76.
[38]
Shen C, O’Brien JF, Shewchuk JR. Interpolating and approximating
implicit surfaces from polygon soup. In: Proceedings on Annual
Conference Series on Computer Graphics; 2004; Los Angeles:
California 2004; pp. 204
[39]
Fleishman S, Cohen-Or D, Silva CT. Robust moving least-squares
fitting with sharp features. In: Proceeding of SIGGRAPH '05.
ACM; Los Angeles: California 2005; pp. 544-52
[40]
Walder C, Scholkopf B, Chapelle O. Implicit surface modelling with a globally regularised basis of compact support. Wiley Online Library 2006; pp. 635-44.
[42]
Wang CC. Incremental reconstruction of sharp edges on mesh surfaces. Comput Aided Des 2006; 38(6): 689-702.
[43]
Connolly CI. Cumulative generation of octree models from range data. In: Proceedings of the International Conference on Robotics and Automation. 1984 Mar 13-15; Atlanta, GA: USA. 1984; 25-32.
[44]
Kobbelt L, Botsch M. A survey of point-based techniques in computer graphics. Comput Graph 2004; 28(6): 801-14.
[45]
Grevera GJ, Udupa JK. An objective comparison of 3-D image interpolation methods. IEEE Trans Med Imaging 1998; 17(4): 642-52.
[46]
Herman GT, Rowland SW, Yau Mm. A comparative study of the use of linear and modified cubic spline interpolation for image reconstruction. IEEE Trans Nucl Sci 1979; 26(2): 2879-94.
[47]
Lehmann TM, Gnner C, Spitzer K. Survey: Interpolation methods in medical image processing. IEEE Trans Med Imaging 1999; 18(11): 1049-75.
[48]
Stytz MR, Parrott RW. Using kriging for 3D medical imaging. Comput Med Imaging Graph 1993; 17(6): 421-42.
[49]
Dhawan AP, Arata L. Knowledge-based 3D analysis from 2D medical images. IEEE Eng Med Biol 1991; 10(4): 30-7.
[50]
Goshtasby A, Turner DA, Ackerman LV. Matching of tomographic slices for interpolation. IEEE Trans Med Imaging 1992; 11(4): 507-16.
[51]
Higgins WE, Orlick CJ, Ledell BE. Nonlinear filtering approach to 3-D gray-scale image interpolation. IEEE Trans Med Imaging 1996; 15(4): 580-7.
[52]
Chuang KS, Chen CY, Yuan LJ, Yeh CK. Shape-based grey-level image interpolation. Phys Med Biol 1999; 44(6): 1565.
[53]
Chatzis V, Pitas I. Interpolation of 3-D binary images based on morphological skeletonization. IEEE Trans Med Imaging 2000; 19(7): 699-710.
[54]
Lee TY, Lin CH. Feature-guided shape-based image interpolation. IEEE Trans Med Imaging 2002; 21(12): 1479-89.
[55]
Penney GP, Schnabel JA, Rueckert D, Viergever MA, Niessen WJ. Registration-based interpolation. IEEE Trans Med Imaging 2004; 23(7): 922-6.
[56]
Penney GP, Schnabel JA, Rueckert D, Hawkes DJ, Niessen WJ. Registration-based interpolation using a high-resolution image for guidance. In: International Conference on Medical Image Computing and Computer-Assisted Intervention Springer, Berlin: Heidelberg. 2004; 558-65.
[57]
Leng J, Xu G, Zhang Y. Medical image interpolation based on multi-resolution registration. Comput Math Appl 2013; 66(1): 1-18.